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Abstract: We investigate the formation of single and multiple optical bottle beams on the optical axis
using a diffractive axicon with amplitude or phase apodization. The proposed approach allows one
to control the location and the contrast of the boundaries of the generated dark intensity regions on
the optical axis. Experimental results obtained using a spatial light modulator are in good agreement
with numerically obtained ones. We successfully used the designed and experimentally formed set of
three optical bottle beams for trapping light-absorbing agglomerations of carbon nanoparticles in air
under the action of photophoretic forces. This confirms the efficiency of the proposed approach for
optical manipulation applications.

Keywords: multiple optical bottles; diffractive axicon; amplitude or phase apodization; laser beam
shaping; carbon nanoparticles; laser trapping

1. Introduction

Demonstration in 1986 of single-beam optical tweezers that use only a single strongly
focused beam for trapping and manipulation of nano- and micro-objects [1] led to the rapid
involvement of laser manipulation techniques in various fields of biology [2], medicine [3],
chemistry [4], and physics [5,6]. Optical tweezers made it possible to carry out unique
measurements of the viscoelastic properties of single DNA molecules [7], to trap an erythro-
cyte in the capillary of a living mouse [8], and to cool atoms to ultra-low temperatures [9].
Further development of the optical tweezers technique led to the creation of the so-called
holographic optical tweezers (HOTs) [10,11]. HOTs made it possible to further expand
the functionality of the laser manipulation technique because of the use of the so-called
structured laser beams [12], laser fields with a complex distribution of amplitude, phase,
and/or polarization. One of the most widely used types of HOTs is the so-called optical
bottle beam, an optical beam with a minimal or zero intensity region three-dimensionally
surrounded by regions of higher intensity [12–15]. The optical bottle beams are widely used
for the realization of stable trapping and three-dimensional guiding of the trapped parti-
cles [16,17]. Especially this type of optical trap is useful for light-absorbing particles [18]
as well as for atoms [19] and low-index and opaque particles [20], which are pushed out
of areas of high intensity (that is why it is necessary to form a dark area surrounded by a
light barrier). There are various approaches to the shaping of optical bottle beams. One of
the simplest solutions is the interference of two Laguerre-Gaussian (LG) beams resulting
in the generation of a dark focal area surrounded in all directions by regions of higher
intensity. In Ref. [13], such LG beams superposition was generated using an amplitude
hologram which is characterized by low diffraction efficiency. Hollow Gaussian beams [21]
generated by the transformation of an LG beam using a spiral phase plate [22], by spatial
filtering [23], or by thermal lens effect [24] also allow one to generate a single optical bottle
beam. The shadow focus can also be formed by inserting a π-phase shift in the central part
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of the focused Gaussian beam regarding the periphery [25–27]. However, the intensity of
the “walls” of such a trap is quite low. To solve this problem, beams with auto-focusing
properties can be used [28–30]. The caustics of auto-focusing beams provide a sufficiently
high intensity of the bottle walls.

Another method of optical bottle beam generation is applying superimposed optical
vortex beams [17]. This approach provides the photophoresis-based optical manipulation
of light-absorbing particles. However, the shaped optical traps have a phase singularity
on the optical axis. Therefore, the formed intensity minimum is not surrounded by the
light walls in all directions. Such bottles are suitable only for trapping particles whose
dimensions correspond to the size of the central region of the formed trap. The same
problem is typical for the optical bottle beams generated using a binary phase mask and a
focusing lens illuminated by a radially or azimuthally polarized laser beam [31]. Single
vector optical bottle beams with spatially variant light polarization can be formed from a
single Gaussian beam by passing it through a uniaxial crystal [32].

It is also possible to define the desired three-dimensional (3D) light field distribution
near the optical axis and design a special diffractive or holographic optical element, for
example, by an iterative method [33–35]. In particular, a numerical procedure based on a
modified genetic algorithm was used for optimizing a binary phase element generating an
optical bottle with definite intensity distribution [36]. Later, this element was experimen-
tally studied [37]. More exotic techniques, such as conical refraction of light in a biaxial
crystal [38] and Moiré techniques [39], also allow one to create single optical bottle beams.

