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Abstract: In this work, the performance of an optoelectronic time-delay reservoir computing system
for performing a handwritten digit recognition task is numerically investigated, and a scheme to
improve the recognition speed using multiple parallel reservoirs is proposed. By comparing four
image injection methods based on a single time-delay reservoir, we find that when injecting the
histograms of oriented gradient (HOG) features of the digit image, the accuracy rate (AR) is relatively
high and is less affected by the offset phase. To improve the recognition speed, we construct a
parallel time-delay reservoir system including multi-reservoirs, where each reservoir processes part
of the HOG features of one image. Based on 6 parallel reservoirs with each reservoir possessing
100 virtual nodes, the AR can reach about 97.8%, and the reservoir processing speed can reach about
1 × 106 digits per second. Meanwhile, the parallel reservoir system shows strong robustness to the
parameter mismatch between multi-reservoirs.

Keywords: handwritten digits recognition; optoelectronic; time-delay reservoir

1. Introduction

Nowadays, artificial intelligence (AI) technology plays an irreplaceable role in nu-
merous fields. One of the important applications is static image recognition, such as
handwritten digits recognition (HWDR) [1], vehicle perception, medical image analysis [2],
and facial recognition [3]. The widespread application of AI benefits from the improvement
of neuro-inspired algorithms and the rapid progress of digital computers in computing
ability. However, the current efficiency of conventional digital computers when running
neuro-inspired algorithms such as recurrent neural networks (RNNs) is still not satisfactory
because these algorithms consume huge computing resources in training procedures [4]. In
order to improve the efficiency of AI equipment, researchers have been working to find a
neuro-inspired algorithm that possesses a simple training process, low energy consumption,
and high performance. Reservoir computing (RC), which emerged in recent years, can meet
these conditions and can be implemented in nonlinear systems. RC has been considered
one of the promising neural algorithms to further promote the development of AI [5].

RC is a general term for the echo state network [6] and the liquid state machine [7].
A typical RC system can be divided into an input layer, a reservoir (a dynamic network
composed of a large number of interconnected nonlinear nodes), and an output layer. RC
uses randomly generated and fixed input weights and reservoir weights to reduce the
training difficulty. Since there is no need to change the internal connections of the system,
RC is much easier to implement in physical hardware than traditional neuromorphic
computing schemes [8,9]. In 2011, the implementation of RC was greatly simplified, where
a time-delay system was used as the reservoir, and the reservoir states (named as virtual
node states) were constituted by the states of a single nonlinear node sampled multiple
times within a delay cycle [10]. Since then, RC based on the time-delay system (TDRC) has
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been implemented in electrical circuits [11], optoelectronic systems [12–15], and all-optical
systems [16–18]. Based on the serial input and output mechanism, TDRC shows excellent
performance for processing time-related tasks such as time series prediction, waveform
recognition, and digital speech recognition [19,20]. For instance, in 2017, Larger et al.
implement a photonic reservoir computing system based on optoelectronic telecom devices,
which achieves a million words per second classification speed for speech-recognition
tasks [21]. In 2021, Zhong et al. obtained a chaotic time series synchronized with three
dynamics systems based on an all-optical RC formed by SLs under optical feedback [22].
In the same year, Dai et al. numerically investigated the performance of optoelectronic
RC for the classification of IQ-modulated signals [23]. In 2022, Han et al. proposed an
approach for simultaneous modulation format identification and optical signal-to-noise
monitoring in optical communication based on an optoelectronic RC [24]. However, when
processing tasks such as image recognition, the performance of TDRC needs to be improved.
For instance, the accuracy rate (AR) of recognizing handwritten digits in [25] using an
optoelectronic TDRC is about 83%, which is significantly lower than the AR when using
a convolutional neural network (CNN) [26] or an echo state network [27,28] based on
parallel data processing mechanisms. Therefore, an in-depth investigation on improving
the AR and recognition speed of static images based on TDRC is of some significance for
promoting the application of TDRC in the AI field.

