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Abstract: An image data set from a multi-spectral animal imaging system was used to address two
issues: (a) registering the oscillation in optical coherence tomography (OCT) images due to mouse eye
movement and (b) suppressing the shadow region under the thick vessels/structures. Several classical
and A.I.-based algorithms, separately and in combination, were tested for each task to determine
their compatibility with data from the combined animal imaging system. The hybridization of A.I.
with optical flow followed by homography transformation was shown to be effective (correlation
value > 0.7) for registration. Resnet50 backbone was shown to be more effective than the famous
U-net model for shadow region detection with a loss value of 0.9. A simple-to-implement analytical
equation was shown to be effective for brightness manipulation with a 1% increment in mean pixel
values and a 77% decrease in the number of zeros. The proposed equation allows the formulation of
a constraint optimization problem using a controlling factor α for the minimization of the number of
zeros, the standard deviation of the pixel values, and maximizing the mean pixel value. For layer
segmentation, the standard U-net model was used. The A.I.-Pipeline consists of CNN, optical flow,
RCNN, a pixel manipulation model, and U-net models in sequence. The thickness estimation process
had a 6% error compared with manually annotated standard data.

Keywords: optical coherence tomography system; mouse retinal imaging; deep learning-based
post-processing

1. Introduction

Optical coherence tomography (OCT) imaging systems comprise the preferred imag-
ing technique for depth- and time-resolved 3D ocular imaging [1]. The technique provides
time-dependent topographical structures of the deep retina in micrometer order. Besides
ocular imaging, it is also used to study cardiovascular, dermatological lesions, and sub-
surface cerebral activities [2–4]. Phase variance of OCT data can be correlated with the
dynamic structure, thus providing a blood vessel map.

OCT, as a functional imaging tool, is used as a clinical diagnostic tool. It is also
used in translational research in laboratory environments. Both translational and clinical
applications require quantitative analysis to compare the baseline images with respect
to time or any other variable. Progression and prognosis are correlated with changes in
thickness, density, color, and volume in search of biomarkers using multi-modal/multi-
spectral imaging systems [5–7]. The thickness of layers can be used as one of the imaging
biomarkers to differentiate between the retina of a healthy person/animal and the retina
of a patient/animal suffering from a disease. However, the temporal resolution must be
high for statistically sound data and strong disease correlation. Ethically, once the patient
is diagnosed with a disease, clinical guidelines and professional etiquette necessitate the
urgency to provide treatment immediately. Such situations do not allow for securing
images for several days. Similar murine disease model (both known and experimental)
imaging in a laboratory setup is more often used as a surrogate that may facilitate insight,
especially to develop and test new pre-clinical treatment protocols [7,8].
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OCT brightness scan (B Scan) images can be used to quantitatively and non-invasively
estimate the thickness of the whole eye in-vivo with better accuracy compared with gold
standard histopathological images [9]. However, estimation is always subjected to accurate
image processing steps, for example, retinal segmentation.

1.1. Issue requiring Post-Processing Manipulations
1.1.1. Oscillation Due to Mouse Eye Movement

Usually, a mouse is put under anesthesia for sake of convenience during the imaging.
Animals which have undergone several imaging sessions may develop resistance against
the optimal dosage. The dynamic adjustment (if the animal is made to inhale the isoflu-
rane) is possible. However, if done during the imaging session, one may observe slight
oscillations in B Scans. Retinal layers with different base heights/levels from the top of
the B Scan are shown in Figure 1A–C using curly brackets and blue-colored double-sided
arrow markers.
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Figure 1. Image registration benefits and issues with inaccuracies: (A–C) show three successive B
scans with a slight decrease in height from the top of the time, with the respective SNR and zoomed
part showing ELM and RPE in the inset; (D) shows the averaged B Scan of (A–C) without registration,
showing that SNR is improved but fake retinal layers appear.

