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Abstract: Recently, organic–inorganic perovskites have manifested great capacity to enhance the 

performance of photovoltaic systems, owing to their impressive optical and electronic properties. 

In this simulation survey, we employed the Solar Cell Capacitance Simulator (SCAPS-1D) to nu-

merically analyze the effect of different hole transport layers (HTLs) (Spiro, CIS, and CsSnI3) and 

perovskite active layers (ALs) (FAPbI3, MAPbI3, and CsPbI3) on the solar cells’ performance with an 

assumed configuration of FTO/SnO2/AL/HTL/Au. The influence of layer thickness, doping density, 

and defect density was studied. Then, we trained a machine learning (ML) model to perform pre-

dictions on the performance metrics of the solar cells. According to the SCAPS results, CsSnI3 (as 

HTL) with a thickness of 220 nm, a defect density of 5×1017 cm−3, and a doping density of 5 × 1019 cm−3 

yielded the highest power conversion efficiency (PCE) of 23.90%. In addition, a 530 nm-FAPbI3 AL 

with a bandgap energy of 1.51 eV and a defect density of 1014 cm−3 was more favorable than MAPbI3 

(1.55 eV) and CsPbI3 (1.73 eV) to attain a PCE of >24%. ML predicted the performance matrices of the 

investigated solar cells with ~75% accuracy. Therefore, the FTO/SnO2/FAPbI3/CsSnI3/Au structure 

would be suitable for experimental studies to fabricate high-performance photovoltaic devices. 

Keywords: perovskite; hole transport layer; solar cell; external quantum efficiency; SCAPS-1D;  

machine learning 

 

1. Introduction 

Photovoltaic (PV) cells have achieved significant potential for use in various state-of-

the-art applications, including aerospace [1], CO2 reduction [2], green hydrogen produc-

tion [3], and Agrivoltaic farming [4]. These devices are categorized into three generations 

based on the materials and employed techniques [5]. The first and second generations 

mostly include thick silicon crystalline and thin Copper Indium Gallium Di-Selenide 

(CIGS) and Cadmium Telluride (CdTe) films [6], respectively. The third generation, in-

cluding dye-sensitized [7], quantum dots [8], and organic solar cells [9–12], is capable of 

representing a variety of cost-effective, energy-saving thin film systems. However, the 

main drawback is low efficiency. During the last decade, organic–inorganic perovskites 

have emerged as one of the advanced PV cells, offering a great opportunity for high PCE 

with a reasonable processing cost [13–15]. The remarkable performance of perovskite-

based solar cells (PSCs) originates from their outstanding optical and electrical properties, 

such as high absorption efficiency, direct bandgap, long diffusion length, and high charge 
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carrier mobility [16]. Despite the rising trend of PSCs, it is essential to find efficient ap-

proaches to maintain the upward trend of PCE. So far, several practical efforts have been 

taken to enhance PCE, including controlling the crystallinity and morphology of perov-

skite films by employing appropriate annealing temperatures and solvents [17,18], tuning 

the molar composition of the compounds [19], and introducing ionic additives [20]. How-

ever, material optimization to further improve PCE has remained a great challenge. 

Recently, simulations by SCAPS-1D have enabled researchers to gain a better under-

standing of the physics of PSCs to optimize different elements of devices precisely toward 

higher efficiencies [21,22]. Moreover, machine learning (ML) has become a powerful tool 

for discovering new ways to approach the optimization of solar cells [23]. Thorough re-

views have been written about the application of ML in solar cell research [24,25]. It has 

been demonstrated that ML is useful in predicting the properties and performance of per-

ovskite solar cells. 

To increase the performance of PSCs, several factors should be optimized. Among 

different elements of PSCs, the hole transport layer (HTL) is considered one of the most 

critical components determining the open-circuit voltage (VOC) and efficiency of the cells 

[26]. Spiro-OMeTAD has been broadly used as HTL, having a vital role in reaching high 

levels of PCE in over 20% [27]. However, its instability upon exposure to heat and mois-

ture, along with high fabrication costs, has prevented it from being transformed into a 

commercialized product [28]. Despite many attempts toward replacing organic and inor-

ganic materials, such as PEDOT: PSS [29], P3HT [30], PTAA [31], CuSbS2 [32], and CuO 

[33], with Spiro, finding a cost-effective and efficient HTL has remained a great problem. 