In this work, we numerically investigate the performance of an optoelectronic TDRC
system for performing HWDR tasks. Based on a single time-delay reservoir, we first
compare four different image input methods including the direct input of a full image,
input of a trimmed image, input of 2×-downscaled features, and input histograms of
oriented gradient (HOG) features. We found that under optimized parameters, the TDRC
with 600 virtual nodes can achieve an AR of 97% with input HOG features. Then, we
increase the number of parallel time-delay reservoirs used in the TDRC system to increase
the data processing rate. Each reservoir is used for processing a part of the HOG features,
and all the reservoir states are combined for training and testing. The results show that
based on 6 reservoirs (each reservoir contains 100 nodes), the TDRC system can achieve an
AR of 97.8% with a reservoir processing speed of 1 × 106 digits per second.

2. System Model

Figure 1a,b shows the schematic diagram of the system setup and the operation
procedure of the optoelectronic RC system for processing an HWDR task. The system uses
a semiconductor laser as the light source to output continuous wave P0. A Mach–Zehnder
intensity modulator (MZM) is used as the nonlinear node to inject the task information into
the reservoir. Under the continuous wave injection of P0, the output optical intensity P(t)
of MZM can be described as:

P(t) = P0 cos2(
π

2
m(t)
Vπ

+ φ) (1)

where m(t) is the modulation voltage applied to the MZM and Vπ is the half-wave voltage of
the MZM. ϕ denotes the offset phase adjusted by the bias voltage of the MZM. After passing
through a variable attenuator (VA), the optical signal P(t) is converted into electrical signal
Pout(t) using a photo detector (PD), which can be approximated as a linear transformation of
P(t), and the amplitude of Pout(t) can be adjusted using the VA. The electrical signal Pout(t)
passes through an amplifier, a high-pass filter (HPF), and a low-pass filter (LPF). Then,
the output signal x(t) of the HPF is added with the input data γI(t) to modulate the MZM,
where γ is an input scaling factor. As shown in Figure 1b, in the optoelectronic feedback
loop, the optoelectronic conversion efficiency and electronic gain can be described as a
feedback coefficient β, and the delay time of the feedback loop is τ. To simplify the analysis,
the summed signal (γI(t) + x(t − τ)) applied to the MZM is expressed in a normalized
unit as γI(t) + x(t − τ) ≡ πm(t)/2Vπ . Therefore, the signal input to the LPF is described
as βcos2[x(t − τ) + ϕ + γI(t)]. The LPF and HPF constitute a band-pass filter, where τL
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and τH describe the characteristic time of the LPF and HPF, respectively. Correspondingly,
the cut-off frequency and cut-on frequency of LPF and HPF are 1/(2πτL) and 1/(2πτH),
respectively. The transfer function in the frequency domain of the band-pass filter can be
described as:

H(s) =
sτH

(1 + sτL)(1 + sτH)
(2)

where s is a complex Laplace variable. The detailed derivation process of the filter from the
frequency domain to the time domain can refer to [29].
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Figure 1. (a) System schematic diagram and (b) operation procedure of the optoelectronic TDRC. 
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Figure 1. (a) System schematic diagram and (b) operation procedure of the optoelectronic TDRC. SL:
semiconductor laser; VA: variable attenuator; PD: photo detector; AMP: electronic amplifier; LPF:
low-pass filter; HPF: high-pass filter.

If without I(t), this system constitutes a common optoelectronic feedback loop, which
has been widely investigated for generating a chaotic signal [30], forecasting high-dimensional
chaotic dynamics [31], and performing chaos-based communication [32]. In recent years,
this system has been successfully applied in the TDRC field for processing time series [33,34].
Under external information injection, the dynamics of this optoelectronic TDRC system
can be expressed as [33]:

τL
dx(t)

dt
= −(1 + τL

τH
)x(t)− v(t) + β cos2[x(t− τ) + φ + γI(t)] (3)

τH
dv(t)

dt
= x(t) (4)

where x(t) is the reservoir output signal. v(t) is a supplementary variable derived from the
necessary filtering feature of the optoelectronic amplified process [21].