Multiple B scan images of the same locations are repeatedly measured and averaged
later during the post-processing step [10]. This provides images with a relatively better
signal-to-noise (SNR) ratio. In our case, 1080 OCT B Scans were averaged into 360 using an
adjacent group of three. Figure 1A–C show the SNR values of three repeated B scans and
their respective averaged B scans. Each figure shows a zoomed region of interest depicting
the presence of an external limiting membrane (ELM) and retinal epithelial pigment (RPE)
layers. Figure 1D shows multiple ELM and RPEs manifested as averaging was performed
without registration since the distance between the upper reference level to ILM increased
(H2 > H1), the highest being shown in Figure 1C. An inaccurate registration may also create
observable overlapped layers or the presence of fake retinal layers after the averaging step.
The need to register before averaging to increase the SNR of the data is termed case 1 in
this work.

1.1.2. Batch Processing and Common Dispersion Values

An alternate possibility that may create fake layers is discussed in Figure 2. Raw
data are used in the post-processing step to extract OCT and respective phase variance
angiography data (OCT-A) utilizes and requires dispersion values [11]. These values are
either provided by the spectrometer manufacturer or can be estimated numerically [12].
Generally, single-dispersion correction (for batch processing) is used, which may or may
not be optimal and thus may create hazy B scans (Figure 2B–G). The need to register the
data set in this condition is referred to as case 2 in this work. Few works are reported as
having performed a correction [13].
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Figure 2. The effect of suboptimal dispersion correction parameters; Figure (A–I) shows the effect
of mouse eye movement as the retinal layer depiction sharpness is affected, starting from (B) and
ending at (H), (I) shows false depiction of breakage in perfectly healthy vessel, (J) is enface of full
stack and (K) is B Scan showing optical chord.

A close comparison of Figure 2A,H, with Figure 2B,H shows overlapped and un-
sharp/hazy retinal layers. The corresponding enface is shown in Figure 2J and its digital
zoom section (in Figure 2I) shows the overall effect. The orange-colored horizontal arrow-
shaped markers are used to highlight the existence of horizontal regions giving entirely the
wrong output. Figure 2I highlights the fact that because of movement, the blood vessel is
wrongly depicted as broken (between 225 and 233).

A general approach is to blacken out the affected region instead of giving false informa-
tion if time-averaged multiple B scan fails to remove this effect. This creates smooth-looking
images with low contrast. Alternatively, images are presented as-is for the user to compre-
hend. The worst-case scenario requires one to discard the valuable data together, sacrificing
animal imaging time.

Interpolation techniques may subdue the effect but also might add false information.
Time averaging also causes the loss of temporal resolution, which may not be acceptable if
OCT-A imaging is intended for flow measurements.

1.1.3. Shadows Underneath

Another issue is the existence of dark shadowing (dark vertical column) due to the
existing, thick blood vessels in or entering the inner limiting membrane (ILM) in all images
(shown in Figure 2A using a vertical orange arrow marker). The enface image (the averaged
full stack of all the B scans taken in a single measurement) especially showed thick vessels
belonging to ILM only with biased contrast and with a dark sheath (marked in Figure 2I).
This issue particularly exists in OCT data. The sub-retinal fluid, floaters, vignetting, and
cataracts created shadowing from the top. Were these shadows nonexistent, the overall
enface image would appear differently. The effect was more pronounced (showing a wide
dark gap) under the optical cord region, as shown in Figure 2K.

If the segmentation algorithm is not robust, the effect may involve an error as these
shadows might generate discontinuities in layers below them when binarized. Phase
variance images analogous to Figure 2 are shown in Supplementary Figure S1.

Several works have used clinical/human OCT imaging data for shadow detection
and segmentation [14,15]. The correction part to remove the shadows in OCT/OCT-A
data rarely uses the idea of brightness matching [16,17]. Slab subtraction is shown to
remove projection artifacts found to disrupt vessel continuity [18]. The best proven method
using clinical datasets so far is the projection-resolved OCTA technique that suppresses
the projection artifacts/shadows under retinal vessels of small diameter but fails to resolve
the IS/OS layer [19,20]. Phase variance OCT (OCT-A) enface clinical data are used to show
the performance.
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Standard AI-based classical techniques (for example, support vector machine, optical
flow, and graph methods) are used for clinical applications as far as automated post-
processing is concerned [21–23]. Deep learning-based models require thorough testing
as far as the sensitivity of hyperparameters with respect to imaging data is required for
optimal performance [24].