In addition to HTL, the active layer (AL) is shown to effectively promote PSCs’ effi-

ciency. This can be achieved by optimizing the AL characteristics, such as type, doping 

density (NA), defect density (Nt), and thickness. For instance, by taking advantage of 

SCAPS-1D software, the NA (1016 cm−3), Nt (1012 cm−3), and thickness (700 nm) of a simu-

lated cesium lead iodide (CsPbI3)-based solar cell were optimized, yielding an efficiency 

of 21.31% [34]. In another survey, the efficiency of a methylammonium lead iodide 

(MAPbI3)-based solar cell could reach the efficiency of about 21.42% by optimizing the 

thickness (500 nm) and Nt (1013 cm−3) of the active layer [35]. Recently, formamidinium 

lead iodide (FAPbI3) perovskites have received much attention as the most promising can-

didate in optoelectronics, especially solar cells. This is mainly because, compared to 

MAPbI3 (Eg = 1.55 eV) and CsPbI3 (1.73 eV), FAPbI3 has the optimum bandgap value near 

the infrared region (Eg = 1.48–1.51 eV), and affords improved thermal stability along with 

superior dark storage stability in the device [36,37]. However, only a few experimental 

investigations have been carried out on FAPbI3-based solar cells, and they have not been 

comprehensively simulated in the literature. 

This study aims to introduce an efficient PSC structure comprised of cost-effective 

and promising hole transport and active layers. To achieve this, we employed SCAPS-1D 

software to carry out a comprehensive simulation study. At first, we simulated the per-

formance of PV cells based on different HTLs (CIS and CsSnI3, Spiro-OMeTAD) and ALs 

(FAPbI3, MAPbI3, and CsPbI3 perovskites). Second, the characteristics of the best candi-

dates, including layer thickness, Nt, and NA, were elaborated and optimized. Finally, as 

one of the recent surveys, we trained an ML model to perform predictions on the perfor-

mance metrics of the solar cells. This approach can be a robust starting point for further 

artificial intelligence (AI) driven research and investigations. The novelty of this part lies 

in combined ML practice and SCAPS-1D supported by experimental research to design 

predictable high-performance PSCs. 
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2. Materials and Methods 

A schematic demonstration of the configured solar cell device used in this survey is 

shown in Figure 1. As seen, the layers’ arrangement from bottom to top is FTO/ETL/per-

ovskite (active layer)/HTL/Contact. The physical parameters were derived from the liter-

ature and are summarized in Tables 1 and 2. 

 

Figure 1. Configuration of perovskite solar cells used for simulations. 

Table 1. Cell parameters used for simulations. 

Parameter FAPbI3 MAPbI3 CsPbI3 

Thickness (nm) 550 550 550 

Eg (eV) 1.51 1.55  1.73 

χ (eV) 4 3.9  3.95 

εr 6.6 6.6  6.6 

NC (1/cm3) 1.2 × 1019 1.2 × 1019 1.2 × 1019 

NV (1/cm3) 2.9 × 1018 2.9 × 1018 2.9 × 1018 

μn (cm2/Vs) 2.7 0.5 16 

μp (cm2/Vs) 1.8 0.5 16 

ND (1/cm3) 1.3 × 1016 1.3 × 1016 1.3 × 1016 

NA (1/cm3) 1.3 × 1016 1.3 × 1016 1.3 × 1016 

Nt (1/cm3) 1.5× 1014 1.5× 1014 1.5× 1014 

Reference [38] [39] [34] 

Table 2. Characteristics of ETL and HTL used for simulations. 

Parameter SnO2 Spiro-OMeTAD CIS CsSnI3 

Thickness (nm) 90 200 200 200 

Eg (eV) 3.5 2.9 1.5 1.3 

χ (eV) 4 2.2 3.55 3.95 

εr 9 3 13.6 9.93 

NC (1/cm3) 2.2 × 1017  2.2 × 1018 1 × 1019 1 × 1019 

NV (1/cm3) 2.2 × 1017  2.2 × 1018 1 × 1018 1 × 1018 
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μn (cm2/Vs) 20 1 × 10−4 25 1500 

μp (cm2/Vs) 10 1 × 10−4 25 585 

ND (1/cm3) 1015 0 0 0 

NA (1/cm3) 0 1.3 × 1018 1.3 × 1018 1.3 × 1018 

Nt (1/cm3) 1018 1015 1015 1015 

Reference [38] [38] [32] [40] 

2.1. SCAPS 1-D 

SCAPS-1D (version: 3.3.07) is a one-dimensional solar cell simulation software that 

can numerically solve three differential equations known as continuity and Poisson’s 

equations for electrons and holes. This software can predict device characteristics such as 

current density–voltage curve, quantum efficiency, energy bands, and other specific re-

sponses of the planar thin-film structure under illumination [40]. To examine the perfor-

mance of configured solar cells, different types of HTLs (Spiro-OMeTAD, CIS, and CsSnI3) 

and perovskites (FAPbI3, MAPbI3, and CsPbI3) were simulated through a comparative sur-

vey. Then, the effects of thickness, Nt, and NA of the active and hole transfer layers on PCE 

were studied. To improve the real-life application of this simulation, the adverse effect of 

the charge carrier recombination at interfaces on the efficiency of cells was taken into ac-

count. The defect parameters of the thin interface between ETM/perovskite and perov-

skite/HTL were extracted and summarized in Table 3. 