Sometimes, a tandem of two optical elements, a lens, and an axicon, is used to shape
optical bottle beams [19,40–45]. In this case, the dark region of the intensity is formed in
the focal plane of the lens. The parameters of the generated optical trap can be dynamically
changed both because of the characteristics of the axicon [44,45] and by changing the distance
between these two elements [41]. However, as a rule, the optical bottle formed by this method
has a large transverse size, which prevents the stable capture of a single particle.

Note the most considered approaches are focused on the formation of single optical
bottle beams. The generation of multiple optical bottle beams spatially separated in the
plane, which is transverse to the optical axis, was investigated in several works [20,45,46].
Moreover, as a rule, the position of the dark regions on the optical axis is also rigidly
defined—it is not possible to shift the position of one trap relative to others.

It is well known that an axicon [47,48] generates an extended axial distribution corre-
sponding to the Bessel beam [49,50]. The self-healing features of the Bessel beam are very
useful when trapping many transparent particles along the optical axis [51]. However, to
trap many opaque particles, we need to create many axial bottles.

In this paper, we consider an easy-to-implement approach for the formation and control
of a set of optical bottle beams on the optical axis. This approach can be implemented by
applying amplitude or phase apodization of the fabricated axicon or using a spatial light
modulator (SLM) to generate the calculated phase function. There are various studies where
amplitude or phase apodization of axicons is used. In particular, the illumination of an axicon
by a diverging Gaussian beam makes it possible to form a scale-varying Bessel beam [52,53]. In
addition, the diaphragming apertures control the uniformity of intensity and the longitudinal
size of the formed light axial segment [54]. Phase apodization of a conical axicon by an
additional annular grating was used in [55] to reduce the transverse size of the light line.
However, these works did not investigate the formation of axial optical bottles.

Note the use of fractal [56–59] and binary [60,61] optical elements makes it possible to
form many local foci at certain positions along the optical axis. To vary the axial positions,
more complex optical elements are used, which are a superposition of different focusing
wavefronts [62,63]. In this paper, we consider a simpler approach based on amplitude or
phase apodization of a conventional axicon and investigate the effectiveness of various
types of apodization. Such an approach has all the advantages of using conventional
axicons and the possibility to control not only the number of traps formed but also their
relative position, which is important for solving problems of optical manipulation.
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2. Theoretical Foundations and Modeling

The complex transmission function of a diffractive axicon that collects incident radia-
tion on the optical axis is described as follows:

τax(r) = exp(−ikαr), (1)

where k = 2π/λ is the wavenumber of incident laser radiation with the wavelength λ and α
is the axicon parameter corresponding to the numerical aperture.

In the paraxial case, when α << 1, it is possible to calculate the diffraction of the
incident axisymmetric field A(r) at the axicon defined by Equation (1) using the Hankel-
Fresnel transformation:

G(ρ, z) = − ik
z

exp(ikz) exp
(

ikρ2

2z

) ∞∫
0

g(r) exp
(

ikr2

2z

)
J0

(
krρ
z

)
r dr (2)

where g(r) = A(r)τax(r), z is the distance from the input plane, J0(x) is the zero-order Bessel
function of the first kind.

Analytical calculation of the integral defined by Equation (2) is problematic in most
cases, but for a region not very close to the optical axis, an approximate expression can be
obtained. In particular, in [64], Equation (2) is reduced to the following form:

G(ρ, z) ≈ e−iπ/4 exp(ikz) exp
(

ikρ2

2z

)√
k

2πρz
·

∞∫
0

g(r) exp
(

ikr2

2z

)
exp

(
−i

krρ
z

)√
r dr (3)

Note, Equation (3), unlike Equation (2), allows the use of the stationary phase method.
This makes it possible to obtain an approximate expression for the integral in Equation (3)
for specific types of function g(r).

