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Abstract: Single-order diffraction gratings with quasi-random structures are effective optical elements
in suppressing harmonics contamination. However, background intensity fluctuations introduced
by quasi-random structures may affect the measurement of the spectra and the fluctuations lack
quantitative description. A unified theoretical method is provided to describe quasi-random diffrac-
tion structures with arbitrary distribution functions and an arbitrary number of microstructures.
The effect of the number of microstructures and distribution functions on the level of background
fluctuations is evaluated. This work provides important guidance for the design and optimization
of single-order diffraction gratings, which are attractive for spectral analysis and monochromator
applications in synchrotron beam lines.

Keywords: high-order diffraction suppression; grating; spectroscopy

1. Introduction

Synchrotron beamlines play an important role in a wide range of fields [1–3], such as
spectroscopic studies, polymer science in water windows band, biological and magnetic
material research, quantitative high-precision wavelength metrology of various optical
devices, and reflectometry techniques in a variety of scientific applications [1,4]. The signals
generated by higher harmonics can mask or exceed the signal generated by the fundamental
wave, affecting the purity of the spectrum. [5]. The reliability of experimental data will
be significantly compromised in the absence of a high-harmonic suppression device on
the beamline. The main methods used for the suppression of higher harmonics are filters,
suppression mirrors, and gas absorption cells [1,6,7]. These methods may require additional
suppression systems or optical elements for monochromatic applications [8]. Compared to
other methods, single-order diffraction gratings can suppress higher harmonics without
requiring additional equipment and cover a wide energy spectrum. Single-order diffraction
gratings only have 0th and ±1st order diffractions, and their spectral positions strictly
correspond to different wavelengths. [9]. In the far field of the visible light band, sinusoidal
gratings are ideal single-order diffraction gratings that can provide a pure monochromatic
light source [10]. However, in the X-ray band, sinusoidal gratings introduce phase shifts
that may result in the re-appearance of higher order diffractions [5,11].

In recent research, Cao et al. [12] proposed a novel approach to address the issue of
continuous phase shift in the X-ray range by introducing the concept of binarized transmit-
tance [13,14]. The transmittance of a point on the grating is either 1 (completely transparent)
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or 0 (completely opaque). Various designs of binarized gratings have been developed to
achieve a binarized sinusoidal grating effect in the X-ray band [12]. These designs can
be broadly classified into two types: periodic structures (such as tilted rectangular aper-
tures, trapezoidal aperture gratings, etc.) [15,16], and quasi-random structures (such as
spectroscopic photonic sieve, quantum dot grating, etc.)[17–20]. Quantum dot grating
is a representative quasi-random design that uses a large number of microstructures in
each period to replace the grating’s grating bar structure. These microstructures achieve
single-order diffraction by following a sinusoidal density distribution function.

The suppression of higher order diffractions by the periodic structure design depends
on the particular shape and precise size of microstructures. Due to the proximity effect of
the electron beam etching processes [21], the actual machined size is difficult to meet the
requirements. The size deviation of the machined samples still surpasses 10% even with
strict control of the process parameters at each step [22], which reintroduced higher order
diffractions [15]. In contrast, the suppression effect of quasi-random structure designs on
higher order diffractions is dependent on the distribution function [23], which is insensitive
to the accuracy of single microstructure machining and has a higher error tolerance [24].
However, quasi-random structures lead to fluctuations in the background intensity [25],
which may alter the spectral shape and significantly impact spectral analysis, particularly
in broadband spectra measurement. Previous transmittance design and analysis methods
have yet to systematically evaluate the effect of background intensity fluctuations on
diffraction patterns [26].

In this paper, a statistical analysis method to describe the fluctuations of the average
diffraction intensity and background intensity of quasi-random structures is proposed. The
variation of the background intensity and the average diffraction intensity is examined in
depth using the microstructure’s number and distribution function.