In this work, we use the mixed national institute of standards and technology (MNIST)
database to evaluate the performance of this TDRC for performing an HWDR task. The
MNIST database contains 70,000 images of handwritten digits, where 60,000 images form a
training set, and another 10,000 images form a testing set [35]. All images in the MNIST
database have been tailored to a standard size of 28 × 28 pixels, and the pixel values have
been normalized to [0,1]. For performing this task, the image needs to be preprocessed
and converted into a time series to meet the serial input mechanism of TDRC. In this work,
we compare four relatively simple preprocessing methods, i.e., inputting the full image,
inputting the trimmed image, extracting 2×-downscaled features, and extracting HOG
features. For the case of inputting a full image, as shown in Figure 2a, the pixel matrix with
dimensions of 28 × 28 is directly converted into a row vector u with 784 elements. For
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the case of inputting a trimmed image, we remove the unused border area of the image
to form a smaller image with 20 × 16 pixels [36]. As shown in Figure 2b, the vector u
of the trimmed image contains 320 elements. For the case of extracting 2×-downscaled
features, the trimmed image (20 × 16 pixels) in Figure 2b is first divided into 80 small
zones with each zone consisting of 2 × 2 pixels [37]. Then, as shown in Figure 2c, the mean
values of each zone are extracted and formed into a vector u with 80 elements. For the
case of extracting HOG features, we calculate the gradient g = (gx

2 + gy
2)1/2 of the images

using two spatial filters of Fx = [–1, 0, 1] and Fy = [–1, 0, 1], where gx and gy are the hori-
zontal and vertical gradient, respectively. The orientation within [0◦, 180◦] is obtained as
α = arctan (gy/gx). As shown in Figure 2d, the image is divided into 16 cells (each possesses
7 × 7 pixels), and the gradient values of each cell are calculated according to their orien-
tations with an interval of 20◦. At last, a feature vector u consisting of 324 elements is
obtained using block-normalizing over a region of 2 × 2 cells.
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Figure 2. Schematic diagram of the preprocessing procedure. (a) Input full image; (b) Input trimmed
image; (c) Input 2×-downscaled features, (d) Input HOG features.

After preprocessing, the vector u containing m elements is multiplied by an input
weight matrix Win with the dimension of m × N to form a sequence I(t), where N is the
number of the reservoir’s virtual nodes. In this work, the values of Win are randomly
extracted from {−1, 1}. In the readout layer, the reservoir states x(t) are collected by
sampling the output of LPF as an interval of θ. Then, we train the output weight Wout
using a ridge regression method, i.e., Wout = YtargetXT(XXT + λI), where Wout is the readout
weight and X is the states matrix. Ytarget is the target matrix that is built according to the
labels of the training set. We set Ytarget with 10 rows corresponding to the 10 digits of 0~9,
for which the elements of the row corresponding to the target number are set to 1, and
the other elements are all set to 0. λ is the regularization coefficient, and I is the identity
matrix. After the training procedure, for new input images, the RC system can output
recognition results of Youtput = WoutX. In the case of correct training, Youtput should be a
matrix similar to Ytarget. Then, the elements of each row in Youtput are summed, and the
row number of the largest sum is decided as the recognition result, which procedure is
called winner-takes-all [38]. The performance of the system is evaluated using the AR, i.e.,
the ratio of the correct recognition number to the size of the test set.
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3. Results

To simulate the dynamics of the optoelectronic RC, we solve Equations (3) and (4)
using the fourth-order Runge–Kuta method, where the integration step is set to 1ns. The
parameter values are τL = 10 ns, τH = 0.5 µs, virtual node interval θ = 0.01 µs, and τ = Nθ
(N is the number of virtual nodes).

