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Abstract: To study the influence of the laser power, scanning speed, and cleaning water content on
the laser cleaning effect and obtain the best cleaning parameters, this paper conducted a simulation
analysis of the laser cleaning process and carried out a pulse laser cleaning of porcelain insulators
experiment to verify. The results show that the cleaning rate gradually increases as the laser power
increases from 20 W to 25 W. As the scanning speed increases from 1000 mm/s to 2500 mm/s, the
laser overlapping rate gradually decreases, and the cleaning takes the lead in increasing and then
decreasing. The appropriate cleaning water content is conducive to laser cleaning; when the water
content is 0.115 g, the cleaning efficiency reaches the highest value of 98.20%. When the laser power
is 25 W, and the scanning speed is 2000 mm/s, the cleaning efficiency can reach the highest value of
96.87%. This paper shows that the reasonable choice of cleaning parameters can effectively clean the
insulator surface filth and obtain a better surface morphology.

Keywords: laser cleaning; porcelain insulator; pulsed laser; fouling; cleaning efficiency; temperature

1. Introduction

Outdoor insulators are exposed to the natural environment for a long time, and
particles in the air are deposited on the insulator surface, forming a fouling layer. Insulators
with a significant degree of dirt accumulation may experience fouling flashover when
they encounter wet weather, such as fog and rain, where the insulation performance
decreases [1,2]. Therefore, the regular cleaning of insulators is of great importance for the
safe operation of power systems.

The existing insulator cleaning methods for transmission lines include manual cleaning,
electrically charged water cleaning [3–5], dry ice cleaning [6–8], and chemical cleaning [9].
However, all of these methods have many shortcomings. Traditional manual cleaning is
inefficient, imposes a heavy workload, and requires power outage operation. Electrically
charged water cleaning involves the preparation of deionized water, and the rinsing process
has a massive risk of adjacent flashover. Dry ice cleaning has a high cost of dry ice preparation,
the equipment is large, and other problems in the substation promote various difficulties.
Chemical cleaning using cleaning agents may corrode the equipment and pollute the environ-
ment. Therefore, the power system urgently needs a new insulator cleaning technology that is
highly efficient, safe, reliable, economical, and environmentally friendly.

Laser cleaning technology is a new technology that has developed rapidly in recent
years. Compared with traditional cleaning methods, laser cleaning has the advantages
of being noncontact, safe, efficient, and environmentally friendly. The established liter-
ature [10] has introduced the typical applications and cleaning process parameters of
pulsed laser technology used in heritage protection, industrial metal surface treatment,
and the semiconductor industry, and pointed out the future development trend of laser
cleaning. Previous studies have also described the effects of average power, scanning
speed, and pulse frequency on the surface morphology and microstructure of cleaned spec-
imens [11,12]. Some studies [13,14] have used a laser to paint the outer layer of aircraft to
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investigate laser cleaning, optimize the cleaning parameters, and help further develop the
law of laser cleaning. Li et al. [15] determined that ideal process parameters are more help-
ful for laser cleaning and material surface protection by studying the relationship between
the paint removal mechanism and incident laser energy density. Other studies [16–18] have
effectively verified the safety and efficiency of laser cleaning by evaluating material surface
quality, corrosion resistance, and conducting comprehensive mechanical properties tests.
In the transmission line cleaning insulator application, Ma et al. [19] established a finite
element simulation model of laser cleaning insulator fouling and analyzed the temperature
field distribution characteristics of laser cleaning. Tian et al. [20] discussed the factors
affecting the effectiveness of laser cleaning of insulator fouling and analyzed the effect of
the power density of the pulsed laser, the radius of the laser spot, and the scanning speed
of the laser on the surface temperature.

In summary, the laser cleaning parameters have an important impact on the cleaning
effect and surface quality. Although many scholars have conducted a lot of research on the
theory and simulation of laser cleaning insulator surface fouling, little research has been
reported on the optimization of the cleaning parameters and the surface quality of the cleaned
material for the cleaning of porcelain insulator surface fouling by pulsed fiber laser. This
paper adopts a porcelain insulator as the test object and conducts laser cleaning simulation
and test to study the effect of laser power, scanning speed, and cleaning water content on
the cleaning effect and the surface quality after laser cleaning. Finally, the cleaning rate is
analyzed by dichotomous images to determine the optimal laser cleaning parameters.