1.2. Motivation

Some of the standard classical approaches for registration are all integrated into ImageJ
and available in Python libraries in the open domain. These, however, may not work on
every dataset. The following are both issues: (a) registration and (b) shadow identification
and suppression, which sometimes create layer linkage problems in single-segmented
layers, requiring interpolation between broken or missing lines [14,25].

The available post-processing techniques are data dependent, mostly developed for
human OCT data (due to ease of availability), or require human input to tweak the perfor-
mance.

This work tested a simple-to-implement height adjustment technique, three keypoint
detection techniques, a hybrid model of the conventional CNN model, and optical flow for
registration. To the best of our knowledge, these four methods have never been employed
for the same purpose in literature. Homography or perspective transformation is used to
align the images taken from visual spectrum cameras but not used to register the OCT data
set [26]. The optical flow method is only used to estimate micron-scale fluid flow velocities
using non-medical imaging OCT data sets [27].

The work also proposed a shadow-suppressing (not detecting) technique using simple-
to-implement analytical expression. It also briefly presented a performance evaluation of
five other alternatives.

The objectives of this work were to improve the accuracy of retinal layer segmentation
by reducing the issues mentioned above in the forthcoming sections.

2. Materials and Methods
2.1. Animal Husbandry and Handling during the Imaging

Mice (Balb/C, 10 male and 10 female) were kept in the Institute Animal House and
brought into the imaging facility only during the imaging sessions for a day or two. The
mice were kept under anesthesia (isoflurane mixed with 2% oxygen). An Isoflurane
vaporizer and oxygen pump were used to create the mixture. The mice eyes were dilated by
applying tropicamide and phenylephrine drops for two minutes or so. During the imaging
session, an artificial tear (Gel Tear) was used to keep the cornea moist as the mice stopped
blinking, naturally.

2.2. Post-Processing Steps for Registration

In our approach, a single dataset underwent the registration process twice. The first
registration was carried out using multiple reference frames. The algorithm offers two
options to estimate the indices of these frames: (a) it either allows the user to review the
images and expects the index of several reference frames as input, hoping that the user
will enter a reference frame in the neighborhood of the respective images which need
registration or (b) it automatically estimates those indices by comparing the threshold
depreciation (h2-h1 > 4 pixels) in ILM height in 5 successive images. These inputs were
then used to perform registration to the images of those indices. Afterward, a second
registration was performed just using the central index of the dataset for all images.

The data set affected due to the case 1 condition can be simply registered to elevate
the height of retinal layers by h1 and h2 pixels in successive images (in case 3 images of the
same location are saved) as shown in Figure 1 before averaging. The first step, however,
requires the estimation of h1 and h2, which is only possible if ILM is accurately segmented.
This is relatively easy to perform. Tracing ILM from the side of vitreous humor (appears
dark in the image), a sharp gradient facilitates a clear peak to Gaussian fit and extracts its
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index. This height adjustment concept using the h1 and h2 extracted from OCT data can
also be applied directly to the corresponding OCT-A data.

To resolve case 2 conditions, however, keypoint detection techniques, namely, scale
invariant feature transform (SIFT), OpenCV libraries of oriented fast and rotated brief
(ORB), and boosted efficient binary local image descriptor (BEBLID) were proposed in
this work [28]. These algorithms typically detect the focal points that catch the eye (for
similarities to perceive a change in height) and are the areas of interest that remain constant
throughout the image’s change, aiding in the preservation of the crucial details while
transforming is performed. Descriptors or histograms of the photo gradients describe how
these key points appear and are used to compare the keypoints in the sample image to
the keypoints in the reference image. A homography 3 × 3 matrix containing information
about the rotation and translation transformation of the target image with regard to the
reference image was built. These keypoint detection methods are described as follows.

Scale Invariant Feature Transform (SIFT) was applied using the following:

1. Gaussian Blurring was applied to reduce the noise;
2. Features were enhanced by using the difference of Gaussians (DoG) technique;
3. Local maxima and minima values were used to remove low-contrast points to detect

keypoints;
4. Magnitude and orientation were calculated at each pixel for generating descriptors

for each keypoint (128-bit vectors).