In this paper, we are mainly interested in the distribution on the optical axis (ρ = 0). In
this case, Equation (2) is simplified and reduced to the following form:

G(0, z) = − ik
z

exp(ikz)
∞∫

0

g(r) exp
(

ikr2

2z

)
r dr (4)

However, these works did not investigate the formation of a set of axial optical bottles.
In this paper, we investigate the possibility of forming a set of axial optical bottles using a
simple approach based on the amplitude or phase apodization of a conventional axicon.
We analyze the effectiveness of different types of apodization in the following sections.

2.1. Axial Distribution Control by Amplitude Apodization of the Axicon

Amplitude apodization seems to us the easiest to implement since it can be imple-
mented by changing the parameters of the illuminating beam or by simple diaphrag-
ming [52–54]. Before solving the main task of forming a set of axial optical bottles, we study
the effect of axicon diaphragming on the axial distribution in detail.

2.1.1. Formation of an Axial Light Segment Using an Annular Slot

Let us consider the incident radiation A(r) corresponding to a plane wave bounded by
an annular slot (diaphragm) of the following form:

Arng(r) =
{

1, rs ≤ r ≤ re ,
0, else .

(5)

where rs and re are the inner and outer radii of the annular slot (see Figure 1).
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Figure 1. (a) View of the annular slot. (b) Geometric-optical illustration of the formation of a light
segment on the optical axis.

For an axicon bounded by an annular slot grax(r) = Arng(r)τax(r), Equation (4) for the
distribution on the optical axis will take the following form:

Grax(0, z) = − ik
z

exp(ikz)
re∫

rs

exp(−ikαr) exp
(

ikr2

2z

)
r dr (6)

Applying the classical method of the stationary phase [65], we obtain the following
explicit approximate expression [66]:

Grax(0, z) ≈
{

e−iπ/4α
√

2πkz exp
[
ikz
(

1− α2

2

)]
, rs/α ≤ z ≤ re/α,

0, else .
(7)

The intensity distribution on the optical axis is given by a simple expression:

Irax(0, z) ≈
{

2πkzα2, rs/α ≤ z ≤ re/α ,
0, else .

(8)

Equation (8), obtained using the stationary phase method, corresponds to the geometric-
optical approach. In a geometric approximation, the rays passing through the optical
element on the ring with radius r will be focused on the optical axis at a distance z = r/α.
Thus, the annular aperture defined by Equation (5) should ensure the formation of an axial
light segment in the range zs = rs/α ≤ z ≤ ze = re/α. Note that the length of the axial light
segment and its position is determined only by the axicon parameter α and the boundaries
of the annular aperture rs, re. Obviously, the use of several annular apertures makes it
possible to form a chain of light segments with a certain length and position. This approach
can also be used to form optical traps.

Note, however, that the simple geometric-optical approach described above is an
approximation. Figure 2 shows the simulation results with the calculation of the integral
in Equation (2) by the method of numerical integration for an axicon of Equation (1) with
α = 0.005, illuminated by a flat annular beam of various sizes with a wavelength of
λ = 532 nm. The red vertical lines on the intensity plots (third column of Figure 2) corre-
spond to the geometric boundaries zs = rs/α, ze = re/α.
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Figure 2. Simulation results of the formation of axial light segments with different lengths and positions
due to variations in the parameters of the annular aperture were obtained using Equation (2).

As can be seen from the results shown in Figure 2, the geometric-optical boundaries of
the light segments are rather approximate (part of the energy is outside, or vice versa, does
not completely fill the interval) due to diffraction effects. However, in general, the use of
an annular aperture makes it quite simple and effective to vary the length and position of
the formed axial light segments.