Table 3. Defect parameters of ETM/perovskite and perovskite/HTL interfaces, as extracted from Ref. 

[41]. 

Interface 
Defect 

Type 
Ae (cm2) Ah (cm2) 

Energetic 

Distribution 
Et  Ef (eV) 

ETM/FAPbI3 Acceptor 1 × 10−17 1 × 10−18 Single 
Above the 

highest EV  
0.32 

FAPbI3/HTL Acceptor 1 × 10−18 1 × 10−19 Single 
Above the 

highest EV 
0.07 

Ae: Capture cross-section electrons; Ah: Capture cross-section holes; Et: Reference for defect energy 

level; Ef: Energy level concerning the reference. 

2.2. Machine Learning 

Machine learning was performed using Python, a high-level programming language 

famous for its diverse use in AI [42–45]. Numpy and Pandas were used to work with the 

dataset. The dataset consists of 60 rows and 33 columns, each representing a feature of a 

solar cell. The data were cleaned, and the values of each column were converted to an ML 

learning-compatible format. The Pearson correlation coefficient was used to remove 

highly correlated features. This approach is common because the features are supposed 

to be independent of each other, and a high Pearson correlation coefficient violates this 

assumption. The employed equation for this coefficient is [46]: 

− −

− −


_ _

i i

_ _
2 2

i i

(x x)(y y)
r =

(x x) (y y)

 (1) 

Scikit-Learn was used to build a simple Random Forest at first to decide the future 

presence of each feature in the final model. This model helped to exclude features with 

the least importance and impact. Eleven features were selected after this comprehensive 

phase. Pymatgen and Matminer packages were used for feature extraction on the compo-

sition of perovskites. The data were split into train and test categories for model training. 

The final model, which was another random forest, was initialized with optimized hy-

perparameters. Two separate ways were considered to determine the best 



Photonics 2023, 10, 271 5 of 19 
 

 

hyperparameters for the Random Forest model. First, a parameter grid (a dictionary in 

Python) containing a list of different values for each parameter as the key was prepared. 

From the Scikit-Learn tools, the RandomSearchCV and GridSearchCV were used to eval-

uate the best combination of the aforementioned grid as the selected hyperparameters. 

Random search performs by randomly selecting a combination from the available options 

in the grid and evaluating the model’s performance via CV. On the other hand, Grid 

Search evaluates every possible combination of the parameters provided in the grid 

(which logically should provide better results than the Random Search would). Therefore, 

GridSearchCV was used to evaluate the best combination of hyperparameters from a 

range of different values for each parameter. The final model was evaluated with five-fold 

cross-validation to ensure its performance and consistency. Finally, a test set was em-

ployed to evaluate the model’s accuracy and performance. 

By aggregating the result of each decision tree, the random forest reduces the chance 

of overfitting and improves the overall predictive performance [46]. Overfitting is the state 

where the model tends to reduce its bias to the training data, which causes increased var-

iance on the test (and/or validation) set, indicating the poor predictive performance of the 

model. This issue can be addressed by comparing the prediction results of the train set to 

the test set, which can be handled in various ways, including increasing the number of 

decision trees, decreasing each one’s maximum depth, and using a subset of features on 

each split, and so forth. It is worth mentioning that the evaluation metric was the coeffi-

cient of determination of the prediction. According to the Scikit-Learn official website, this 

metric presented as is defined as: 

−2 u
R = (1 )

v
 (2) 

u is the residual sum of squares ((ypred − ytrue)2). v is the total sum of squares defined as 

(ypred − mean(ytrue))2. A constant model that always predicts the expected value of y, disre-

garding the input features, would achieve an R2 score of 0.0. 

The importance of a node j in a single decision tree was calculated by [46]: 

− −j j j left(j) left(j) right(j) right(j)ni = w C w C w C  (3) 

where wj is the weighted number of samples in node j as a fraction of the total weighted 

number of samples. Cj is the impurity in node j and left (j) and right (j) are its respective 

child nodes. The feature importance of the feature 𝐢 is also calculated by [46]: 






j:node j splits on feature i j

i

j all nodes j

ni
fi =

ni
 (4) 

Finally, the feature values were averaged over all individual decision trees. 