Orient Fast and Rotate Brief (ORB) applied the following algorithm:

1. Applied FAST (Features from Accelerated Segment Test) to detect features from the
images;

2. Used rotated BRIEF to calculate the descriptors of these keypoints. The rotation of
BRIEF was in accordance with the orientation of the keypoints;

The pseudo code for FAST is given as follows:

1. Select a pixel p in the image and let its intensity be Ip;
2. Select a circle around it of the mask of x number of pixels;
3. Select a threshold value t, and a hyperparameter n;
4. A pixel p is said to be a feature if there are n contiguous pixels in the circle, which are

either brighter than Ip+1 or darker than Ip−t.

The pseudo code for BRIEF is given as follows:

1. A Gaussian kernel was used to smoothen the given image;
2. n location pairs of (x, y) were selected and their intensities compared at x and y. It

generated a binary string of whether p (x) > p (y) or p (y) >= p (x);
3. This binary string (of 128 to 512-bit length) acted as the descriptor for a keypoint.

Homography transformation was utilized with a neural network. The idea is simple:
we trained a neural network to find the vertices of a given reference and target image
and used these points to calculate the homography in between and transformed them
to register the reference frame using those four points as anchors. This is termed herein
as the bounding box ML approach. Generally, a bounding box is rectangular, and one
only needs four outputs from a neural network to create them, which are coordinates of
reference point x, y, height h, and width w. OCT’s retinal structure cannot be precisely
bound by using rectangular bounding boxes. Thus, herein, polygon bounding boxes that
can precisely trace were also tested as model 2. The model architecture was a regular CNN,
and the output layer was a fully connected layer with 8 nodes, yielding 8 coordinate values.
To improve the accuracy, gradient analysis was used, i.e., a hand-annotated polygon box
was approximated into a quadrilateral where sharp gradient changes occur. This neural
network was trained to create non-rectangular bounding boxes, providing four pairs of
coordinates, i.e., (x1, y1), (x2, y2), (x3, y3), and (x4, y4). Another alternative is You Only
Look Once (YOLO) but CNN is preferred for medical images [29,30].
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2.3. Shadow Detection

The shadows shown in Figure 2 can be considered less-bright vertical columns, with
the requirement that the information needs to be preserved within. The case is shown in
Figure 2K; however, we also expect to generate the missing information. In some cases,
this may be accomplished by just conveniently extending the retinal layer maps from both
sides using interpolation. The details of classical approaches, such as smearing, balancing
HSV values, convolving filters, etc., are tested and directly discussed in the results section.
The detection of the shadow is considered a segmentation problem. Standard U-Net and
RCNN were tested [31,32].

Method to Update the Pixel Value under Shadows

The linear function shown in Equation (1) was used on 8-bit data to update the pixel
values inside the shadow regions once their coordinates were estimated. n denotes the
f bit resolution of the data. In this work, to optimize the speed of processing, data were
converted into 8 bits.

Pix_valNew = α ×
(

2n−1 − Pix_valold

)
/2n−1 (1)

2.4. A.I. and Layer Thickness Estimation

After the images were stabilized, U-net was used to segment out the pixels at retinal
boundaries. Cycle GAN can also be used for this aim, but the method was discarded as a
preferred choice due to poor results. As described earlier, manually annotated layer maps
were used as inputs to train the U-Net model. The Keras (TensorFlow) framework was
used. The model optimizes the combination of dice and binary cross entropy loss.