2. Principles

The general diffractive grating can be regarded as a convolution of a periodic lattice
and single microstructure. As shown in Figure 1a, Lpq is a two-dimensional periodic lattice
composed of δ functions,

(
µp, νq

)
are the centers of the microstructures

(
µp, νq

)
= (pd1, qd2),

where p represents the ordinal value of the rows of the lattices (p = 0,±1,±2, . . . ,±P), q
represents the ordinal value of the columns (q = 0,±1,±2, . . . ,±Q), d1 and d2 denote the pe-
riods of the array in the µ and ν directions, respectively. The total number of microstructures
is N = (2P + 1)(2Q + 1). The diffraction intensity of the grating is as follows:

I(x, y) = |FT(g(µ, ν))|2 ∗
∣∣FT

(
Lpq
)∣∣2

= I0(x, y)

∣∣∣∣∣ N
∑

(p,q)
exp

[
−ik

(
µpx + νqy

)]∣∣∣∣∣
2

,
(1)

where x = ξ/z, y = η/z, (ξ, η) denotes the detection plane of diffraction pattern. z
denotes the distance between the diffraction grating and the diffraction pattern detection
plane. * represents the convolution, FT(·) represents the Fourier transform, and k is the
wave number.g(µ, ν) represents the transmittance of a single microstructure and I0(x, y)
represents the far-field diffraction intensity of a single microstructure.

In the grating with the quasi-random structures, the δ function becomes some non-
negative real distribution function Γ

(
µp, νq

)
. The distribution of the coordinates of the

microstructures obeys a given function. A real element
(
µp, νq

)
is an isolated value, but in

theory, it can be considered as a continuous variable when a large number of microstructures
obey the distribution function. The Γ

(
µp, νq

)
introduces a modulation in the diffraction
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pattern that can suppress the higher order diffractions [23]. The normalized probability
density distribution function is as follows:

Lpq =
1

N
s

(µp ,νq)

Γ
(
µp, νq

)
dµpdνq

Γ
(
µp, νq

)
∗ ∑
(p,q)

δ
(
µp − pd1, νq − qd2

)
. (2)
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Figure 1. Schematic of the distribution of microstructures: from δ function to arbitrary positive
function Γ

(
µp, νq

)
. (a) A two-dimensional periodic lattice composed of δ functions, (b) A two-

dimensional periodic lattice composed of Γ
(
µp, νq

)
functions.

If there is only one microstructure per period and d1 = d2 (single-microstructure
structure, SMS),

∣∣FT
(

Lpq
)∣∣2 can be written as:

∣∣FT
(

Lpq
)∣∣2= N+ 1 s

(µp ,νq)
Γ(µp ,νq)dµpdνq

2

∣∣∣∣∣ d1/2∫
−d1/2

d1/2∫
−d1/2

Γ
(
µp, νq

)
Cpqdµpdνq

∣∣∣∣∣
2

∑
(p,q)

Cpq
(
µp, νq

)
∑

(p′,q′) 6=(p,q)
C∗p′q′

(
µp′, νq′

)
.

(3)

where the upper limit of all sums is N. The complex term Cpq = exp
[
ik
(
µpx + νqy

)]
and

Cp′q′∗ = exp
[
−ik

(
µp′x + νq′y

)]
. Equation (3) contains two terms, the former term (N)

represents the linear superposition of diffraction patterns of all microstructures, and the
latter term includes interference effects between different microstructures.

When the grating has multiple microstructures in one period (multi-microstructures
structures, MMS) that follow the same distribution function, the function

∣∣FT
(

Lpq
)∣∣2 of

the grating needs to be reconsidered. The MMS can be decomposed into multi-layer SMS,
and the distribution functions in different layers are identical, as shown in the Figure 2.
Then, the

∣∣FT
(

Lpq
)∣∣2 of the grating with MMS is divided into two cases: the first case is the

interference effect between different microstructures in the same layer; the second case is
the interference effect between different microstructures in different layers. However, the
case where two microstructures overlap must be excluded from consideration.
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Figure 2. (a) Schematic diagram of the decomposition of the quasi-random MMS. (b) Schematic
diagram of the quasi-random MMS. (c) Multi-microstructures in one period.