We first compare the recognition performance of the optoelectronic RC under four
different input methods. For the methods of inputting a full image (u1×784), a trimmed
image (u1×320), 2×-downscaled features (u1×80), and HOG features (u1×324), the number
of virtual nodes N is set to 1500, 700, 200, and 700, respectively, which satisfies an input-
to-neuron ratio about 1:2. Generally speaking, a relatively large N is helpful to improve
the dimension of the reservoir state space (but a too large N will lead to saturation of
the state space), i.e., a relatively small input-to-neuron ratio may achieve relatively good
performance. In the test of comparing different input methods, for the sake of fairness,
we set the same input-to-neuron ratio for the four input methods. Figure 3 shows the
evolution maps of the AR in parameter space of feedback strength β and input scaling
factor γ under offset phase φ = 0. The different colors represent different values of the AR,
and the blank area represents AR ≤ 85%. We can find that for the four input methods,
the values of the AR are symmetrically distributed on both sides of γ = 0.5, and the ARs
close to γ = 0.5 are relatively low. We speculate that when γ = 0.5 and φ = 0, the non-linear
transformation effect of the reservoir is relatively weak for the input data I(t) (normalized
to [0, π]). Meanwhile, we can find that the relatively high ARs are located in the range of
β ∈ [0.1, 0.6] where the reservoir can generate appropriate non-linear dynamics for this
task. For the methods of inputting a full image (Figure 3a), trimmed image (Figure 3b), and
2×-downscaled features (Figure 3c), the maximum values of the AR are about 90% when γ
is close to 0.9. For the method of inputting HOG features (Figure 3d), the maximum AR
reaches 97%, which can be obtained for a wide range of γ. Obviously, under the method of
HOG, the recognition performance is better, and the robustness to β and γ is stronger. We
speculate that it is due to the gradients of an image, which are more useful than its pixels.
Because the magnitude of gradients is large around edges and corners (regions of abrupt
intensity changes), especially for handwritten digits. Moreover, the HOG operates on the
local grid cells of the image, so it maintains good invariance for the geometrical and optical
deformations of the image.

According to the results of Figure 3, we set β = 0.2 and γ = 0.92 to further investigate
the influence of the offset phase φ of MZM on the AR. Figure 4 shows the AR as a function
of φ for the cases using four different image preprocessing methods. For the methods of
inputting a full image (Figure 4a), trimmed image (Figure 4b), and 2×-downscaled features
(Figure 4c), when φ changes from 0 to 2π, the values of the AR fluctuate between 87%
and 91% with a period of 0.5π. We can find that the performance of RC for these three
preprocessing methods is similar under the same input-to-neuron ratio. However, RC
possesses a relatively high data processing rate with the input of 2×-downscaled features
because only 200 virtual nodes are required for achieving an AR of 91%. As shown in
Figure 4d, RC presents the best performance with the input of HOG features, where the
AR fluctuates slightly between 97% and 97.6%, and there is no obvious dependence on
φ. From the above tests of Figures 3 and 4, we can find that the preprocessing method
of HOG can effectively extract the features of handwritten digits, and the reservoir with
700 virtual nodes can achieve a good recognition performance and strong robustness to the
fluctuations in β, γ, and φ.
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Figure 4. Variation in the AR with the offset phase φ under β = 0.2 and γ = 0.92. (a) input full image,
(b) input trimmed image, (c) input 2×-downscaled features, and (d) input HOG features.