3. Results
3.1. Registration: Classical, A.I., and Hybrid
Homography Transformation Approaches

SIFT was applied to the image shown in Figure 3A using the reference image. The
estimated keypoints are shown in Figure 3B after registration was performed. The red
circles are keypoints, while the green lines represent good matches. This clearly shows
that this technique did not estimate sufficient keypoints (green lines). For ORB, 16 pixels
were used for creating a mask in FAST. The Figure 3C shows that, using ORB, relatively
more keypoints were incorrectly matched than in SIFT. The hybrid of ORB and BEBLID
was tested by applying the contrast boosting step. The results are shown in Figure 3D to be
better. In conclusion, these methods may work with images with sharp edges and highly
contrasting features to detect keypoints but failed for relatively warped cases.
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Figure 3. Output of algorithms for image registration. (A) Sample image A is the image that needs
registration, (B–D) shows the keypoints obtained from mapping between the reference image and
sample image (after registration) obtained by SIFT, ORB, and a combination of ORB and BEBILD,
respectively. (E) shows the registered image using optical flow. The correlation value remained below
0.6 for all.
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The optical flow method (from sci-kit-image libraries) was used in the next stage. In
this method, the algorithm computed the optical flow for each pixel, and then calculated
the vector (u, v) for every pixel such that the reference (x, y) = target (x + u, y + v). It could
then be used for image warping and transformation. The results, shown in Figure 3E were
not better than those of the ORB + BEBLID approach. Correlation values estimated for
SIFT, ORB, ORB + BEBLID, and optical flow were 0.396, 0.54, 0.598, and 0.535, respectively.
The results of these methods are not encouraging when applied on a stack. The average
correlation value estimated on four different stacks, each consisting of 360 images, always
remained less than 0.6.

3.2. A.I. and Optical Flow Hybrid

The neural network model is a deep CNN with 245 M parameters, with layer details
depicted in Figure 4A.
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and registered images.

Different filter sizes, i.e., 7 × 7, 5 × 5, and 3 × 3 filters were used, keeping in mind
that one needs to consecutively check for smaller and smaller features. Initial loss (using
MSE as the loss function) resulted as high (3 × 105). It was observed that the dataset had an
average mean and standard deviation of 32.9 and 36.06, respectively. The target vector was
normalized using built-in functions of PyTorch, and the addition of this normalization was
performed for the output vector of our model, thus normalizing the two vectors needed to
calculate the loss. This reduced the loss value to 14.3689, but this level still is unacceptable
as the correlation value was 0.627. The model was further modified to incorporate another
feature of CNNs referred to as batch normalization. Three layers of batch normalization
(bn1, bn2, and bn3) were added after each max pool layer. This resulted in much better
results than before, but still too high for normalized inputs and outputs, as those were
normalized to be centered around 0. Initially, the model had no normalization; hence,
the loss was very high for an object detection task. The final training and testing loss, in
Figure 4B, showed that ten epochs were more than sufficient to achieve the desired loss
value. Its initial parameters are listed in Figure 4C. Four hundred images were annotated
for creating the training dataset using a hybrid of model 1 in the shape of a trapezium. For
model 2, polygon segmentation required too much computing power and had a large time
complexity; when compared for practical use purposes, as the number of sides of polygon
increased, the complexity increased as well. These annotation models 1 and 2 are shown
in Figure 4D,E. The images were annotated in the state-of-the-art COCO-JSON format, a
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specific JSON structure dictating how labels and metadata are saved for an image dataset.
This format is mostly used for object detection/image segmentation tasks. Annotations
were carried out using the Make Sense software. The method was tested on the sample
image shown in Figure 4G using the reference image shown in Figure 4F. Its registered
image is shown in Figure 4H. The correlation value for this method using a sample was
0.71. The average correlation value for the four stacks was 0.7056.

3.3. Suppression of Shadows
3.3.1. Classical Approaches for Shadow Detection

Classically, a 3 × 3 kernel can be convolved for vertical edge detection as a first step.
A 3 × 3 kernel, once convolved with the sample image (Figure 5A), although it detects
vertical edges, also detects several other vertical structures (which may be present due to
noise) shown in Figure 5B.
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Figure 5. Classical approaches for shadow removal, (A) highlights the presence of shadow artifacts
in sample image, (B) after convolving the same image using filter, (C) when sample image is averages
using zero axis rolling technique, (D) HSV tweaking results are better than (E) when sample image is
applied with adjacent column dependent averaging and (F) blurred.

Another approach is simply smearing the whole image column-wise. These dark
columns of shadows are generally less than thin, so axis-0 rolling averaging (Figure 5C)
with a window having a width of n = 10 pixels was tested, but it smeared the necessary
information, losing the contrast resolution. Tweaking the hue-saturation–value may help,
as H-S controls the color and the brightness. A linear function (Equation (1)) with the alpha
value = 1.3 was tested on a value that controls the dark spots while keeping the light spots
as they were. The results (Figure 5D) demonstrated that the variation in brightness of the
shadow and non-shadow parts was reduced, but shadows were not removed entirely.