If the number of microstructures in a single period is M, the total number of microstruc-
tures is N = M(2P + 1)(2Q + 1). The

∣∣FT
(

Lpq
)∣∣2 of MMS can be written as follows:

∣∣FT
(

Lpq
)∣∣2 = N + 1 s

(µp ,νq)
Γ(µp ,νq)dµpdνq

2

∣∣∣∣∣ d1/2∫
−d1/2

d1/2∫
−d1/2

Γ
(
µp, νq

)
Cpqdµpdνq

∣∣∣∣∣
2

×

(
M ∑

(p,q)
Cpq ∑

(p′,q′)
C∗p′q′ + M(M−1) ∑

(p,q)
Cpq ∑

(p′,q′) 6=(p,q)
C∗p′q′

)
= N + B2

1
(

M2D2
1 − N

)
B1 =

∣∣∣∣∣∣
d1/2∫
−d1/2

d1/2∫
−d1/2

Γ(µp ,νq)Cpqdµpdνq

∣∣∣∣∣∣
2

 s

(µp ,νq)
Γ(µp ,νq)dµpdνq

2 ,

D1 = N sinc((2P+1)h)
sinc(h)

sinc((2Q+1)l)
sinc(l) ,

(4)

where h represents the transverse diffraction orders h = xd1/λ, l represents the longitudinal
diffraction orders l = yd1/λ, λ is the incident wavelength.

Therefore, according to Fraunhofer diffraction theory, the average diffraction intensity
of any quasi-random MMS can be generalized to:

I(x, y) = I0(x, y)
(

N + B2
1

(
M2D2

1 − N
))

, (5)

The same distribution function can produce different grating samples with quasi-
random structures, and the diffraction intensity is different for different samples. In
statistical analysis, the standard deviation is often used to measure the degree of fluctuation
between a set of random variables and their average. The standard deviation distribution
reflects the deviation of the diffracted intensity from its average intensity in different
samples at a certain location, while the standard deviation distribution also reflects the
fluctuation of the background intensity of a given sample. The standard deviation of the
distribution can be written as:

σ(I(x, y)) =
√

I2(x, y)− I(x, y)
2
. (6)

3. Results and Discussion
3.1. Quasi-Random Rectangular Distribution

As shown in Figure 3a, a rectangular region with equal side lengths b = d/2 is
introduced at the center of a single period, and the microstructure is randomly distributed
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within it. Here, the microstructure is a square hole. The distribution function can be
expressed as:

Γ(µn, νn) = rect(µn/b)rect(νn/b). (7)
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rectangular distribution and a periodic grating with 1:1 duty cycle. (c) Theoretical and simulation
of MMS (M = 100) with rectangular distribution. (d) Intensity ratio of quasi-random MMS with
rectangular distribution and different number of square holes, the period number is 201 × 201 and
the side length of the square hole is 0.01 d.

The far field average diffraction intensity of the quasi-random rectangular distribution
structure can be obtained by combining Equations (3) and (5), where B1 and I0 are as follows:

B1 = sinc(0.5h)sinc(0.5l) (8)

I0(h, l) = sin c(sh) sin c(sl), (9)

In addition, s is the side length of the square hole. The theoretical (Equation (3)) and
simulation (Equation (1)) results of the average diffraction intensity of the quasi-random
SMS and MMS (M = 100) with rectangular distribution are given in Figure 3b,c, respectively.
The results show that the theory agrees well with the simulation results.

It is well known that a quasi—random structure grating can effectively suppress
high order diffractions [25]. As shown in Figure 3b, by comparing the diffraction pattern
of the SMS and a periodic grating with a duty cycle ratio of 1:1, we find that the high
order diffraction intensity level of the two gratings is very similar with only odd-orders
diffractions. However, the average background intensity of the quasi-random structure is
higher than that of the periodic structure because some of the energy of the incident light
will be transferred to the background from the high order diffraction peak. We defined
“intensity ratio” as the ratio of first order average diffraction intensity to higher orders (>1st)
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and background average intensity (non-diffraction peaks) to evaluate the suppression effect
of the number of square holes within a period for intensities at different locations.