3. Results and Discussion 

3.1. Type of Hole Transport Layer 

Among various layers included in a solar cell device, HTL plays an essential role in 

solar cell performance via two main pathways [47]: (I) it facilitates the transport of photo-

generated holes to the counter electrode; (II) HTL prevents the direct interaction between 

the active layer and the electrode. As mentioned before, despite the extensive integration 

of Spiro-OMeTAD into solar cells to enhance PCE, the low cost-effectiveness, low hole 

mobility, and server instability under certain conditions have limited their applications. 

Therefore, different types of HTLs have been examined. To begin the simulation, a solar 

cell model of FTO/SnO2 (90 nm)/FAPbI3 (550 nm)/Spiro-OMeTAD (200 nm)/Au was sim-

ulated based on an experimental setup to ensure the accuracy of the results [48]. SnO2 was 

chosen as ETL due to its high stability, mobility, transmittance, energy alignment with 

perovskite, and facile processing [49]. As is shown in Figure 2, the obtained curve and 
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parameters from simulations are well-fitted with the experimental results, attesting to the 

reliability of our numerical simulations. 

 

Figure 2. J-V curve for a planar perovskite solar cell with a structure of FTO/SnO2 (90 nm)/FAPbI3 

(550 nm)/Spiro-OMeTAD (200 nm)/Au. For simulations, the physical parameters are extracted from 

Tables 1 and 2. The experimental data were adopted from Ref. [48]. 

To explore the effect of HTL type on the solar cell’s performance, different HTLs, 

including Spiro-OMeTAD, CIS, and CsSnI3, were examined. The thickness of HTL was 

considered constant (200 nm) for all materials. The results of the simulations are presented 

in Figure 3a. The figures of merit, including open circuit voltage (VOC), short circuit current 

density (JSC), filling factor (FF), and efficiency, are listed in Table 4. The results demonstrate 

that the JSC of the perovskite solar cell with CIS could reach 26.50 mA/cm2, which is ap-

proximately 1 mA/cm2 higher than that of Spiro-OMeTAD. This probably corresponds to 

not only the broader absorption coefficient but also, the higher carrier velocity of CIS, 

which accelerates carrier transport, leading to higher carrier density [27]. However, the 

VOC of the CIS-based cell is lower than that of Spiro. This may be attributed to the larger 

offset or higher mismatch between the valence band (VB) of the perovskite and the highest 

occupied molecular orbital (HOMO) of the CIS, which decreases the VOC in PSCs due to 

hole transport losses [50] (Figure 3b). Overall, the simulated solar cell based on CIS was 

capable of indicating better efficiency than that of Spiro. 

Table 4. The effect of HTL on the solar cell parameters. 

HTL VOC (V) JSC (mA/cm2) FF (%) Efficiency (%) 

Spiro-OMeTAD 1.123 25.59 73.26 21.07 

CIS 1.1051 26.50 73.94 21.65 

CsSnI3 0.935 29.5 79.86 22.02 
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Figure 3. (a) J-V curves of simulated solar cells with different HTLs (The absorption curves of dif-

ferent HTL layers and the perovskite are shown in the inset). (b) The schematic of the energy level 

diagram of FAPbI3 and the examined HTLs. (c) EQE and (d) Nyquist plots of the simulated PSCs 

with different HTLs. 

The use of CsSnI3 as an HTL results in attaining a VOC of 0.935 V, JSC of 29.5 mA/cm2, 

FF of 79.86%, and an overall efficiency of 22.02%. In addition to possessing better figures 

in the simulation assessment, in the real experiments, CsSnI3 is expected to be a better 

candidate as it has a similar unit cell, structure, and lattice constant with the active layer, 

which can cover dangling bonds and interface defects to decline the recombination sites 

[51,52]. However, its lower VOC is a challenge that will be optimized in this paper by tun-

ing doping and defect density. First of all, the lower VOC of CsSnI3 compared to other lay-

ers can be explained as follows. Regarding the energy difference viewpoint, the energy 

difference between the HOMO of CsSnI3 (−5.25 eV) and perovskite (−5.5 eV) is lower than 

that of other layers (or there is a higher difference between the quasi-Fermi level of CsSnI3 

and ETL) which should have shown higher VOC. This may stem from the low bandgap 

energy of CsSnI3, as widening the bandgap energy succeeded in increasing the VOC. 