The information of adjacent columns is exploited assuming they have a spatial sim-
ilarity. This may help to locate the shadows and provide the corresponding brightness
difference. Equation (2) was used; it subtracted the brightness of each pixel from the
previous pixel in the same row. The results did contain some information about the shadow
columns, but are unsatisfactory as the images (Figure 5E) were granular (noisy) and did
not have well-defined boundaries.

Img(i,j)= Img(i,j)−Img(i,j−1) (2)

Finally, blurring and then thresholding were also tested. These methods are often used
in computer vision tasks to detect edges by first averaging/blurring the image with a 3 × 3
filter and then thresholding the difference for a particular value. The values less than the
threshold value are given a value of 0, and those greater than the threshold value are kept
the same. This method also did not work as there was a lot of noise in the images and a lot
of random bright/dark pixels all over the images (Figure 5F).

3.3.2. A.I. Models for Shadow Detection

Unlike classical approaches, which affect the whole image, an AI-based problem first
identifies the region containing shadow in the first step and expects normalization of the
patches afterward. The detection of the shadow is considered a segmentation problem.



Photonics 2023, 10, 275 9 of 13

The Computer Vision Annotation Tool (CVAT) was used to prepare a labeled dataset using
359 images. These images were registered first. The bounding box annotation approach
was used, as shadows are mostly columns and can be easily segmented as a rectangular
box. Codes were run until 60 epochs for saturation behavior. Binary masks were extracted
from the labeled dataset. All pixels in the shadow region were given a value of 1, and other
pixels were given a value of 0. The OCT image data were used as input to the U-Net model,
and the corresponding masks were used as a target. The U-Net model was used on the
labeled dataset to detect and predict shadows. The U-Net was trained from scratch by
using a combination of dice and focal loss as a loss function, with a batch size of 2 and a
learning rate of 0.0001.

The results from U-Net shown in Figure 6D are less encouraging, with a loss value of
0.76. This may be because it is a semantic segmentation method, and as such it treats all
the shadows (in the sample image) as a single object and aims to segment them all from
the image. The number of shadows, their width, and their height were not the same in the
various sample images.
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Figure 6. AI-based segmentation of the region under the shadows. (A) sample image showing shadow
artifact, (B) and (C) show the annotation locations overlapped with sample images performed at
U-Net and R-CNN and their respective mask are shown in (D) and (E).

R-CNN, an instance segmentation approach, was tested further. Instance segmentation
treats all the shadows as separate objects and is used for multi-object detection tasks.
FastRCNNPredictor, which is a predefined model provided by PyTorch, was used. Faster
RCNN is based on the Resnet50 backbone. This model requires all the shadows to be
separately annotated as individual entities; therefore, annotation was performed once more.
A ResNet50 backbone with a learning rate of 0.00001 for 5000 epochs was trained. Out
of the predicted regions of shadows, only those regions with confidence scores above 0.8
were accepted, and in those regions, the pixels with values equal to or greater than 0.5 were
given a value of 1. A loss value of 0.903 was achieved with this model.

3.3.3. Pixel Value Manipulation

The correlation value between data with and without registration for this data set
was 0.703. Once the location of shadows was found, the next step required changing the
brightness/pixel gray values. Equation (2) was used to manipulate the pixel value under
the shadow only. Sensitivity analysis (a simple brute-force approach) was performed to
find the optimized (visual perception was used) value of α = 1.3. The final shadow removed
registered (A.I.-adjusted) images, and the respective original images are shown in Figure 7.
Figure 7A,B,G show the enface and B scans (index 316 and index 341) of the original data
(stack of 360 B scans) and Figure 7C,F,H show the corresponding A.I.-segmented pixel-
value-adjusted images for shadow suppression. The effect is visible by comparing Figure 7B
with Figure 7C,G and Figure 7H. The shadows, however, were not entirely removed but
suppressed. The corresponding normalized differences (with the corresponding shadow
locations) are also shown in Figure 7D,I as basically equivalent to the mask created by A.I.
to segment these locations. Figure 7B,E show that the chosen value of alpha was able to
suppress the existence of relatively thin shadows (highlighted with arrow markers with
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light blue boundaries and white inner cores) only. The biggest possible dark region right
below the optical cord was adjusted as well; however, interpolation to the missing retinal
layer maps is not included in this work. The difference between Figure 7B,C is shown in
Figure 7D, which depicts the overall changes made by A.I. in this B scan. The major effect of
suppressing the shadow was observed in the enface of the full stack of the 360 B scan. The
enface of the original images (Figure 7A) suffered the case 2 registration issue and showed
dark ILM vessels prominently. The AI-adjusted enface, however, had only a few jitters
and dark vessels after post-processing. The histogram data obtained for the respective full
stack are shown in Figure 7E,J. The difference in the mean pixel value of shadow-adjusted
data increased (1%) from 51.77 to 52.29, and the standard deviation decreased (1.29%)
from 55.25 to 54.54. The number of zeros (mode value) decreased (77%) from 2.57 × 107

