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Abstract: Recently, organic–inorganic perovskites have manifested great capacity to enhance the
performance of photovoltaic systems, owing to their impressive optical and electronic properties. In
this simulation survey, we employed the Solar Cell Capacitance Simulator (SCAPS-1D) to numerically
analyze the effect of different hole transport layers (HTLs) (Spiro, CIS, and CsSnI3) and perovskite
active layers (ALs) (FAPbI3, MAPbI3, and CsPbI3) on the solar cells’ performance with an assumed
configuration of FTO/SnO2/AL/HTL/Au. The influence of layer thickness, doping density, and
defect density was studied. Then, we trained a machine learning (ML) model to perform predictions
on the performance metrics of the solar cells. According to the SCAPS results, CsSnI3 (as HTL) with
a thickness of 220 nm, a defect density of 5 × 1017 cm−3, and a doping density of 5 × 1019 cm−3

yielded the highest power conversion efficiency (PCE) of 23.90%. In addition, a 530 nm-FAPbI3 AL
with a bandgap energy of 1.51 eV and a defect density of 1014 cm−3 was more favorable than MAPbI3

(1.55 eV) and CsPbI3 (1.73 eV) to attain a PCE of >24%. ML predicted the performance matrices of the
investigated solar cells with ~75% accuracy. Therefore, the FTO/SnO2/FAPbI3/CsSnI3/Au structure
would be suitable for experimental studies to fabricate high-performance photovoltaic devices.

Keywords: perovskite; hole transport layer; solar cell; external quantum efficiency; SCAPS-1D;
machine learning

1. Introduction

Photovoltaic (PV) cells have achieved significant potential for use in various state-of-the-art
applications, including aerospace [1], CO2 reduction [2], green hydrogen production [3], and
Agrivoltaic farming [4]. These devices are categorized into three generations based on the
materials and employed techniques [5]. The first and second generations mostly include
thick silicon crystalline and thin Copper Indium Gallium Di-Selenide (CIGS) and Cadmium
Telluride (CdTe) films [6], respectively. The third generation, including dye-sensitized [7],
quantum dots [8], and organic solar cells [9–12], is capable of representing a variety of cost-
effective, energy-saving thin film systems. However, the main drawback is low efficiency.
During the last decade, organic–inorganic perovskites have emerged as one of the advanced
PV cells, offering a great opportunity for high PCE with a reasonable processing cost [13–15].
The remarkable performance of perovskite-based solar cells (PSCs) originates from their
outstanding optical and electrical properties, such as high absorption efficiency, direct
bandgap, long diffusion length, and high charge carrier mobility [16]. Despite the rising
trend of PSCs, it is essential to find efficient approaches to maintain the upward trend of
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PCE. So far, several practical efforts have been taken to enhance PCE, including controlling
the crystallinity and morphology of perovskite films by employing appropriate annealing
temperatures and solvents [17,18], tuning the molar composition of the compounds [19],
and introducing ionic additives [20]. However, material optimization to further improve
PCE has remained a great challenge.

Recently, simulations by SCAPS-1D have enabled researchers to gain a better under-
standing of the physics of PSCs to optimize different elements of devices precisely toward
higher efficiencies [21,22]. Moreover, machine learning (ML) has become a powerful tool for
discovering new ways to approach the optimization of solar cells [23]. Thorough reviews
have been written about the application of ML in solar cell research [24,25]. It has been
demonstrated that ML is useful in predicting the properties and performance of perovskite
solar cells.

To increase the performance of PSCs, several factors should be optimized. Among
different elements of PSCs, the hole transport layer (HTL) is considered one of the most crit-
ical components determining the open-circuit voltage (VOC) and efficiency of the cells [26].
Spiro-OMeTAD has been broadly used as HTL, having a vital role in reaching high levels of
PCE in over 20% [27]. However, its instability upon exposure to heat and moisture, along
with high fabrication costs, has prevented it from being transformed into a commercialized
product [28]. Despite many attempts toward replacing organic and inorganic materials,
such as PEDOT: PSS [29], P3HT [30], PTAA [31], CuSbS2 [32], and CuO [33], with Spiro,
finding a cost-effective and efficient HTL has remained a great problem.