2. Simulation Analysis
2.1. Theoretical Study

When fouling absorbs enough laser energy, the resulting temperature rise will cause it
to melt and vaporize. Usually, choosing the appropriate laser energy density and irradiation
time can effectively remove insulator surface fouling, as shown in Figure 1.
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The heat conduction equation can describe the temperature field distribution under
laser irradiation. In the Cartesian coordinate system, the heat conduction equation is shown
in the following [21]: {

ρc ∂T
∂t = k

(
∂2T
∂x2 + ∂2T

∂y2 + ∂2T
∂z2

)
−k ∂T

∂t = εI(z = 0)
(1)

where ρ, c, and k are the material’s density, specific heat, and thermal conductivity, respectively.
T is a function of the heat source within the material, and ε is the laser absorption rate.

Since the surface of the fouling layer absorbs most of the laser energy during laser
irradiation and transfers the power to the insulator base by heat conduction, the laser heat
source can be treated as a surface heat source, as shown by the following equation:

Q(x, y, t) =
εP

πR2 e
−[(x−vt)2+y2 ]

R2 (2)
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where Q is the laser power density, t is the laser action time, P is the laser output power, R
is the spot radius and v is the laser scanning speed.

When the laser acts on the material, the rapid temperature rise of the material surface
creates thermal stress. When the thermal stress exceeds the dirt adhesion force, it will cause
the dirt material to peel off the insulator surface. The porcelain insulator is heated to cause
an uneven temperature field, thus generating stress and material deformation [22]. The
physical stress field distribution is given by:

σx = E
1−µ (ξx + µξy)− Eα∆t

1−µ

σy = E
1−µ (ξy + µξx)− Eα∆t

1−µ

τxy = E
2(1+µ)

γxy

(3)

where ξx and ξy are the positive strains in their respective directions, α is the linear
expansion coefficient, γxy is the shear strain, µ is Poisson’s ratio, and E is Young’s modulus.

2.2. Model Building

According to international standards, the insulator can withstand the maximum local
temperature range of 150–250 ◦C. This study takes the fouled porcelain insulator piece as
the research object [23]. As shown in Figure 2, a porcelain insulator model is established
with a radius of 0.5 mm and a thickness of 0.1 mm, and the fouled layer on the model
surface is 0.05 mm thick at the bottom. The pulsed laser parameters are as follows. The
maximum laser power is 100 W, the wavelength is 1064 nm, the spot radius is 0.1 mm, the
laser repetition frequency is 25,000 Hz, the pulse duration is 200 ns, and the laser works
along the insulator sheet x-axis direction scanning back and forth.
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Figure 2. Laser scanning cleaning.

To determine the thermal characteristics of the laser cleaning action, this study mainly
uses COMSOL 5.6 software for three-dimensional model multiphysics field coupling sim-
ulation and analysis. The laser simulation employs a Gaussian surface heat source, and
the initial temperature is set as 20 ◦C. The required material physical values are shown in
Table 1 [19].

Table 1. Material parameters.

Parameters Alumina Porcelain Contamination

Density (kg·m−3) 3500 2490
Specific heat capacity (J·(kg·K)−1) 942 900

Thermal conductivity (W·(m·K)−1) 15.41 3.34
Linear expansion coefficient (K−1) 7.3 × 10−6 8.0 × 10−6

Poisson’s ratio 0.20 0.20
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3. Factors Influencing Laser Cleaning
3.1. Laser Power