to 5.73 × 106. This is reflected in the increased smoothness of the histogram curve. The
data set using several values of α was found to have poor performance as far as loss in
standard deviation, zero-valued pixels, and increment in mean pixel value are concerned.
The positive mean pixel values, negative standard deviation, and the number of zeros can
be used as optimization factors to estimate the optimal α rather than using brute-force
sensitivity analysis.

Photonics 2023, 10, x FOR PEER REVIEW 10 of 13 
 

 

Figure 7. Figure 7A,B,G show the enface and B scans (index 316 and index 341) of the 

original data (stack of 360 B scans) and Figure 7C,F,H show the corresponding A.I.-seg-

mented pixel-value-adjusted images for shadow suppression. The effect is visible by com-

paring Figure 7B with Figure 7C,G and Figure 7H. The shadows, however, were not en-

tirely removed but suppressed. The corresponding normalized differences (with the cor-

responding shadow locations) are also shown in Figure 7D,I as basically equivalent to the 

mask created by A.I. to segment these locations. Figure 7B,E show that the chosen value 

of alpha was able to suppress the existence of relatively thin shadows (highlighted with 

arrow markers with light blue boundaries and white inner cores) only. The biggest possi-

ble dark region right below the optical cord was adjusted as well; however, interpolation 

to the missing retinal layer maps is not included in this work. The difference between 

Figure 7B,C is shown in Figure 7D, which depicts the overall changes made by A.I. in this 

B scan. The major effect of suppressing the shadow was observed in the enface of the full 

stack of the 360 B scan. The enface of the original images (Figure 7A) suffered the case 2 

registration issue and showed dark ILM vessels prominently. The AI-adjusted enface, 

however, had only a few jitters and dark vessels after post-processing. The histogram data 

obtained for the respective full stack are shown in Figure 7E,G. The difference in the mean 

pixel value of shadow-adjusted data increased (1%) from 51.77 to 52.29, and the standard 

deviation decreased (1.29%) from 55.25 to 54.54. The number of zeros (mode value) de-

creased (77%) from 2.57 × 107 to 5.73 × 106. This is reflected in the increased smoothness 

of the histogram curve. The data set using several values of α was found to have poor 

performance as far as loss in standard deviation, zero-valued pixels, and increment in 

mean pixel value are concerned. The positive mean pixel values, negative standard devi-

ation, and the number of zeros can be used as optimization factors to estimate the optimal 

α rather than using brute-force sensitivity analysis. 

 

Figure 7. A.I.-segmented pixel-value-adjusted images for shadow suppression: (A) enface image 

without shadow suppression, (B) B scans corresponding to blue horizontal lines in (A) with index 

316, (C) B Scan after suppressing the shadow artifacts corresponding to (B), (D) is the normalized 

difference between original image (B) and image (C), (E) Histogram of full stack (360 B scans) with-

out shadow suppression (F) enface after AI-based shadow suppression, (G) B scans corresponding 

to blue horizontal lines in (A) with index 341, (H) B Scan after shadow suppression, (I) difference 

between images shown in (G,H), (J) is the Histogram of full stack (360 B scans) after shadow sup-

pression. 