In addition to HTL, the active layer (AL) is shown to effectively promote PSCs’ effi-
ciency. This can be achieved by optimizing the AL characteristics, such as type, doping
density (NA), defect density (Nt), and thickness. For instance, by taking advantage of
SCAPS-1D software, the NA (1016 cm−3), Nt (1012 cm−3), and thickness (700 nm) of a
simulated cesium lead iodide (CsPbI3)-based solar cell were optimized, yielding an effi-
ciency of 21.31% [34]. In another survey, the efficiency of a methylammonium lead iodide
(MAPbI3)-based solar cell could reach the efficiency of about 21.42% by optimizing the
thickness (500 nm) and Nt (1013 cm−3) of the active layer [35]. Recently, formamidinium
lead iodide (FAPbI3) perovskites have received much attention as the most promising
candidate in optoelectronics, especially solar cells. This is mainly because, compared to
MAPbI3 (Eg = 1.55 eV) and CsPbI3 (1.73 eV), FAPbI3 has the optimum bandgap value near
the infrared region (Eg = 1.48–1.51 eV), and affords improved thermal stability along with
superior dark storage stability in the device [36,37]. However, only a few experimental
investigations have been carried out on FAPbI3-based solar cells, and they have not been
comprehensively simulated in the literature.

This study aims to introduce an efficient PSC structure comprised of cost-effective
and promising hole transport and active layers. To achieve this, we employed SCAPS-
1D software to carry out a comprehensive simulation study. At first, we simulated the
performance of PV cells based on different HTLs (CIS and CsSnI3, Spiro-OMeTAD) and
ALs (FAPbI3, MAPbI3, and CsPbI3 perovskites). Second, the characteristics of the best
candidates, including layer thickness, Nt, and NA, were elaborated and optimized. Finally,
as one of the recent surveys, we trained an ML model to perform predictions on the
performance metrics of the solar cells. This approach can be a robust starting point for
further artificial intelligence (AI) driven research and investigations. The novelty of this
part lies in combined ML practice and SCAPS-1D supported by experimental research to
design predictable high-performance PSCs.

2. Materials and Methods

A schematic demonstration of the configured solar cell device used in this survey is
shown in Figure 1. As seen, the layers’ arrangement from bottom to top is FTO/ETL/perovskite
(active layer)/HTL/Contact. The physical parameters were derived from the literature and
are summarized in Tables 1 and 2.
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Figure 1. Configuration of perovskite solar cells used for simulations.

Table 1. Cell parameters used for simulations.

Parameter FAPbI3 MAPbI3 CsPbI3

Thickness (nm) 550 550 550
Eg (eV) 1.51 1.55 1.73
χ (eV) 4 3.9 3.95
εr 6.6 6.6 6.6

NC (1/cm3) 1.2 × 1019 1.2 × 1019 1.2 × 1019

NV (1/cm3) 2.9 × 1018 2.9 × 1018 2.9 × 1018

µn (cm2/Vs) 2.7 0.5 16
µp (cm2/Vs) 1.8 0.5 16
ND (1/cm3) 1.3 × 1016 1.3 × 1016 1.3 × 1016

NA (1/cm3) 1.3 × 1016 1.3 × 1016 1.3 × 1016

Nt (1/cm3) 1.5× 1014 1.5× 1014 1.5× 1014

Reference [38] [39] [34]

Table 2. Characteristics of ETL and HTL used for simulations.

Parameter SnO2 Spiro-OMeTAD CIS CsSnI3

Thickness (nm) 90 200 200 200
Eg (eV) 3.5 2.9 1.5 1.3
χ (eV) 4 2.2 3.55 3.95
εr 9 3 13.6 9.93

NC (1/cm3) 2.2 × 1017 2.2 × 1018 1 × 1019 1 × 1019

NV (1/cm3) 2.2 × 1017 2.2 × 1018 1 × 1018 1 × 1018

µn (cm2/Vs) 20 1 × 10−4 25 1500
µp (cm2/Vs) 10 1 × 10−4 25 585
ND (1/cm3) 1015 0 0 0
NA (1/cm3) 0 1.3 × 1018 1.3 × 1018 1.3 × 1018

Nt (1/cm3) 1018 1015 1015 1015

Reference [38] [38] [32] [40]
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2.1. SCAPS 1-D

SCAPS-1D (version: 3.3.07) is a one-dimensional solar cell simulation software that can
numerically solve three differential equations known as continuity and Poisson’s equations
for electrons and holes. This software can predict device characteristics such as current
density–voltage curve, quantum efficiency, energy bands, and other specific responses
of the planar thin-film structure under illumination [40]. To examine the performance
of configured solar cells, different types of HTLs (Spiro-OMeTAD, CIS, and CsSnI3) and
perovskites (FAPbI3, MAPbI3, and CsPbI3) were simulated through a comparative survey.
Then, the effects of thickness, Nt, and NA of the active and hole transfer layers on PCE were
studied. To improve the real-life application of this simulation, the adverse effect of the
charge carrier recombination at interfaces on the efficiency of cells was taken into account.
The defect parameters of the thin interface between ETM/perovskite and perovskite/HTL
were extracted and summarized in Table 3.