I(1, 0)

I(h, 0)
≈


[

1+(N−1) sin c2(0.5)
1+(N−1) sin c2(0.5h)

]
I0(1,0)
I0(h,0) , {h|h = 2n + 1, n ∈ Z}[

1+(N−1) sin c2(0.5)
1−sin c2(0.5h)

]
I0(1,0)
I0(h,0) . {h|h 6= 2n + 1, n 6= 0}

(10)

The ratio of the intensity of the 1st order to the 3rd and 5th order of the periodic grating
is 9 and 25, respectively [25]. For quasi-random structures, the I0(1,0)

I0(h,0) is approximated as 1
when the square hole size is much smaller than the period length. According to Equation
(10), for a SMS, the intensity ratio of 1st to 3rd order intensity is 9, and the intensity ratio
of 1st order to the background (h = 2, l = 0) intensity is 1.6× 104. For MMS (M = 100), the
intensity ratios of the 1st order to the 3rd order intensity and the background (h = 2, l = 0)
intensity are 9 and 1.6× 106, respectively. It is estimated from Equation (11) that when
N >> 1, the quasi-random structure of the rectangular distribution has an intensity ratio
∼ h2 for each odd-order (>1st) and ~N for the background. As shown in Figure 3d, when
increasing the number of square holes in a single period, the suppression of odd higher
order (>1st) diffractions has no significant change, while the suppression of the background
is obviously optimized, which is in accordance with the above theory.

However, the number of square holes cannot be indefinitely increased. The currently
used research CCD has a dynamic range of approximately 212 ∼ 216, and the intensity range
of the diffraction pattern of MMS (M = 100) is around 219 (average diffraction intensity of
the first order to the average background intensity). Consequently, the average intensity of
the background introduced by the quasi-random structure is lower than the noise level of a
CCD. Therefore, the background introduced by the quasi-random structure can be ignored
when M > 100.

The background fluctuations of the quasi-random structure are unavoidable. From
Equation (6), the expression for the standard deviation distribution is

σ(I(x, y)) ==
√

I2
0 (x, y)[N2 As + NBs + Cs], (11)

where D1 is from Equation (5) and B1 is from Equation (8), and As, Bs, Cs are as follows:
As = (1− 2B2

1 + B4
1)

Bs = B4
1
(
−6− 2D2

1
)
+ B2

1
(
2D2

1 + 4B2 + 4
)
− B2

2 − 1
Cs = B4

1
[
D2

1(7− 2D2) + 2D2
2
]
+ B2

1
[
D2

1(−4− 4B2 + 2B2D2)− 2B2D2
2
]
+ B2

2D2
2

,{
B2 = sinc(h)sinc(l)
D2 = sin((2P+1)2hπ)

sin(2hπ)
× sin((2Q+1)2lπ)

sin(2lπ)

.

(12)

In Figure 4a,b, the theoretical average diffraction intensity and standard deviation
distribution are compared for SMS and MMS (M = 100). The results indicate that the
average diffraction intensity and standard deviation of MMS are higher than SMS. To assess
the intensity fluctuations in the diffraction pattern, when the number (M) of square holes
in a single period increase. The relative fluctuations were defined, which is the ratio of
standard deviation to the average diffraction intensity at the same position and can be
written as:

σ(h, 0)

I(h, 0)
≈


√

N3

N+N(N−1) sin c2(0.5h) , {h|h = 2n + 1, n ∈ Z}
1

1−sin c2(0.5h) , {h|h 6= 2n + 1, n 6= 0}.
(13)

Figure 4c demonstrates that the relative fluctuations at the odd-order positions of
the MMS rectangular distribution are smaller compared to the background positions,
and these fluctuations decrease with an increase in the number of square holes. This
indicates that the intensity differences of the odd-orders between different MMS samples are
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smaller. Figure 4d shows that the odd-order (>1) diffraction suppression effect of the MMS
rectangular distribution is independent of the number of holes. The relative fluctuations of
the quasi-random MMS with rectangular distribution are larger at the background position,
and these fluctuations largely remain the same as the number of square holes increases
(non-diffraction peak). Moreover, the intensity fluctuation of the MMS with rectangular
distribution is more apparent in the background than in the diffraction peaks, as shown
in Figure 4c. Accounting for the intensity fluctuation of the background in the actual
diffraction pattern, the diffraction intensity range of MMS is 216 ∼ 223. The background
intensity is still lower than the noise level of the CCD and can be ignored.
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3.2. Quasi-Random Sinusoidal Distribution