3.4. A.I.-Based Retinal Layer Thickness Estimation 

The flow chart of the algorithm is shown in supplementary Figure S2. The implemen-

tation of U-Net and its associated parameters is explained elsewhere [24]. The in-vivo im-

aging session was performed on twenty mice. The OCT B scans and OCT-A enface images 

were post-processed. Figure 8 shows the retinal layer thickness automatically estimated 

Figure 7. A.I.-segmented pixel-value-adjusted images for shadow suppression: (A) enface image
without shadow suppression, (B) B scans corresponding to blue horizontal lines in (A) with index
316, (C) B Scan after suppressing the shadow artifacts corresponding to (B), (D) is the normalized
difference between original image (B) and image (C), (E) Histogram of full stack (360 B scans) without
shadow suppression (F) enface after AI-based shadow suppression, (G) B scans corresponding to blue
horizontal lines in (A) with index 341, (H) B Scan after shadow suppression, (I) difference between
images shown in (G,H), (J) is the Histogram of full stack (360 B scans) after shadow suppression.

3.4. A.I.-Based Retinal Layer Thickness Estimation

The flow chart of the algorithm is shown in supplementary Figure S2. The imple-
mentation of U-Net and its associated parameters is explained elsewhere [24]. The in-vivo
imaging session was performed on twenty mice. The OCT B scans and OCT-A enface
images were post-processed. Figure 8 shows the retinal layer thickness automatically
estimated using an AI-based app. BALB/c female mouse data were used to verify the
difference with published data. Enface OCT and its phase variance images are shown in
Figure 8A,B. The B scan (as an example) is shown in Figure 8C. Its zoomed version in
Figure 8D was used to depict the respective retinal layers along with pixels and lengths in
micrometers. It appears that the A.I.-pipeline-generated data were closer to the manually
segmented reported data than other tools for this B scan [33]. Supplementary Figure S3
comparatively depicts the binary mask created using U-Net and A.I.-Pipeline and justifies
the improvement.
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Figure 8. AI-based automatic retinal layer thickness estimation of BalBc female mice; (A,B) enface
OCT and phase variance images, (C) the B scan with 257 indices (marked in the OCT image with
a blue line), and (D) the zoomed section from an earlier image with the retinal layers/sections
segmented.

The details are given in Table 1. The reported thickness from ILM until the end of PR
was 209 mm. Sex is not mentioned in this work. The A.I.-segmented average distance (for
all B scans using more than 20 mice) in pixels was found to be 251 pixels. This indicates
that the axial resolution of the system was 0.836 microns per pixel. The overall estimation
had a 6% error.

Table 1. Retinal thickness estimation comparison for BalBc female mice.

Layer Pixels Thickness Estimated Using AI Reported Thickness [33]

RNFL 20 16.72 19.32
GCL + IPL 53 44.31 45.09
INL + OPL 25 + 21 20.9 + 17.5 = 38.4 41.92
ONL 52 43.47 46.09
ELM 12 10.03
PR 81 67.72 59.86
ILM to PR 251 209.20 209.20

4. Conclusions

OCT and OCT-A images were obtained from a compact table-top multi-spectral imag-
ing system that was developed in-house. The work presented the AI-based post-processing
add-ons required for accurate retinal layer segmentation, especially the suppression of
shadows beneath the thicker ILM structures. It was shown that the classical keypoint
detection methods, conventional neural network, and A.I. model for medical imaging
underperformed for the speckled, noise-ridden mouse eye OCT data when it comes to
segmenting low-contrast regions. Tweaking the A.I. model by inserting the batch nor-
malization process provided an acceptable loss value. The retinal thickness estimation
accuracy was 94% when 359 images were used for training. The method has limitations,
as performance severely depends on the variation available in the training dataset. A
healthy animal has relatively fewer morphological variabilities in OCT data than an animal
suffering from any disease. Segmented data with and without A.I. post-processing have
a difference, as the lack of post-processing gaps in single retinal topography affects the
overall estimation. Post-processing was added as an initial step in the layer segmentation
pipeline. The customized code was converted into a user-friendly app that allows the user
to add their annotated data set for training purposes.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/photonics10030275/s1, Figure S1: Effect of Mouse eye movement
on OCT-A data; Figure S2: A.I. Pipeline Flow chart; Figure S3: Retinal Segmentation with and without
A.I. Pipeline.

https://www.mdpi.com/article/10.3390/photonics10030275/s1
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