Table 3. Defect parameters of ETM/perovskite and perovskite/HTL interfaces, as extracted from Ref. [41].

Interface Defect Type Ae (cm2) Ah (cm2) Energetic
Distribution Et Ef (eV)

ETM/FAPbI3 Acceptor 1 × 10−17 1 × 10−18 Single Above the
highest EV 0.32

FAPbI3/HTL Acceptor 1 × 10−18 1 × 10−19 Single Above the
highest EV 0.07

Ae: Capture cross-section electrons; Ah: Capture cross-section holes; Et: Reference for defect energy level;
Ef: Energy level concerning the reference.

2.2. Machine Learning

Machine learning was performed using Python, a high-level programming language
famous for its diverse use in AI [42–45]. Numpy and Pandas were used to work with the
dataset. The dataset consists of 60 rows and 33 columns, each representing a feature of
a solar cell. The data were cleaned, and the values of each column were converted to an
ML learning-compatible format. The Pearson correlation coefficient was used to remove
highly correlated features. This approach is common because the features are supposed
to be independent of each other, and a high Pearson correlation coefficient violates this
assumption. The employed equation for this coefficient is [46]:

r =
∑(xi − x̄)(yi − ȳ)√
(xi − x̄)2 ∑(yi − ȳ)2

(1)

Scikit-Learn was used to build a simple Random Forest at first to decide the future
presence of each feature in the final model. This model helped to exclude features with the
least importance and impact. Eleven features were selected after this comprehensive phase.
Pymatgen and Matminer packages were used for feature extraction on the composition of
perovskites. The data were split into train and test categories for model training. The final
model, which was another random forest, was initialized with optimized hyperparame-
ters. Two separate ways were considered to determine the best hyperparameters for the
Random Forest model. First, a parameter grid (a dictionary in Python) containing a list of
different values for each parameter as the key was prepared. From the Scikit-Learn tools,
the RandomSearchCV and GridSearchCV were used to evaluate the best combination of
the aforementioned grid as the selected hyperparameters. Random search performs by
randomly selecting a combination from the available options in the grid and evaluating
the model’s performance via CV. On the other hand, Grid Search evaluates every possi-
ble combination of the parameters provided in the grid (which logically should provide
better results than the Random Search would). Therefore, GridSearchCV was used to
evaluate the best combination of hyperparameters from a range of different values for
each parameter. The final model was evaluated with five-fold cross-validation to ensure
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its performance and consistency. Finally, a test set was employed to evaluate the model’s
accuracy and performance.

By aggregating the result of each decision tree, the random forest reduces the chance
of overfitting and improves the overall predictive performance [46]. Overfitting is the
state where the model tends to reduce its bias to the training data, which causes increased
variance on the test (and/or validation) set, indicating the poor predictive performance of
the model. This issue can be addressed by comparing the prediction results of the train
set to the test set, which can be handled in various ways, including increasing the number
of decision trees, decreasing each one’s maximum depth, and using a subset of features
on each split, and so forth. It is worth mentioning that the evaluation metric was the
coefficient of determination of the prediction. According to the Scikit-Learn official website,
this metric presented as is defined as:

R2 = (1− u
v
) (2)

u is the residual sum of squares ((ypred − ytrue)2). v is the total sum of squares defined
as (ypred −mean(ytrue))2. A constant model that always predicts the expected value of y,
disregarding the input features, would achieve an R2 score of 0.0.

The importance of a node j in a single decision tree was calculated by [46]:

nij = wjCj −wleft(j)Cleft(j) −wright(j)Cright(j) (3)

where wj is the weighted number of samples in node j as a fraction of the total weighted
number of samples. Cj is the impurity in node j and left (j) and right (j) are its respective
child nodes. The feature importance of the feature i is also calculated by [46]:

fii =
∑ j:nodejsplitsonfeaturei nij

∑ j∈allnodes nij
(4)

Finally, the feature values were averaged over all individual decision trees.