However, the current density, which is affected by the photo-generated minority car-

rier current [53,54], is considerably higher than the other cells. To elucidate JSC, the external 

quantum efficiency (EQE) of the cells was simulated. Figure 3c determines that EQE is 

nearly constant in the region from 360 nm to 600 nm, and then it takes a downward trend 

to 800 nm. It is important to point out that the EQE spectrum of FAPbI3/Spiro and 

FAPbI3/CIS cells does not exhibit absorption beyond 821 nm (the bandgap energy of the 
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perovskite). Nevertheless, the EQE of FAPbI3/CsSnI3 shows the capability of absorbing a 

wider range of the spectra, particularly in the near-infrared region (see the inset in Figure 

3a). CsSnI3 has a lower bandgap energy (1.3 eV) than FAPbI3 (1.51 eV) [55], thus contrib-

uting to the absorption. Moreover, the higher hole mobility decreases the probability of 

recombination, resulting in a noticeably higher short-circuit current and FF [56]. This bet-

ter charge transfer and capacity interface can be found by electrochemical impedance 

spectroscopy [57]. Nyquist plots in Figure 3d for perovskite solar cells containing Spiro-

OMeTAD, CIS, and CsSnI3, as CsSnI3 has the smallest arc, which indicates better transfer 

conductivity. Overall, the simulation results determine the potential of CsSnI3 as an HTL 

to attain efficient perovskite solar cells empowered by a more effective absorption capac-

ity and significant hole mobility. 

3.2. Effect of CsSnI3 

3.2.1. Thickness 

In the previous section, it was shown that CsSnI3 is a promising material as an HTL. 

As the characteristics of an HTL, including thickness, doping density, and defect density, 

significantly influence the performance of solar cells, these parameters must be optimized. 

For instance, HTL thickness is essential in effective carrier transport and controlling the 

recombination rate [58]. Therefore, to attain efficient energy conversion, the thickness of 

an HTL should be optimized. 

Figure 4a,b show the effect of CsSnI3 thickness on the JSC and VOC of the perovskite 

solar cells. The results indicate that JSC and VOC are improved with an increased CsSnI3 

thickness up to 220 nm. According to experimental surveys [59], thickening the HTL gives 

rise to smoother film surfaces with reduced interfacial recombination that ultimately im-

proves VOC. In addition, a thicker HTL reduces the roughness of the Au layer with en-

hanced light reflectivity, boosting carrier generation and, thus, the current density [59,60]. 

Since, in our simulations practice, roughness is considered independent and constant, we 

sought other reasons for this observation. First, the capacity of a thinner HTL is not suffi-

cient to accumulate whole holes. The small number of accumulated holes also pushes a 

backward force to incoming holes and decreases the effective carriers. Second, the deple-

tion region between the perovskite layer and a thin HTL is not as powerful as thicker ones, 

which fails to provide a strong driving force for the separation of carriers. The results have 

also indicated that when the thickness of HTL is higher than 220 nm, VOC and JSC are prone 

to diminish. This is mainly because the traveling distance of the carriers to arrive at the 

interface increases. As a result, traps encourage non-radiative Shockley–Read–Hall re-

combination and the augmented trap-assisted recombination rate [61]. The effect of HTL 

thickness on FF is shown in Figure 4c. The first downward trend is a consequence of an 

increase in series resistance and charge career transport time. By reaching the HTL thick-

ness of around 260 nm, the layer fully covers the perovskite film, raising the shunt re-

sistance with improved FF [59,60]. The variation in PCE with the HTL thickness indicates 

an optimum CsSnI3 thickness of 220 nm, which yields PCE = 22.12% (Figure 4d). 
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Figure 4. Effect of CsSnI3 thickness on the performance of the studied perovskite solar cells. (a) JSC, 

(b) VOC, (c) FF, and (d) PCE. 

3.2.2. Doping Density 

Studies have determined that the doping density (NA) of the HTL greatly influences 

the characteristics of the PV units, including conductivity, recombination rate, VOC, and 

the diffusion length of the carriers [56]. Therefore, the parameters of solar cells at various 

doping densities in the range of 1014 to 1021 cm−3 at a constant HTL thickness (200 nm) were 

simulated. [62]. Figure 5a shows that VOC increases by increasing NA. It is obvious that the 

Fermi level, which is the electrochemical potential of the electron in a solid, is typically 

placed near the conduction band for n-type semiconductors and the valence band for p-

type semiconductors. In layered semiconductor structures, the Fermi level is lined up at 

the same value and reaches an equilibrium state, causing band bending and built-in volt-

age (Vbi) [63]. Because of this internal electric field, the dissociated photogenerated elec-

tron and holes drift towards the n and p regions, respectively, and accumulate there. Un-

der illumination and open circuit conditions, the excited carriers cause splitting electron 

and holes quasi Fermi-levels (EFn and EFp, respectively) in the photoactive semiconductor 

material, canceling Vbi, and forming a photo-voltage called VOC, which can be written as 

follows [64]: 