The laser scanning speed is 2500 mm/s, and the laser power is 20 W, 25 W, 28 W,
30 W, and 35 W. Figure 3a shows the distribution of the radial X-axis temperature variation
on the surface of the porcelain insulator with different laser powers at t = 250 µs. The
maximum insulator surface temperatures were 117.98 ◦C, 142.47 ◦C, 157.17 ◦C, 166.97 ◦C,
and 191.46 ◦C for the five different power cases. As the porcelain insulator dissipates
heat, the temperature of the scanned area will gradually drop after reaching the peak. At
this time, the temperature of the x = 0 position and the center point temperature have a
significant temperature difference. At the same time, when the laser power is 20 W and
25 W, the maximum temperature does not exceed the safety range of the porcelain insulator
temperature. In contrast, when the laser power reaches 35 W, the maximum temperature
exceeds the safety range and will cause damage to the porcelain insulator. To ensure the
safe operation of laser cleaning, the power is set at approximately 25 W.
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The temperature variation at the insulator surface center point x = 0.5 mm for different
powers is shown in Figure 3b. When the scanning time is 100–200 µs, the laser spot
gradually approaches the center point position, the insulator surface absorbs energy, and
the temperature gradually increases. As the distance decreases, the temperature at the
center point rises faster until the center of the laser spot is at x = 0.5 mm, where the rising
rate reaches its maximum. The temperature peaks at t = 240 µs, after which the temperature
slowly decreases.

3.2. Laser Scanning Speed

As the laser energy limits the laser scanning process cleaning efficiency, one must
choose the appropriate lap rate of cleaning parameters to ensure the proper energy density.

ζ= 1− v
2R f

× 100% (4)

where ζ is the lapping rate, v is the laser scanning speed, R is the spot radius, and f is the
pulsed laser frequency.

Figure 4 shows the relationship between different laser scanning speeds and the
maximum temperature of the porcelain insulator surface when the laser power is 25 W
and the pulsed laser frequency is 25,000 Hz. Figure 4 shows that the slower the scanning



Photonics 2023, 10, 269 5 of 13

speed is, the faster the insulator surface temperature rises. When the scanning speed was
500 mm/s and ζ was 90%, the maximum temperature of the insulator surface reached
463.92 ◦C, which caused severe damage to the insulator. When the scanning speed is
5000 mm/s and ζ is 0, the highest insulator temperature is 85.34 ◦C, which is not much
different from the initial ambient temperature, and it can be concluded that the lapping
rate is minimal and the laser thermal action is less effective. Meanwhile, the laser scanning
speed is above 2500 mm/s, which can prevent insulators from being damaged by the laser.
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3.3. Cleaning Water Content

Moisture has good thermal conductivity, water film and dirt absorb a lot of energy
in a short period, rapid temperature rise, and follow Fourier’s law through the water film
dirt conduction to the surface of the insulator. In the simulation model, the fouling water
content is simplified as a layer of water film column on the fouling surface. When the laser
power is 25 W, the scanning speed is 2000 mm/s, the water film column height is 0 mm,
1 × 10−2 mm, and 1.5 × 10−2 mm, the laser wet cleaning temperature field is simulated
and the effect of water content on the temperature field characteristics is analyzed.

Figure 5 shows the temperature distribution of the water film working condition
at different heights. When the water content is within a certain range, the temperature
increases with the increase in water content during the cleaning process. In the initial stage
of cleaning, there is a substantial increase in temperature because the thermal conductivity
of the material containing moisture will be greater than that of the dry material, and
the higher the moisture content, the greater the thermal conductivity. After 10 µs, the
temperature and time are linear and on the rise, and after 100 µs, scanning is completed; the
highest temperature reaches 166.34 ◦C, 178 ◦C, and 192 ◦C, respectively, in the three working
conditions. In the laser cleaning process, laser wet cleaning can quickly enhance the cleaning
temperature, and in a certain range of water content, the more water content, the more
obvious the temperature rise. As can be seen from Figure 5, laser wet cleaning produces
a higher temperature rise and more efficient cleaning than dry cleaning (h = 0 mm). The
right amount of moisture can promote laser wet cleaning, but too much may lead to too fast
a temperature rise and damage to the insulator surface; the degree of dryness and wetness
of the dirt in the laser cleaning process should not be neglected.
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4. Laser Cleaning Experiment
4.1. Experimental Equipment