3. Results and Discussion
3.1. Type of Hole Transport Layer

Among various layers included in a solar cell device, HTL plays an essential role
in solar cell performance via two main pathways [47]: (I) it facilitates the transport of
photogenerated holes to the counter electrode; (II) HTL prevents the direct interaction
between the active layer and the electrode. As mentioned before, despite the extensive
integration of Spiro-OMeTAD into solar cells to enhance PCE, the low cost-effectiveness, low
hole mobility, and server instability under certain conditions have limited their applications.
Therefore, different types of HTLs have been examined. To begin the simulation, a solar
cell model of FTO/SnO2 (90 nm)/FAPbI3 (550 nm)/Spiro-OMeTAD (200 nm)/Au was
simulated based on an experimental setup to ensure the accuracy of the results [48]. SnO2
was chosen as ETL due to its high stability, mobility, transmittance, energy alignment with
perovskite, and facile processing [49]. As is shown in Figure 2, the obtained curve and
parameters from simulations are well-fitted with the experimental results, attesting to the
reliability of our numerical simulations.
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Figure 2. J-V curve for a planar perovskite solar cell with a structure of FTO/SnO2 (90 nm)/FAPbI3

(550 nm)/Spiro-OMeTAD (200 nm)/Au. For simulations, the physical parameters are extracted from
Tables 1 and 2. The experimental data were adopted from Ref. [48].

To explore the effect of HTL type on the solar cell’s performance, different HTLs,
including Spiro-OMeTAD, CIS, and CsSnI3, were examined. The thickness of HTL was
considered constant (200 nm) for all materials. The results of the simulations are presented
in Figure 3a. The figures of merit, including open circuit voltage (VOC), short circuit current
density (JSC), filling factor (FF), and efficiency, are listed in Table 4. The results demonstrate
that the JSC of the perovskite solar cell with CIS could reach 26.50 mA/cm2, which is
approximately 1 mA/cm2 higher than that of Spiro-OMeTAD. This probably corresponds
to not only the broader absorption coefficient but also, the higher carrier velocity of CIS,
which accelerates carrier transport, leading to higher carrier density [27]. However, the
VOC of the CIS-based cell is lower than that of Spiro. This may be attributed to the larger
offset or higher mismatch between the valence band (VB) of the perovskite and the highest
occupied molecular orbital (HOMO) of the CIS, which decreases the VOC in PSCs due to
hole transport losses [50] (Figure 3b). Overall, the simulated solar cell based on CIS was
capable of indicating better efficiency than that of Spiro.

Table 4. The effect of HTL on the solar cell parameters.

HTL VOC (V) JSC (mA/cm2) FF (%) Efficiency (%)

Spiro-OMeTAD 1.123 25.59 73.26 21.07
CIS 1.1051 26.50 73.94 21.65

CsSnI3 0.935 29.5 79.86 22.02

The use of CsSnI3 as an HTL results in attaining a VOC of 0.935 V, JSC of 29.5 mA/cm2,
FF of 79.86%, and an overall efficiency of 22.02%. In addition to possessing better figures in
the simulation assessment, in the real experiments, CsSnI3 is expected to be a better candi-
date as it has a similar unit cell, structure, and lattice constant with the active layer, which
can cover dangling bonds and interface defects to decline the recombination sites [51,52].
However, its lower VOC is a challenge that will be optimized in this paper by tuning doping
and defect density. First of all, the lower VOC of CsSnI3 compared to other layers can be
explained as follows. Regarding the energy difference viewpoint, the energy difference
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between the HOMO of CsSnI3 (−5.25 eV) and perovskite (−5.5 eV) is lower than that of
other layers (or there is a higher difference between the quasi-Fermi level of CsSnI3 and
ETL) which should have shown higher VOC. This may stem from the low bandgap energy
of CsSnI3, as widening the bandgap energy succeeded in increasing the VOC.

Figure 3. (a) J-V curves of simulated solar cells with different HTLs (The absorption curves of
different HTL layers and the perovskite are shown in the inset). (b) The schematic of the energy level
diagram of FAPbI3 and the examined HTLs. (c) EQE and (d) Nyquist plots of the simulated PSCs
with different HTLs.