−OC Fn Fp

1
V = (E E )

q
 (5) 
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The energy band diagrams at doping concentrations of 5 × 1014 and 5 × 1020 cm−3 are 

shown in Figure 5b,c, respectively. The doping of HTL shifts down the Fermi level and 

increases the difference between the quasi-Fermi levels of CsSnI3 and SnO2 through the 

perovskite to build a higher VOC. Moreover, increasing the dopant concentration reduces 

the recombination rate as a result of enhanced internal  electric field and accelerated carrier 

separation. Meanwhile, JSC decreases slightly at the NA level ranging from 1014 to 1018 cm−3. 

A significant decline in the current density is achieved at 1020 cm−3 because numerous deep 

Coulomb  traps have been generated that decrease the hole mobility [65,66]. Figure 5d 

shows that the highest PCE (23.38%) is obtained when the dopant concentration reaches 

~5 × 1019 cm−3. 

 

Figure 5. (a) J-V curves of perovskite solar cells depending on the doping density of the CsSnI3 layer. 

(b,c) Band diagram of the cells at the doping densities of 5 × 1014 and 5 × 1020 cm−3. (d) Effect of 

doping density on PCE. 

3.2.3. Defect Density 

In addition to the doping density, HTL defect density (Nt) influences the performance 

of perovskite solar cells. Figure 6 shows this effect on the characteristics of the investigated 

cells. In the range of 1015 to 1017 cm−1, no major changes in the characteristic parameters, 

including VOC, JSC, and PCE, are noticed (Figure 6a,b,d). However, a sharp decline in VOC 

and JSC is seen at higher Nt values. This change is mainly attributed to the instant gener-

ation of abundant recombination sites in the HTL and interfaces [67]. A higher HTL defect 

density induced by different sources, such as unwanted foreign atoms, native defects, and 

dislocations, creates shallow or deep traps. Therefore, as non-radiative recombination cen-

ters, the traps are harmful to cell performance. The inset of Figure 6d demonstrates that 
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with increasing the number of interface defects, a lower efficiency is attained. These de-

fects, which mostly stem from the lattice mismatch between AL and HTL and/or iodide 

or MA migration, form deep traps at the interface and act as Shockley–Read–Hall (SRH) 

recombination centers. However, in the case of CsSnI3 and FAPbI3, the similarity of the 

lattice constants declines the probability of interface defects generation [61,40]. As a result, 

PCE declined to about 21.5% at Nt = 1021 cm−3. Similarly, the initial downward trend of FF 

is owed to the high number of recombination centers and the amount of series resistance 

caused by the significant number of traps (Figure 6c). When Nt exceeds 1018, an upward 

trend is observed. This behavior can be attributed to the tunneling effect, which happens 

when Nt substantially rises, i.e., traps are as close together as to prefer to adopt the tun-

neling method of transport [68]. Notwithstanding the better results in lower defect den-

sity, the simulation results deviate from the experiments; hence, 5 × 1017 was selected. 

 

Figure 6. Effect of defect density of HTL on (a) JSC, (b) VOC, (c) FF, and (d) PCE of perovskite solar 

cell with CsSnI3 (The inset shows the effect of interface defect density on PCE). 

3.3. Active Layer 

A solar cell’s light absorption and photoelectric conversion mechanism are inter-

twined with the type of active layer (AL). We investigated this effect for both types of 

perovskite materials, including inorganic (CsPbI3) and organic–inorganic (FAPbI3 and 

MAPbI3) compounds. The thickness of AL was 550 nm for all cells. HTL was CsSnI3 with 

a 220 nm thickness and an NA and Nt of 5 × 1019 and 5 × 1017, respectively. The predicated 

J-V curves and the figures of merit for the simulated cells are shown in Figure 7a and Table 
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5. The recorded VOC values of CsPbI3, MAPbI3, and FAPbI3 are 1.015, 1.102, and 1.01 V, 

respectively. 

 

Figure 7. (a) J-V curves of the planar solar cells made of different perovskites as AL. (b) Energy level 

diagram of FAPbI3, MAPbI3, and CsPbI3. (c) EQE and (d) absorption diagrams of solar cells with 

different types of perovskite layers, respectively. 

Table 5. Effects of perovskite materials on the figures of merit of studied solar cells. 