Let’s consider a more precise description of the formed axial light segment using an
axicon. The integral in Equation (6) within arbitrary limits is equal to:

r2∫
r1

exp(−ikαr) exp
(

ikr2

2z

)
r dr = T1 + T2 (9)

T1 = z
ik exp

(
i kr2

2z − ikαr
)∣∣∣r2

r1
,

T2 = αz
√

λz
2 exp

(
−ikα2z/2

)
[±E(t2)∓ E(t1)],

(10)

where ti =
k

2z (ri − αz)2, E(x) = C(x) + iS(x),
{

C(x)
S(x)

}
= 1√

2π

x∫
0

1√
t

{
cos(t)
sin(t)

}
dt are the

Fresnel functions.
In the last line of Equation (10), the upper sign is placed if the expression (ri − αz) is

positive and the lower sign otherwise.
It can be seen from Equations (9) and (10) that the distribution on the axial light

segment has an oscillating character and does not have a clear cutoff boundary. Similar
expressions were analyzed in [66], where it was shown that the terms containing the Fresnel
functions “on average” are larger than the other terms.

2.1.2. Formation of an Optical Bottle when Applying an Annular Blocking Screen

Although the geometric model of the axicon action is approximate, the considered
properties of the axicon can be quite simply used to form an optical bottle due to the
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blocking of radiation by an annular screen. In this case, the illuminating beam will have
the following form:

Abl(r) =

{
0, rs ≤ r ≤ re ,

A(r), else .
(11)

where rs and re are the inner and outer radii of the annular blocking screen (see Figure 3a).

Photonics 2023, 10, x FOR PEER REVIEW 6 of 15 
 

 

where rs and re are the inner and outer radii of the annular blocking screen (see Figure 3a). 
Figure 3 shows a geometric-optical illustration of the formation of an optical bottle 

due to the blocking of radiation by an annular screen. In this case, rays from the central 
and peripheral parts of the axicon form the neck and bottom of the bottle, and the bottle 
cavity is formed on the segment of the optical axis corresponding to the blocking ring. 

 
Figure 3. Illustration of the formation of an optical bottle due to radiation blocking by an annular 
screen: (a) view of the annular slot and (b) geometric-optical visualization of the formation of an 
optical bottle on the optical axis. 

The field on the optical axis when the axicon is blocked by an annular screen gblax(r) = 
Abl(r)τax(r) is described by the following expression: 

2 2

0

(0, ) exp( )

exp( )exp d exp( )exp d .
2 2

s

e

blax

r R

r

ikG z ikz
z

ikr ikrik r r r ik r r r
z z

= − ×

     × − α + − α    
     

∫ ∫
 (12) 

To correctly describe the properties of the bottle formed by blocking the axicon with 
an annular screen, we calculate the amplitude on the axis using Equations (9) and (10): 

( ) ( ) ( )

( )

2

2
2 2

22

(0, ) ( 1)exp( ) exp 1
2

exp 1 0
2 2 2

( 1)exp( ) exp exp
2 2

s
blax s

s

e
e

kr
G z ikz i ik r

z

k ki kz ikz E r z E z
z z

krkRikz i ik R i ik r
z z

i

   = − − α − +  
   

  α     + − π α − ± −α −α +             
    + − − α − − α +   
     

+ − π α



( ) ( )
2

2 2exp 1 .
2 2 2 e

k kkz ikz E R z E r z
z z

  α     − ± −α −α             


  (13) 

Let us consider in detail the behavior of the amplitude in the region, which is a geo-
metric shadow: rs/α ≤ z ≤ re/α. In this area, taking into account the analysis performed in 
[66], we will take into account only terms with the Fresnel functions. Since the factors in 
front of the curly brackets in Equation (13) are the same, we can look at the behavior of 
the values inside these brackets. 

In the first term (corresponds to a circle 0 ≤ r ≤ rs) in the shadow area rs < αz (obviously, 
0 < αz) and it is necessary to take the lower signs; so let’s analyze the expression 
{E[(k/2)α2z] − E[(k/2)(αz − rs)2]}. The first term, E[·], is a large number, so we can replace the 
Fresnel functions with limit values ½. Thus, we analyze the function: 

2 21 ( ) ( )
2 2 2 2s s

i k kC z r iS z r
z z

   + − α − − α −      
 (14) 

The field intensity in Equation (13) is proportional to the square of the modulus of 
Equation (14). Using tables, we can see that ((1/2) − C(x))2 + (1/2) − S(x))2 decreases as x 
increases. Applying the asymptotic formulas with two terms, we obtain that the sum of 

Figure 3. Illustration of the formation of an optical bottle due to radiation blocking by an annular
screen: (a) view of the annular slot and (b) geometric-optical visualization of the formation of an
optical bottle on the optical axis.