However, the current density, which is affected by the photo-generated minority
carrier current [53,54], is considerably higher than the other cells. To elucidate JSC, the
external quantum efficiency (EQE) of the cells was simulated. Figure 3c determines that
EQE is nearly constant in the region from 360 nm to 600 nm, and then it takes a downward
trend to 800 nm. It is important to point out that the EQE spectrum of FAPbI3/Spiro and
FAPbI3/CIS cells does not exhibit absorption beyond 821 nm (the bandgap energy of the
perovskite). Nevertheless, the EQE of FAPbI3/CsSnI3 shows the capability of absorbing
a wider range of the spectra, particularly in the near-infrared region (see the inset in
Figure 3a). CsSnI3 has a lower bandgap energy (1.3 eV) than FAPbI3 (1.51 eV) [55], thus
contributing to the absorption. Moreover, the higher hole mobility decreases the probability
of recombination, resulting in a noticeably higher short-circuit current and FF [56]. This
better charge transfer and capacity interface can be found by electrochemical impedance
spectroscopy [57]. Nyquist plots in Figure 3d for perovskite solar cells containing Spiro-
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OMeTAD, CIS, and CsSnI3, as CsSnI3 has the smallest arc, which indicates better transfer
conductivity. Overall, the simulation results determine the potential of CsSnI3 as an HTL
to attain efficient perovskite solar cells empowered by a more effective absorption capacity
and significant hole mobility.

3.2. Effect of CsSnI3
3.2.1. Thickness

In the previous section, it was shown that CsSnI3 is a promising material as an HTL.
As the characteristics of an HTL, including thickness, doping density, and defect density,
significantly influence the performance of solar cells, these parameters must be optimized.
For instance, HTL thickness is essential in effective carrier transport and controlling the
recombination rate [58]. Therefore, to attain efficient energy conversion, the thickness of an
HTL should be optimized.

Figure 4a,b show the effect of CsSnI3 thickness on the JSC and VOC of the perovskite
solar cells. The results indicate that JSC and VOC are improved with an increased CsSnI3
thickness up to 220 nm. According to experimental surveys [59], thickening the HTL
gives rise to smoother film surfaces with reduced interfacial recombination that ultimately
improves VOC. In addition, a thicker HTL reduces the roughness of the Au layer with
enhanced light reflectivity, boosting carrier generation and, thus, the current density [59,60].
Since, in our simulations practice, roughness is considered independent and constant,
we sought other reasons for this observation. First, the capacity of a thinner HTL is not
sufficient to accumulate whole holes. The small number of accumulated holes also pushes a
backward force to incoming holes and decreases the effective carriers. Second, the depletion
region between the perovskite layer and a thin HTL is not as powerful as thicker ones,
which fails to provide a strong driving force for the separation of carriers. The results have
also indicated that when the thickness of HTL is higher than 220 nm, VOC and JSC are
prone to diminish. This is mainly because the traveling distance of the carriers to arrive
at the interface increases. As a result, traps encourage non-radiative Shockley–Read–Hall
recombination and the augmented trap-assisted recombination rate [61]. The effect of
HTL thickness on FF is shown in Figure 4c. The first downward trend is a consequence
of an increase in series resistance and charge career transport time. By reaching the HTL
thickness of around 260 nm, the layer fully covers the perovskite film, raising the shunt
resistance with improved FF [59,60]. The variation in PCE with the HTL thickness indicates
an optimum CsSnI3 thickness of 220 nm, which yields PCE = 22.12% (Figure 4d).

3.2.2. Doping Density

Studies have determined that the doping density (NA) of the HTL greatly influences
the characteristics of the PV units, including conductivity, recombination rate, VOC, and
the diffusion length of the carriers [56]. Therefore, the parameters of solar cells at various
doping densities in the range of 1014 to 1021 cm−3 at a constant HTL thickness (200 nm)
were simulated [62]. Figure 5a shows that VOC increases by increasing NA. It is obvious
that the Fermi level, which is the electrochemical potential of the electron in a solid, is
typically placed near the conduction band for n-type semiconductors and the valence band
for p-type semiconductors. In layered semiconductor structures, the Fermi level is lined
up at the same value and reaches an equilibrium state, causing band bending and built-in
voltage (Vbi) [63]. Because of this internal electric field, the dissociated photogenerated
electron and holes drift towards the n and p regions, respectively, and accumulate there.
Under illumination and open circuit conditions, the excited carriers cause splitting electron
and holes quasi Fermi-levels (EFn and EFp, respectively) in the photoactive semiconductor
material, canceling Vbi, and forming a photo-voltage called VOC, which can be written
as follows [64]:

VOC =
1
q
(EFn − EFp) (5)



Photonics 2023, 10, 271 9 of 19

Figure 4. Effect of CsSnI3 thickness on the performance of the studied perovskite solar cells. (a) JSC,
(b) VOC, (c) FF, and (d) PCE.