Perovskite VOC (V) JSC (mA/cm2) FF (%) Efficiency (%) 

FAPbI3 1.010 29.02 82.11 23.94 

MAPbI3 1.102 24.05 83.54 22.15 

CsPbI3 1.015 23.02 75.33 17.56 

To discuss the obtained results, only the side of the HTL and perovskite is noticed, 

as the energy difference between perovskite and ETL is almost the same. The highest VOC 

is related to MAPbI3 because this material has the lowest mismatch with CsSnI3 (Figure 

7b) with a bandgap energy value between CsPbI3 and FAPbI3. In terms of CsPbI3, we ex-

pect that the higher bandgap energy yields a higher VOC, which is not seen for CsPbI3. 

Despite the advantage of Eg for CsPbI3, the significant energy difference between perov-

skite and CsPbI3 (4.3 eV) increases mismatch, which contributes to lower VOC. In the case 

of FAPbI3, the lower mismatch between perovskite and CsSnI3 offsets the lower bandgap 

energy, and the same value of VOC was achieved. 

Moreover, the results also determine that the current density of the FAPbI3 solar cell 

is higher than that of the other ones. Simulations of the quantum efficiency (Figure 7c) 

reveal that EQE changes at wavelengths beyond 600 nm and is suddenly dropped in the 

near-infrared region, i.e., 700 nm (for the inorganic perovskite) and 800 nm (for the or-

ganic–inorganic perovskites). However, as FAPbI3 has the most favorable or red-shifted 

bandgap energy, it is capable of absorbing photons until the wavelength of 830 nm that 

other active layers are unable (Figure 7d). In addition, FAPbI3 has higher carrier velocity 

than MAPbI3, which increases the carrier lifetime and decreases the non-radiate 
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recombination. Of particular interest, FAPbI3 exhibits a high EQE in the near-infrared re-

gion with a maximum PCE of 23.94% (Table 5). In the aspect of stability of solar cells, the 

alpha phase of FAPbI3 perovskite with impressive optical and electrical properties is more 

moisture-resistant and current-stable than MAPbI3, which is mainly originated from the 

fact that it has more hydrogen bonds and a larger radius cation than MAPbI3 perovskite, 

making it more stable against destructive objectives and ion migration [36]. As I and MA 

vacancies (the positively and negatively charged ions) migrate and accumulate at inter-

faces, the built-in electric field or extraction driving force is weakened due to the genera-

tion of an intensive internal electric field, contributing to normal hysteresis [69]. 

3.3.1. Effect of Thickness 

The performance and efficiency of perovskite solar cells greatly depend on the thick-

ness of the active layer. We studied the effect of AL thickness on the performance of 

FTO/SnO2 (90 nm)/FAPbI3/CuSnI3 (220 nm)/Au. Figure 8a determines that PCE gradually 

increases with increasing the AL thickness up to 530 nm because as more charge carriers 

are generated by the absorbed photons, higher EQE and current density and, thus, a better 

performance is attained [59,60]. The fingerprint of this enhancement can also be seen in 

the J-V curves (Figure 8b). Further thickening of AL slightly diminishes JSC due to the aug-

mented trap-assisted recombination rate. Although there is no considerable change in VOC 

by increasing the thickness until 590 nm, it starts to drop at higher thicknesses. Increasing 

the traveling distance of carriers towards the interface of HTL and ETL contributes to 

more non-radiative Shockley–Read–Hall recombination. In other words, two phenomena, 

including the higher density of charge carriers and enhanced recombination rate, compete 

for affecting PCE depending on the AL thickness [70]. We have found that an AL thickness 

of 530 nm yields the highest efficiency (24.04%). 

 

Figure 8. (a) Efficiency of solar cells versus thickness of the active layer. (b) J-V characteristics of 

solar cells depending on the FAPbI3 thicknesses. Effects of defect density on the (c) J-V response and 

(d) efficiency of the perovskite solar cells. 
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3.3.2. Effect of Defect Density 

The J-V response of PSCs depending on the defect density (Nt) of AL is simulated 

and presented in Figure 8c. Similar to the HTL effect, no significant change in the curves 

up to Nt = 1013 cm−3 is noticed. However, the figures of merit, including JSC, VOC, FF, and 

PCE, decrease at a high concentration of defects. Similar to the defect of HTL, the higher 

concentration of defects in the low-quality perovskite layer would increase the number of 

non-radiative recombination centers to degrade the cell performance, which is attributed 

to changes in the charge carriers’ diffusion length and carriers’ lifetime. Although a low 