Figure 3 shows a geometric-optical illustration of the formation of an optical bottle
due to the blocking of radiation by an annular screen. In this case, rays from the central
and peripheral parts of the axicon form the neck and bottom of the bottle, and the bottle
cavity is formed on the segment of the optical axis corresponding to the blocking ring.

The field on the optical axis when the axicon is blocked by an annular screen
gblax(r) = Abl(r)τax(r) is described by the following expression:

Gblax(0, z) = − ik
z exp(ikz)×

×
{

rs∫
0

exp(−ikαr) exp
(

ikr2

2z

)
r dr +

R∫
re

exp(−ikαr) exp
(

ikr2

2z

)
r dr

}
.

(12)

To correctly describe the properties of the bottle formed by blocking the axicon with
an annular screen, we calculate the amplitude on the axis using Equations (9) and (10):

Gblax(0, z) = (−1) exp(ikz)
{

exp
(

i kr2
s

2z − ikαrs

)
− 1
}
+

+
(
−i
√
π
)
α
√

kz exp
[
ikz
(

1− α2

2

)]{
±E
[

k
2z (rs − αz)2

]
∓ E

[
k

2z (0− αz)2
]}

+

+(−1) exp(ikz)
{

exp
(

i kR2

2z − ikαR
)
− exp

(
i kr2

e
2z − ikαre

)}
+

+
(
−i
√
π
)
α
√

kz exp
[
ikz
(

1− α2

2

)]{
±E
[

k
2z (R− αz)2

]
∓ E

[
k

2z (re − αz)2
]}

.

(13)

Let us consider in detail the behavior of the amplitude in the region, which is a
geometric shadow: rs/α≤ z≤ re/α. In this area, taking into account the analysis performed
in [66], we will take into account only terms with the Fresnel functions. Since the factors in
front of the curly brackets in Equation (13) are the same, we can look at the behavior of the
values inside these brackets.

In the first term (corresponds to a circle 0 ≤ r ≤ rs) in the shadow area rs < αz
(obviously, 0 < αz) and it is necessary to take the lower signs; so let’s analyze the expression
{E[(k/2)α2z] − E[(k/2)(αz − rs)2]}. The first term, E[·], is a large number, so we can replace
the Fresnel functions with limit values 1

2 . Thus, we analyze the function:

1
2
+

i
2
− C

[
k

2z
(αz− rs)

2
]
− iS

[
k

2z
(αz− rs)

2
]

(14)
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The field intensity in Equation (13) is proportional to the square of the modulus of
Equation (14). Using tables, we can see that ((1/2) − C(x))2 + (1/2) − S(x))2 decreases as
x increases. Applying the asymptotic formulas with two terms, we obtain that the sum
of squares is equal to (2πx)−1. The decrease is monotonous, and there is no characteristic
point. Therefore, we conditionally take the value z corresponding to x = µ as the left
border of the shadow (µ depends on the selected fall level). Solving the quadratic equation
k(αz − rs)2/2z = µ, we find the root lies in the shadow area (z > rs/α):

zs =
(kαrs + µ) +

√
µ2 + 2µkαrs

kα2 ≈ rs

α
+

√
2µkαrs

kα2 (15)

Similarly, in the second term (corresponds to the ring re ≤ r ≤ R) in the region of the
shadow re > αz (R > αz) and it is necessary to take the upper signs, so we analyze the
expression {E[(k/2z)(R − αz)2] − E[(k/2z)(re − αz)2]}. The first term, E[·], is a large number,
so this expression is reduced to