The energy band diagrams at doping concentrations of 5 × 1014 and 5 × 1020 cm−3

are shown in Figure 5b,c, respectively. The doping of HTL shifts down the Fermi level
and increases the difference between the quasi-Fermi levels of CsSnI3 and SnO2 through
the perovskite to build a higher VOC. Moreover, increasing the dopant concentration
reduces the recombination rate as a result of enhanced internal electric field and accelerated
carrier separation. Meanwhile, JSC decreases slightly at the NA level ranging from 1014 to
1018 cm−3. A significant decline in the current density is achieved at 1020 cm−3 because
numerous deep Coulomb traps have been generated that decrease the hole mobility [65,66].
Figure 5d shows that the highest PCE (23.38%) is obtained when the dopant concentration
reaches ~5 × 1019 cm−3.
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Figure 5. (a) J-V curves of perovskite solar cells depending on the doping density of the CsSnI3 layer.
(b,c) Band diagram of the cells at the doping densities of 5 × 1014 and 5 × 1020 cm−3. (d) Effect of
doping density on PCE.

3.2.3. Defect Density

In addition to the doping density, HTL defect density (Nt) influences the performance
of perovskite solar cells. Figure 6 shows this effect on the characteristics of the investigated
cells. In the range of 1015 to 1017 cm−1, no major changes in the characteristic parameters,
including VOC, JSC, and PCE, are noticed (Figure 6a,b,d). However, a sharp decline in
VOC and JSC is seen at higher Nt values. This change is mainly attributed to the instant
generation of abundant recombination sites in the HTL and interfaces [67]. A higher HTL
defect density induced by different sources, such as unwanted foreign atoms, native defects,
and dislocations, creates shallow or deep traps. Therefore, as non-radiative recombination
centers, the traps are harmful to cell performance. The inset of Figure 6d demonstrates
that with increasing the number of interface defects, a lower efficiency is attained. These
defects, which mostly stem from the lattice mismatch between AL and HTL and/or iodide
or MA migration, form deep traps at the interface and act as Shockley–Read–Hall (SRH)
recombination centers. However, in the case of CsSnI3 and FAPbI3, the similarity of the
lattice constants declines the probability of interface defects generation [40,61]. As a result,
PCE declined to about 21.5% at Nt = 1021 cm−3. Similarly, the initial downward trend
of FF is owed to the high number of recombination centers and the amount of series
resistance caused by the significant number of traps (Figure 6c). When Nt exceeds 1018, an
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upward trend is observed. This behavior can be attributed to the tunneling effect, which
happens when Nt substantially rises, i.e., traps are as close together as to prefer to adopt
the tunneling method of transport [68]. Notwithstanding the better results in lower defect
density, the simulation results deviate from the experiments; hence, 5 × 1017 was selected.

Figure 6. Effect of defect density of HTL on (a) JSC, (b) VOC, (c) FF, and (d) PCE of perovskite solar
cell with CsSnI3 (The inset shows the effect of interface defect density on PCE).

3.3. Active Layer

A solar cell’s light absorption and photoelectric conversion mechanism are intertwined
with the type of active layer (AL). We investigated this effect for both types of perovskite mate-
rials, including inorganic (CsPbI3) and organic–inorganic (FAPbI3 and MAPbI3) compounds.
The thickness of AL was 550 nm for all cells. HTL was CsSnI3 with a 220 nm thickness and an
NA and Nt of 5× 1019 and 5× 1017, respectively. The predicated J-V curves and the figures of
merit for the simulated cells are shown in Figure 7a and Table 5. The recorded VOC values of
CsPbI3, MAPbI3, and FAPbI3 are 1.015, 1.102, and 1.01 V, respectively.
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Figure 7. (a) J-V curves of the planar solar cells made of different perovskites as AL. (b) Energy level
diagram of FAPbI3, MAPbI3, and CsPbI3. (c) EQE and (d) absorption diagrams of solar cells with
different types of perovskite layers, respectively.

Table 5. Effects of perovskite materials on the figures of merit of studied solar cells.