The experimental equipment included a pulsed fiber laser with a wavelength of
1064 nm, a pulse width of 200 ns, and a repetition frequency of 25,000 Hz; computer
control system; collimated beam expander; scanning oscillator; and vent. The structure
of the laser cleaning device is shown in Figure 6a. The experimental material is porcelain
insulator alumina ceramic tile (100 mm × 100 mm × 5 mm). The fouling layer is coated
with 1 mg/cm2 of gray density. The experimental samples are shown in Figure 6b. The
sample laser before irradiation under the microscope is shown in the Figure 6c. During
the experiment, a Ti480Pro infrared camera was used to measure the temperature change
process on the surface of the porcelain tiles and the metallographic microscope was used to
observe the microscopic surface soiling of the porcelain tiles.
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4.2. The Effect of Laser Power on Cleaning Efficiency

The laser scanning speed was 2500 mm/s, and the test samples were cleaned with
25 W, 28 W, 30 W, and 35 W power.

Figure 7a–d shows the distribution of porcelain tile soiling imaged by the metallo-
graphic microscope. The metallographic microscope image in Figure 7 indicates that with
a laser power of 25 W, the surface had obvious residual dirt. When using a laser power
of 28 W, most of the sample tile’s surface was cleaned, and only with observation by
a metallographic microscope observation could a minimal amount of dirt particles and
residue be found. When the power was 35 W, the surface of the porcelain tile exhibited
damage. Therefore, the optimal laser power was 28 W, resulting in no damage and the
highest laser cleaning efficiency. Figure 7e–h shows the infrared temperature distribution at
different power levels measured by the infrared thermometer. The maximum temperature
is 126.2 ◦C, 135.5 ◦C, 154.9 ◦C, and 170.1 ◦C. The temperature change trend is the same
when compared with the simulation data. When the power is 25 W~28 W, it can ensure
safe and efficient laser cleaning. Figure 8 shows that the fouling part accounts for 9.14%,
and the cleaning efficiency is 90.86% when the laser power is 28 W.
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The cleaning efficiency varies with power, as shown in Figure 9. Figure 9 shows that
with increasing laser power, the cleaning efficiency gradually increased. When P = 26 W,
cleaning efficiency η = 82.12%. When P = 27 W, η = 88.42%. When the laser power was
greater than 27 W, cleaning efficiency growth slowed, and no significant change was
observed when P = 29 W and η = 91.23%. Power up to 30 W caused damage to the surface
of the porcelain tile. When the laser power was greater than 26 W, the surface exhibited no
obvious dirt. When P = 27 W~28 W, ideal cleaning was achieved. However, when the laser
power continued to increase, the probability of damaging the insulator also increased.
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4.3. The Effect of Scanning Speed on Cleaning Efficiency

To investigate the laser cleaning efficiency under different scanning speeds, this test
uses 25 W laser power and scanning speeds of 1000 mm/s, 1500 mm/s, 2000 mm/s, and
2500 mm/s. The surface soiling and temperature changes are obtained using a metallo-
graphic microscope and infrared thermometer.

Figure 10a–d displays a metallographic microscope image showing the cleaning effect
of different scanning speeds. Figure 10e–h shows the infrared temperature distribution
at different scanning speeds. From Figure 10a,e, it can be seen that when the scanning
speed is 1000 mm/s, the maximum temperature of the porcelain tile reaches 196.6 ◦C and
is significantly damaged by the laser. From Figure 10c,g, it can be seen that when the
scanning speed is 2000 mm/s, the surface is the cleanest, the highest temperature is within
the safe range, and the cleaning efficiency is the highest. Compared with the simulation
results, the actual experimental environmental conditions are not as ideal as the simulation
conditions. Nevertheless, the difference in temperature values is minimal and consistent
with the simulation results. The binarized images at different scanning speeds are shown
in Figure 11. Figure 11a shows that when the scanning speed is 2500 mm/s, the black rate
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of dirt is 17.66%, which indicates the cleaning efficiency is 82.34%. Figure 11b shows that
when the scanning speed is 2000 mm/s, the black rate of dirt is 3.13%, which indicates the
cleaning efficiency is 96.87%.
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Figure 10. Cleaning effect and Infrared temperature distribution with different scanning speeds:
(a) 1000 mm/s; (b) 1500 mm/s; (c) 2000 mm/s; (d) 2500 mm/s; (e) 1000 mm/s; (f) 1500 mm/s;
(g) 2000 mm/s; (h) 2500 mm/s.
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The cleaning efficiency at different scanning speeds is shown in Figure 12. As the
scanning speed increases, the laser lap rate gradually decreases. When the scanning speed
is lower than 1500 mm/s, it will cause surface damage. When the scanning speed is
2200 mm/s, the cleaning efficiency declines seriously to η = 86.5%. Therefore, when the
scanning speed is 2000 mm/s, damage to the porcelain insulator is prevented and efficient
cleaning is ensured.
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4.4. The Effect of Water Content on Cleaning Efficiency