1
2
+

i
2
− C

[
k

2z
(re − αz)2

]
− iS

[
k

2z
(re − αz)2

]
(16)

which is similar to Equation (14). The right boundary of the shadow is found by a formula
similar to Equation (15) (taking into account the root in the shadow region, i.e., z < re/α):

ze =
(kαre + µ)−

√
µ2 + 2µkαre

kα2 ≈ re

α
−
√

2µkαre

kα2 (17)

Finally, the shadow region does not have sharp boundaries and is narrower compared
to the geometric-optical interval due to the overlap of the “tails” from the illuminated parts
of the axicon:

zs ≈
rs

α
+

√
2µkαrs

kα2 < z < ze ≈
re

α
−
√

2µkαre

kα2 (18)

where µ is the chosen level of tail fall.
Figure 4 shows the results of the simulation using Equation (2) by the method of

numerical integration for the axicon defined by Equation (1) with α = 0.005, illuminated by
a flat beam, limited by radius R = 1.5 mm, with a wavelength λ = 532 nm. Ring screen radii
are rs = 0.5 mm and re = 0.7 mm.

Photonics 2023, 10, x FOR PEER REVIEW 7 of 15 
 

 

squares is equal to (2πx)−1. The decrease is monotonous, and there is no characteristic 
point. Therefore, we conditionally take the value z corresponding to x = μ as the left border 
of the shadow (μ depends on the selected fall level). Solving the quadratic equation k(αz 
− rs)2/2z = μ, we find the root lies in the shadow area (z > rs/α): 

2

2 2

( ) 2 2s s ss
s

k r k r k rr
z

k k
α +µ + µ + µ α µ α

= ≈ +
αα α

 (15) 

Similarly, in the second term (corresponds to the ring re ≤ r ≤ R) in the region of the 
shadow re > αz (R > αz) and it is necessary to take the upper signs, so we analyze the 
expression {E[(k/2z)(R − αz)2] − E[(k/2z)(re − αz)2]}. The first term, E[·], is a large number, so 
this expression is reduced to 

2 21 ( ) ( )
2 2 2 2e e

i k kC r z iS r z
z z

   + − −α − −α      
 (16) 

which is similar to Equation (14). The right boundary of the shadow is found by a formula 
similar to Equation (15) (taking into account the root in the shadow region, i.e., z < re/α): 

2

2 2

( ) 2 2e e ee
e

k r k r k rr
z

k k
α +µ − µ + µ α µ α

= ≈ −
αα α

 (17) 

Finally, the shadow region does not have sharp boundaries and is narrower com-
pared to the geometric-optical interval due to the overlap of the “tails” from the illumi-
nated parts of the axicon: 

2 2

2 2s es e
s e

k r k rr r
z z z

k k
µ α µ α

≈ + < < ≈ −
α αα α

 (18) 

where μ is the chosen level of tail fall. 
Figure 4 shows the results of the simulation using Equation (2) by the method of 

numerical integration for the axicon defined by Equation (1) with α = 0.005, illuminated 
by a flat beam, limited by radius R = 1.5 mm, with a wavelength λ = 532 nm. Ring screen 
radii are rs = 0.5 mm and re = 0.7 mm. 

 
Figure 4. Simulation results of the optical bottle formation by blocking radiation using an annular 
screen under illumination with a flat beam: (a) amplitude and (b) phase at the input, (c) amplitude 
distribution along the optical axis (x∈[−0.5 mm; 0.5 mm], z∈[50 mm; 400 mm]), (d) plot of intensity 
on the axis for the annular slots rs = 0, re = 0.5 mm (blue color), rs = 0.7 mm, re = 1.5 mm (green color) 
and for the blocking screen rs = 0.5 mm, re = 0.7 mm (red color). 

As can be seen from Figure 4, the numerical result corresponds to the above theoret-
ical reasoning, i.e., there is an illumination of the shadow area due to the overlap of the 
“tails” from the illuminated parts of the axicon. 