Perovskite VOC (V) JSC (mA/cm2) FF (%) Efficiency (%)

FAPbI3 1.010 29.02 82.11 23.94
MAPbI3 1.102 24.05 83.54 22.15
CsPbI3 1.015 23.02 75.33 17.56

To discuss the obtained results, only the side of the HTL and perovskite is noticed, as
the energy difference between perovskite and ETL is almost the same. The highest VOC is
related to MAPbI3 because this material has the lowest mismatch with CsSnI3 (Figure 7b)
with a bandgap energy value between CsPbI3 and FAPbI3. In terms of CsPbI3, we expect
that the higher bandgap energy yields a higher VOC, which is not seen for CsPbI3. Despite
the advantage of Eg for CsPbI3, the significant energy difference between perovskite and
CsPbI3 (4.3 eV) increases mismatch, which contributes to lower VOC. In the case of FAPbI3,
the lower mismatch between perovskite and CsSnI3 offsets the lower bandgap energy, and
the same value of VOC was achieved.

Moreover, the results also determine that the current density of the FAPbI3 solar cell
is higher than that of the other ones. Simulations of the quantum efficiency (Figure 7c)
reveal that EQE changes at wavelengths beyond 600 nm and is suddenly dropped in the
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near-infrared region, i.e., 700 nm (for the inorganic perovskite) and 800 nm (for the organic–
inorganic perovskites). However, as FAPbI3 has the most favorable or red-shifted bandgap
energy, it is capable of absorbing photons until the wavelength of 830 nm that other active
layers are unable (Figure 7d). In addition, FAPbI3 has higher carrier velocity than MAPbI3,
which increases the carrier lifetime and decreases the non-radiate recombination. Of
particular interest, FAPbI3 exhibits a high EQE in the near-infrared region with a maximum
PCE of 23.94% (Table 5). In the aspect of stability of solar cells, the alpha phase of FAPbI3
perovskite with impressive optical and electrical properties is more moisture-resistant and
current-stable than MAPbI3, which is mainly originated from the fact that it has more
hydrogen bonds and a larger radius cation than MAPbI3 perovskite, making it more stable
against destructive objectives and ion migration [36]. As I and MA vacancies (the positively
and negatively charged ions) migrate and accumulate at interfaces, the built-in electric
field or extraction driving force is weakened due to the generation of an intensive internal
electric field, contributing to normal hysteresis [69].

3.3.1. Effect of Thickness

The performance and efficiency of perovskite solar cells greatly depend on the thick-
ness of the active layer. We studied the effect of AL thickness on the performance of
FTO/SnO2 (90 nm)/FAPbI3/CuSnI3 (220 nm)/Au. Figure 8a determines that PCE grad-
ually increases with increasing the AL thickness up to 530 nm because as more charge
carriers are generated by the absorbed photons, higher EQE and current density and, thus,
a better performance is attained [59,60]. The fingerprint of this enhancement can also be
seen in the J-V curves (Figure 8b). Further thickening of AL slightly diminishes JSC due to
the augmented trap-assisted recombination rate. Although there is no considerable change
in VOC by increasing the thickness until 590 nm, it starts to drop at higher thicknesses.
Increasing the traveling distance of carriers towards the interface of HTL and ETL con-
tributes to more non-radiative Shockley–Read–Hall recombination. In other words, two
phenomena, including the higher density of charge carriers and enhanced recombination
rate, compete for affecting PCE depending on the AL thickness [70]. We have found that an
AL thickness of 530 nm yields the highest efficiency (24.04%).

3.3.2. Effect of Defect Density

The J-V response of PSCs depending on the defect density (Nt) of AL is simulated and
presented in Figure 8c. Similar to the HTL effect, no significant change in the curves up
to Nt = 1013 cm−3 is noticed. However, the figures of merit, including JSC, VOC, FF, and
PCE, decrease at a high concentration of defects. Similar to the defect of HTL, the higher
concentration of defects in the low-quality perovskite layer would increase the number of
non-radiative recombination centers to degrade the cell performance, which is attributed
to changes in the charge carriers’ diffusion length and carriers’ lifetime. Although a low
AL defect density may contribute to higher efficiency in the simulated solar cells, the
high fabrication cost is distracting. A low defect density does not also resemble real-life
conditions because these types of perovskites are unstable under humid conditions and
partly degraded. Therefore, we propose that Nt = 1014–1015 cm−3 is used to manufacture
high-performance solar cells with reasonable stability. The best-simulated cell exhibits a
PCE of 24.1% with JSC = 29.00 mA/cm2, VOC = 1.01, and FF = 82.50 (Figure 8d). Compared
with the experimental study of Lin et al. [34] on FTO/SnO2/CsPbI3/CuO2/Au solar cells,
it appears that tuning the thickness and doping density of FAPbI3 and utilizing CsSnI3 as
HTL significantly improves PCE by about 2.5%.
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Figure 8. (a) Efficiency of solar cells versus thickness of the active layer. (b) J-V characteristics of
solar cells depending on the FAPbI3 thicknesses. Effects of defect density on the (c) J-V response and
(d) efficiency of the perovskite solar cells.