As shown in Figure 5a, the distribution probability of the locations of the centers of
the microstructure within the period follows the sinusoidal distribution function, and the
microstructure is also a square hole. The distribution function can be expressed as:

F(µn, νn) = [
1
2
+

1
2

cos(
2πµn

d
)]. (14)

The average diffraction intensity and standard deviation distribution of the quasi-
random sinusoidal structure can also be described by Equations (3) and (11), except that B1
and B2 are: {

B1 = sinc(l)[sinc(h) + 0.5sinc(h + 1) + 0.5sinc(h− 1)]
B2 = sinc(2l)[sinc(2h) + 0.5sinc(2h + 1) + 0.5sinc(2h− 1)].

(15)

The theoretical and simulation results of the sinusoidal distribution structure are also
consistent, as shown in Figure 5b,c, and it can be seen that the quasi-random structure
grating with sinusoidal distribution only has diffraction of 0 and 1st order. The following
equation illustrates the intensity ratio between the higher orders and the background
average diffraction intensity of the quasi-random structure with a sinusoidal distribution,

I(1, 0)

I(h, 0)
≈
{

1, {h|h = 1}[
1+0.25(N−1)

1−[sinc(h)+0.5sinc(h+1)+0.5sinc(h−1)]

]
I0(1,0)
I0(h,0) , {h|h 6= 1}. (16)
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The relative fluctuations of the quasi-random structure with sinusoidal distribution
can be written as:

σ(h, 0)

I(h, 0)
≈
{ √

N3

N+0.25N(N−1) , {h|h = 1}
1− [sinc(h) + 0.5sinc(h + 1) + 0.5sinc(h− 1)], {h|h 6= 1}.

(17)

In Figure 6a,b, the theoretical average diffraction intensity and standard deviation
distribution are also compared for SMS and MMS (M = 100) with sinusoidal distribution.
Figure 5d shows that the intensity ratio of the higher orders to the background follows ~
N. The relative fluctuations of the ±1 orders decrease with an increase in the number of
square holes and are small (close to 0), whereas the relative fluctuations in the background
remain relatively large (close to 1) and constant with an increase in the number of holes,
as seen in Figure 6c. The fluctuations in the background are more obvious, consistent
with the preceding analysis shown in Figure 5b,c. Taking the fluctuations into account,
the diffraction intensity range of MMS (M = 100) with sinusoidal distribution is 213 ∼ 223.
Despite the existence of fluctuations, the background intensity is still lower than the noise
level of the CCD, and it can be ignored in most situations.
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Figure 6. (a) Theoretical average intensity and standard deviation distribution of the quasi-random
SMS with sinusoidal distribution. (b) Theoretical average intensity and standard deviation distribution
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of the quasi-random MMS (M = 100) with sinusoidal distribution. (c) Relative fluctuations of the
quasi-random MMS with sinusoidal distribution different number of square holes, when the period
number is 201 × 201 and the side length of the square hole is 0.01 d.

4. Conclusions

In conclusion, a quasi-random MMS theory is proposed based on the quasi-random
SMS theory, which describes the average diffraction intensity and fluctuations of the quasi-
random structure. Theoretical and simulation analyses demonstrate that increased single-
period microstructures can enhance the suppression of background intensity and reduce
intensity fluctuations induced by quasi-random structures. Additionally, the comparison
of the quasi-random rectangular distribution function and the quasi-random sinusoidal
distribution function confirms that the sinusoidal distribution function is more effective
in suppressing higher-order diffractions. Meanwhile, it is found that the background
fluctuations introduced by the quasi-random structure can be ignored when M > 100 in
the actual diffraction patterns. Quasi-random MMS theory can optimize the structural
design of single-order diffraction gratings and has the potential to be extended to arbitrary
quasi-random structure diffraction elements. This can facilitate the advancement and
application of single-order diffraction gratings in the fields of spectral diagnosis and soft
X-ray monochromatization.
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