In the following sections, we take the method of inputting HOG features as an ex-
ample to investigate how to improve the recognition speed based on multiple parallel
optoelectronic reservoirs. Since the virtual node states of a TDRC are obtained using time
multiplexing, in order to obtain a sufficiently high-dimensional state space, the input period
cannot be too small, which limits the speed of TDRC with a single reservoir [39]. In order
to increase the recognition speed, we can increase the number of real nonlinear nodes in the
system to form a mutually coupled or parallel RC system and simultaneously extract the
virtual node states from the feedback loop of each reservoir [40]. In this work, as shown in
Figure 5, we transform the RC system of Figure 1 into a parallel processing RC system with
k decoupled time-delay reservoirs, where the SL provides a continuous wave for k parallel
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reservoirs. The feature matrix preprocessed using the HOG method is divided into k parts
by a column, which are injected into k reservoirs after masking with different masks. The
masked information of I1(t) to Ik(t) are injected into k reservoirs, which are transformed into
x1(t) to xk(t), respectively. Within an input period, each x(t) is sampled as a vector x with a
sampling interval of θ, where each vector x contains N elements. Therefore, x1 = [x1

1, x1
2,

. . . , x1
N]T, x2 = [x2

1, x2
2, . . . , x2

N]T, and xk = [xk
1, xk

2, . . . , xk
N]T constitute the columns

of state matrices X. X is used for training and testing, which is similar to the method used
in Figure 1. In this way, under the premise of obtaining the same number of total virtual
nodes, the data injection period of the parallel RC system can be reduced by k times.
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Figure 6a shows AR as a function of the number of total virtual nodes N. Considering
the performance deviations caused by the randomly generated mask of Win, we run RC
10 times for each value of N. Circles and stars in Figure 6 represent the mean values of
10 test results, and the vertical bar indicates the standard deviation of 10 tests. The blue
line is for the case of using a single reservoir. We can find that as N increases from 100 to
800 with a step of 20, the AR of the single reservoir monotonously increases from 93.8% to
97.8%. The red line in Figure 6 is for the case of using k-reservoirs (k × 100 = N), where each
reservoir possesses 100 virtual nodes and the k reservoirs use the same parameters of β = 0.2,
γ = 0.92, and φ = 0.4π. It can be found that the AR increases with the increase in k. When
k ≥ 7, AR reaches about 98%. Meanwhile, when k > 1, for the same N, the AR of multi-
reservoirs is higher than that of the single reservoir. This means that under the premise of
using the same number of total virtual nodes, the RC containing multiple reservoirs can
further improve the recognition rate. We speculate that this is due to the different input
weights used for multiple reservoirs, which makes the reservoir states more abundant than
that in a single reservoir. Figure 6b shows the recognition speed as a function of N. For
the system using a single reservoir (blue line), the recognition speed (=1/(Nθ)) decreases
from 1 × 106 digits per second to 1.25 × 105 digits per second as N increases from 100 to
800. Obviously, the single reservoir with more virtual nodes can enable a better recognition
performance but pays the price of reducing recognition speed. Meanwhile, the speed of the
RC system using multi-reservoirs (red line) is always 1 × 106 digits per second.
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and the blue line is for a single reservoir with N virtual nodes.

In the test of Figure 6, we defaulted that the multiple parallel reservoirs possess the
same parameters. Next, we take the parallel RC system with six reservoirs (k = 6) as an
example to analyze the impact of parameter mismatch between multiple reservoirs on the
AR. In Figure 7, we select (βr, γr, φr) = (0.2, 0.92, 0.4π) as the reference values and show
the variation in the AR as a function of the parameter mismatch ratio. In this test, we
run RC 20 times for each point of the parameter mismatch ratio, where the masks Win are
the same for each time, and the values of β, γ, φ are randomly generated within a certain
parameter mismatch range. For example, when the parameter mismatch is ±5%, the value
of β is taken randomly within (βr(1 − 5%), βr(1 + 5%)]. When the parameter mismatch is
±15%, β is taken randomly within (βr(1 − 15%), βr(1 − 5%)] ∪ (βr(1 + 5%), βr(1 + 15%)].
The red curve represents the mean AR of 20 tests, and the blue curve represents the upper
and lower limits of the ARs. We can find that when the mismatch ratio is lower than 55%,
the AR shows a slight fluctuation around 97.8%. When the mismatch ratio is higher than
55%, the AR gradually decreases, and the fluctuation range gradually expands. However,
even if the mismatch ratio reaches ±95%, the ARs are still larger than 97%. The results
indicate that this RC system with multiple parallel reservoirs shows strong robustness to
the parameter mismatch between different reservoirs. In other words, when the system is
implemented in hardware, it has the advantages of easy parameter adjustment and stable
performance.
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4. Discussion