3.4. Machine Learning

In the present work, the Random Forest algorithm was employed for the training and
testing phases because of its robustness against overfitting and optimum complexity [45].
It is worth noting that more powerful contenders, such as neural networks and deep
neural networks, introduce unnecessary complexity. We believe that the added complexity
will cause overfitting and eventually lead to poor performance [71,72]. “Kolmogorov
Complexity” is a concept that denotes when the complexity and cardinality of the data
are greater than the model’s ability to comprehend, even large amounts of data may not
increase the model’s accuracy. In our case, the size of the dataset was too small, and the
complexity of the data definitely demanded more records to be added. Previous studies
have indicated that reducing the complexity of the dataset can potentially improve the
accuracy of the model [73,74]. Considering the low number and high complexity and
cardinality of the data points, focusing on reducing this complexity can lead to far better
results. By employing Scikit learn, we could observe the effect of every single feature
in the overall predictive performance of the ML model. The relative importance of the
11 features with the highest importance is shown in Figure 9a. The common features
between perovskite and HTL layers are indexed in the respective order; index 2 denotes
an attribute of the HTL layer. The results reveal that thickness, Nt, and NA of HTL are the
most responsible features that dictate the difference in the performance of two distinct solar
cells. This valuable information can optimize the workflow and individual steps toward
designing new solar cells. Therefore, these features were selected to build a new model
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with approximately identical performance but a noticeably less size due to the difference in
feature number. Model predictions were calculated and plotted for each target value, as
shown in Figure 9b–e. The plots must have a slope as close to 1 as possible. The prediction
of the ML model determines a mean accuracy of 75% with a mean R2 of 0.78 between
actual and predicted values per target feature. Although the accuracy is not high, this
achievement would serve as a commendable gateway toward further investigations and
a much-needed bridge between the fields of artificial intelligence and materials science.
Undoubtedly, a fully trained model constructed on a wide range of input data (trained
values) would result in more accurate and realistic outcomes.

Figure 9. (a) Various features with the highest importance in the ML model. Derived and predicted
values of (b) JSC, (c) VOC (d) FF (e) PCE.
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4. Conclusions

In summary, we used SCAPS-1D to evaluate the effect of different parameters on
the performance of perovskite-based solar cells through comprehensive simulations. The
performance-determining parameters, including the thickness of HTL and AL, as well as
the doing and defect density (NA and Nt), were studied. Machine learning tools were
employed to predict the performance metrics of solar cells. It was shown that CsSnI3
was a promising HTL candidate that could be replaced with costly and low-conductive
Spiro-OMeTAD. A power conversion efficiency of 23.9% was foreseen. It was shown that a
thickness of 220 nm for the HTL with the doping and defect density of 5 × 1019 cm−3 and
5 × 1017 cm−3, respectively, yielded the highest PCE. Analysis of the effect of perovskite
material, including CsPbI3, FAPbI3, and MAPbI3, revealed that FAPbI3 exhibited a higher
efficiency than the others. Further analysis of the effect of thickness and doping density of
AL determined that a PCE of 24.1% can be achieved with an AL thickness of 530 nm and
Nt = 1014 cm−3. The ML approach provided a better understanding of the deciding factors
while designing and producing the solar cell. The model achieved an accuracy score of 75%
on the performance metrics of solar cells.

Although our survey comprehensively studied an advanced PSC structure with cost-
effective and efficient HTL and AL, there are still some challenges. Interface defect engi-
neering is a topic that requires a deep study. This problem can be addressed by introducing
some new additives at the interface. The results of this study can be utilized to engineer
perovskite composition for better performance. Introducing more inputs into ML can also
be helpful in training a more precise and effective model.
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