To study the impact of water content on cleaning efficiency, this test set the laser power
to 25 W and scanning speed to 2500 mm/s. The water content of the four groups of samples
was calculated to be 0.021 g, 0.093 g, 0.115 g, and 0.216 g by spraying water for different
periods of time on the test samples.

After laser cleaning, the surface of the porcelain tile was observed by electron mi-
croscopy, and Figure 13 shows the cleaning effect on samples with different water contents.
Figure 13a,b shows that when the water content is 0.021 g, a large amount of dirt remains on
the surface of the porcelain tile. As shown in Figure 13c,d, when the water content is 0.115 g,
the surface of the porcelain tile is cleaned. As the water content reaches 0.216 g, the surface
soiling of the porcelain tile increases. From Figure 14a,b, it can be calculated that when the
water content is 0.021 g, the black rate is 11.27%, that is, the cleaning efficiency is 88.73%,
and when the water content is 0.216 g, the black rate is 7.53%, that is, the cleaning efficiency
is 92.47%. Different water content and their corresponding cleaning efficiencies are shown
in Figure 15. When the dirt water content is less than 0.075 g, cleaning efficiency is affected
by the water content. When the water content is increased to approximately 0.115 g, the
maximum cleaning efficiency increases to 98.2%. When the dirt water content is greater
than 0.115 g, the cleaning efficiency decreases with the increase of water content. Therefore,
the water content can enhance the laser cleaning efficiency, but when the water content
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reaches a certain level, the cleaning efficiency is instead reduced. When the water content
reaches a certain level, the dirt is more viscous, and the adhesion with the glaze surface is
greater; therefore, the growth of thermal stress is not enough to exceed the adhesion force,
resulting in dirt residue. Therefore, when the water content is too great, removing the dirt
from the porcelain surface is more difficult. When the water content was approximately
0.115 g, the cleaning efficiency reached the highest value.
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5. Conclusions

In this work, laser equipment was used to directly remove the fouling from the surface
of porcelain insulators. The present work investigated the cleaning effect at different laser
power, scanning speed and water content to determine the optimal cleaning parameters.
For the first time, the experiments proposed an accurate cleaning efficiency detection
method based on microscopic observation and image binarization processing. We analyzed
the surface morphology and cleaning efficiency of the samples after cleaning. By comparing
the experimental results, the safe range of laser parameters is discussed for applying laser
in cleaning insulator fouling. The main results are as follows.

(1) Simulations and studies on different experimental parameters have been carried out,
which are essential for determining the laser cleaning parameters. By simulating the
influence of laser power, scanning speed, and cleaning water content on the laser
cleaning temperature field, the optimal parameters of laser cleaning can be determined.
A laser power of 25 W–28 W can initially ensure that the porcelain insulator is not
damaged; the scanning speed affects the degree of laser thermal action, and the laser
lap rate is not within the appropriate range, leading to laser cleaning not meeting the
requirements. A reasonable lap rate should be selected at approximately 50%. Laser
wet cleaning can quickly increase the cleaning temperature compared to dry cleaning;

(2) Laser cleaning effects are observed from the macroscopic scale to the microscopic
scale through multiple experimental laser studies. The test results combined with
simulation can be obtained and indicate that a specific range of water content can
improve the laser cleaning efficiency. Maximum cleaning efficiency is achieved when
the water content is 0.115 g. When the laser power was 25 W, and the scanning speed
was 2000 mm/s, most of the dirt was cleaned and the cleaning efficiency reached
96.87%.
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