In this work, we numerically investigate the method of improving the performance
of HDWR based on an optoelectronic TDRC. The performance improvements include
improvements in the AR and recognition speed. For increasing the AR, four image input
methods including the input of a full image, a trimmed image, 2×-downscaled features,
and HOG features are compared. In fact, there are many other image feature-extracting
methods that can be used, such as projection histograms, distance profiles, and Gabor
filters. In this work, we find that extracting HOG features requires fewer parameters to
be adjusted and achieves a relatively high AR, where the maximum AR of about 98% is
achieved. This AR is significantly higher than the value of 83% achieved in [25], which
directly inputs a raw digit image into the reservoir. Moreover, the system in this work
based on a relatively simple structure achieves an AR comparable to the AR of about 99%
in [27], which is based on a conventional network-based RC.

For increasing the recognition speed, we adopt the scheme of using multiple parallel
reservoirs. As for a single reservoir, there are two ways to increase the recognition rate
(=1/Nθ): reducing the number N of virtual nodes or reducing the interval θ. However, to
ensure good performance, neither N nor θ can be set too small. A too-small N will cause a
low dimensional state space that decreases AR. A too-small θ will cause the loss of input
information. For an optoelectronic RC, θ is often related to the inverse of the characteristic
bandwidth of an optoelectronic oscillator. In this work, the characteristic bandwidth ([1/τH,
1/τL]) is about 100 MHz, which is obviously lower than the available 10 GHz bandwidth of
the unfiltered optoelectronic feedback loop. This means that the recognition rate of a single
reservoir can be further increased by increasing the characteristic bandwidth. The pursuit
of the upper limit rate of a single reservoir will be carried out in our subsequent studies.
The motivation for setting a relatively small characteristic bandwidth in this work is that
our main purpose is to investigate the feasibility of improving the recognition speed based
on parallel reservoirs. Moreover, setting a relatively small characteristic bandwidth makes
it easier to implement this system in hardware based on our existing devices. Otherwise,
the RC system with a large characteristic bandwidth (adopting small θ) usually requires
the support of expensive input and readout equipment. In other words, our scheme of
using parallel reservoirs provides an effective way to achieve a high recognition speed for
a TDRC system with relatively low hardware requirements.
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5. Conclusions

Based on an optoelectronic time-delay reservoir computing system, we numerically
perform the HWDR task, where the reservoir is composed of an MZM, a PD, two filters,
and a delay line. First, we compare four image input methods including the input of a
full image, a trimmed image, 2×-downscaled features, and HOG features. It is found
that, under the first three input methods, the AR can reach about 90% within a relatively
narrow parameter region of β-γ and presents periodic fluctuations with offset phase φ.
Under the injection of HOG features, the system can achieve ARs of about 97% within a
broad parameter region of β-γ and shows strong robustness to the variation in φ. Second,
taking the injection of HOG features as an example, we investigate the recognition speed
improvement based on multi-reservoirs. Using 6 parallel reservoirs with each reservoir
possessing 100 virtual nodes, the system can achieve an AR of about 97.8 at a speed of
1 × 106 digits per second. Meanwhile, we find that the system performance is insensitive
to the parameter mismatch of β, γ, and φ between multi-reservoirs. In the future, there
is a lot of work worthy of in-depth studies, such as exploring the upper limit recognition
rate of a single reservoir, hardware implementation of the system, system integration, and
applications in other fields.
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