AL defect density may contribute to higher efficiency in the simulated solar cells, the high 

fabrication cost is distracting. A low defect density does not also resemble real-life condi-

tions because these types of perovskites are unstable under humid conditions and partly 

degraded. Therefore, we propose that Nt = 1014–1015 cm−3 is used to manufacture high-

performance solar cells with reasonable stability. The best-simulated cell exhibits a PCE 

of 24.1% with JSC = 29.00 mA/cm2, VOC = 1.01, and FF = 82.50 (Figure 8d). Compared with 

the experimental study of Lin et al. [34] on FTO/SnO2/CsPbI3/CuO2/Au solar cells, it ap-

pears that tuning the thickness and doping density of FAPbI3 and utilizing CsSnI3 as HTL 

significantly improves PCE by about 2.5%. 

3.4. Machine Learning 

In the present work, the Random Forest algorithm was employed for the training and 

testing phases because of its robustness against overfitting and optimum complexity [45]. 

It is worth noting that more powerful contenders, such as neural networks and deep neu-

ral networks, introduce unnecessary complexity. We believe that the added complexity 

will cause overfitting and eventually lead to poor performance [71,72]. “Kolmogorov 

Complexity” is a concept that denotes when the complexity and cardinality of the data 

are greater than the model’s ability to comprehend, even large amounts of data may not 

increase the model’s accuracy. In our case, the size of the dataset was too small, and the 

complexity of the data definitely demanded more records to be added. Previous studies 

have indicated that reducing the complexity of the dataset can potentially improve the 

accuracy of the model [73,74]. Considering the low number and high complexity and car-

dinality of the data points, focusing on reducing this complexity can lead to far better 

results. By employing Scikit learn, we could observe the effect of every single feature in 

the overall predictive performance of the ML model. The relative importance of the 11 

features with the highest importance is shown in Figure 9a. The common features between 

perovskite and HTL layers are indexed in the respective order; index 2 denotes an attrib-

ute of the HTL layer. The results reveal that thickness, Nt, and NA of HTL are the most 

responsible features that dictate the difference in the performance of two distinct solar 

cells. This valuable information can optimize the workflow and individual steps toward 

designing new solar cells. Therefore, these features were selected to build a new model 

with approximately identical performance but a noticeably less size due to the difference 

in feature number. Model predictions were calculated and plotted for each target value, 

as shown in Figure 9b–e. The plots must have a slope as close to 1 as possible. The predic-

tion of the ML model determines a mean accuracy of 75% with a mean R2 of 0.78 between 

actual and predicted values per target feature. Although the accuracy is not high, this 

achievement would serve as a commendable gateway toward further investigations and 

a much-needed bridge between the fields of artificial intelligence and materials science. 

Undoubtedly, a fully trained model constructed on a wide range of input data (trained 

values) would result in more accurate and realistic outcomes. 
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Figure 9. (a) Various features with the highest importance in the ML model. Derived and predicted 

values of (b) JSC, (c) VOC (d) FF (e) PCE. 

4. Conclusions 

In summary, we used SCAPS-1D to evaluate the effect of different parameters on the 

performance of perovskite-based solar cells through comprehensive simulations. The per-

formance-determining parameters, including the thickness of HTL and AL, as well as the 

doing and defect density (NA and Nt), were studied. Machine learning tools were 
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employed to predict the performance metrics of solar cells. It was shown that CsSnI3 was 

a promising HTL candidate that could be replaced with costly and low-conductive Spiro-

OMeTAD. A power conversion efficiency of 23.9% was foreseen. It was shown that a 

thickness of 220 nm for the HTL with the doping and defect density of 5×1019 cm−3 and 

5×1017 cm−3, respectively, yielded the highest PCE. Analysis of the effect of perovskite ma-

terial, including CsPbI3, FAPbI3, and MAPbI3, revealed that FAPbI3 exhibited a higher ef-

ficiency than the others. Further analysis of the effect of thickness and doping density of 

AL determined that a PCE of 24.1% can be achieved with an AL thickness of 530 nm and 

Nt = 1014 cm−3. The ML approach provided a better understanding of the deciding factors 

while designing and producing the solar cell. The model achieved an accuracy score of 

75% on the performance metrics of solar cells. 

Although our survey comprehensively studied an advanced PSC structure with cost-

effective and efficient HTL and AL, there are still some challenges. Interface defect engi-

neering is a topic that requires a deep study. This problem can be addressed by introduc-

ing some new additives at the interface. The results of this study can be utilized to engi-

neer perovskite composition for better performance. Introducing more inputs into ML can 

also be helpful in training a more precise and effective model. 
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