Figure 4. Simulation results of the optical bottle formation by blocking radiation using an annular
screen under illumination with a flat beam: (a) amplitude and (b) phase at the input, (c) amplitude
distribution along the optical axis (x∈[−0.5 mm; 0.5 mm], z∈[50 mm; 400 mm]), (d) plot of intensity
on the axis for the annular slots rs = 0, re = 0.5 mm (blue color), rs = 0.7 mm, re = 1.5 mm (green color)
and for the blocking screen rs = 0.5 mm, re = 0.7 mm (red color).

As can be seen from Figure 4, the numerical result corresponds to the above theoretical
reasoning, i.e., there is an illumination of the shadow area due to the overlap of the “tails”
from the illuminated parts of the axicon.
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Note that using a Gaussian illumination beam A(r) = exp(−r2/σ2) instead of a flat
beam (see Figure 5) can equalize the intensity values at the beginning and the end of the
light bottle, but in this case, the shadow area becomes even worse.
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screen under illumination with the Gaussian beam with σ = 1.3 mm: (a) amplitude and (b) phase
at the input, (c) amplitude distribution along the optical axis (x∈[−0.5 mm; 0.5 mm], z∈[50 mm;
400 mm]), (d) plot of intensity on the axis for the annular slots rs = 0, re = 0.5 mm (blue color),
rs = 0.7 mm, re = 1.5 mm (green color) and for the blocking screen rs = 0.5 mm, re = 0.7 mm (red color).

The light walls of the cavity outside the optical axis are formed due to diffraction
effects (see Figures 4 and 5).

To improve the quality of the formed trap, one can increase the width of the blocking
ring. To avoid overlap in the shadow area, it needs to be zs < ze. Using the approximate
Equation (18), we transform this condition into the inequality:

√
re −
√

rs >

√
2µ
kα

(19)

For the assigned inner border rs of the blocking screen, one can define the outer border
re using the following convenient expression:

re − rs >
2µ
kα

+ 2

√
2µrs

kα
(20)

Figure 6 shows the results of a comparative simulation of the light bottle formation
due to radiation blocking by an annular screen under illumination with a bounded flat and
the Gaussian beam.
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It can be seen from the simulation results (Figure 6) that illumination with the Gaussian
beam provides a more pronounced formation of an optical trap due to the smoothness of
the field. Note, despite the increase in the width of the blocking ring, the longitudinal size
of the hollow part of the trap increases slightly, although it moves further from the optical
element as expected.

2.2. Formation of Optical Bottles by Phase Apodization of Axicons

Phase apodization of a fabricated axicon is more difficult to implement since it requires
the use of an additional phase element. However, phase apodization can be taken into
account when calculating a composite element and optimized using SLM. In addition,
phase apodization is more energy efficient.

2.2.1. Formation of an Optical Bottle Due to Axicons with Phase apodization

Another approach instead of a blocking ring screen is the replacement of the phase
distribution on the same ring. In this case, the optical element can be considered an axicon
with phase apodization. In this case, the optical element can be considered as follows:

τdax(r) =

{
exp[iψ(r)], rs ≤ r ≤ re,

exp(−ikαr), else ,
(21)

where rs and re are the inner and outer radii of the ring on which the phase ψ(r) differs from
the phase of the collecting axicon. In the simplest case, ψ(r) = 0. Figure 7 shows the results
of modeling the formation of optical bottles due to axicons with such phase apodization
under Gaussian beam illumination.
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ψ(r) = 0 in Equation (21) under Gaussian beam illumination.

As can be seen from Figure 7, the increase in the width of the “gliched” phase ring
allows the formation of a clearer cavity of the optical bottle, which is displaced further from
the optical element in accordance with the increase in the average radius of the “gliched”
phase ring.

2.2.2. Formation of a Set of Optical Bottles Due to Phase Jumps on the Axicon

It should be noted that the approaches discussed in Sections 2.1.2 and 2.2.1 are not
very convenient for the formation of many optical bottles since, in this case, a large optical
element is required.
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To ensure the formation of a set of compactly located optical bottles, it is more conve-
nient to use additional phase jumps in the axicon, which ensures the arrival of rays at a
certain point on the optical axis with the opposite phase.

In this case, the optical element can be considered as an axicon with superimposed
annular phase jumps (Figure 8):

τpax(r) = exp(−ikαr)
Q

∑
q=1

exp(iqπ)Nq(r) (22)

where

Nq(r) =

{
1, rqs ≤ r ≤ rqe ,

0, else .
(23)

is the q-th ring with inner and outer radii rqs and rqe.
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The element defined by Equation (22) provides zero intensity on the optical axis at
points zq = rqs/α due to the arrival of rays in the antiphase. Figure 9 shows the results of
modeling the formation of three optical bottles on the optical axis.
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Figure 9. Simulation of the formation of three optical bottles due to phase jumps at radii
r1s = 0.4 mm, r1e = r2s = 0.6 mm, r2e = r3s = 1.0 mm on the axicon under Gaussian beam illumi-
nation with σ = 1.3 mm: (a) amplitude and (b) phase at the input, (c) amplitude distribution along
the optical axis (x∈[–0.2 mm; 0.2 mm], z∈[50 mm; 400 mm]), (d) intensity plot on the axis with the
corresponding geometric positions of the optical traps z1 = 80 mm, z2 = 120 mm, z3 = 200 mm (marked
by red lines).
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Note, in this case, the positions of the formed shadow regions corresponding to the
optical bottles are very close to the geometric-optical positions. This type of apodization
seems to us the most convenient and efficient for the formation of a set of optical bottles
with a controlled position. A composite phase element calculated as illustrated in Figure 8
can be implemented using SLM.

3. Experimental Results

For the experimental verification of the possibility of the generation of multiple optical
bottle beams using the designed axicon with phase jumps, we used an optical setup based
on a reflective SLM HOLOEYE PLUTO VIS (1920 × 1080 pixels, pixel size of 8 µm), which
is shown in Figure 10a. A linearly polarized Gaussian beam from a solid-state continuous-
wave laser (λ = 532 nm) was extended and collimated with a combination of two lenses,
L1 and L2, with focal lengths of 25 and 150 mm. The maximum output laser power
was 500 mW. The collimated laser beam was directed onto the SLM with the help of
mirrors M1 and M2, and the modulated reflected laser beam was spatially filtered with a
combination of two lenses, L3 and L4, with focal lengths of 500 and 150 mm, as well as a
circular diaphragm D. In the experiments, we added a gradient phase mask to the phase
of the designed element realized with the SLM to separate the generated multiple optical
bottle beams and the part of the incident laser radiation that was not modulated by the
SLM. Diaphragm D was used to block this non-modulated radiation. The diameter of the
diaphragm was large enough not to eliminate the side robe of the generated Bessel beams.
For reconstruction of the longitudinal intensity distribution of the generated multiple
optical bottles shown in Figure 10b, a micro objective MO1 (4×, NA = 0.1) and a video
camera CAM1 (TOUPCAM UHCCD00800KPA, 1600× 1200 pixels, 3.34 µm pixel size)
mounted on an optical rail were used. It is seen that the experimentally obtained intensity
distributions are in good agreement with the numerically obtained ones.

The generated multiple optical bottle beams can be used as optical traps with increasing
trapping stiffness for the light-absorbing particles in the air. It is well known that for such
particles, the photophoretic (PP) forces dominate over the other forces [17,38]. However, in
many cases, the direction of these forces is from the higher-intensity regions to the lower-
intensity regions, which makes it impossible to realize stable three-dimensional trapping of
light-absorbing particles using focused Gaussian beams. In these cases, optical bottle beams
allow one to confine the trapped particles inside the dark intensity region and guide them
stably in three dimensions. In our experiments, we used generated multiple optical bottles for
trapping and stable confinement of light-absorbing agglomerations of carbon nanoparticles
(the average density of approx. 10 mg/cm3, the thermal conductivity of 0.0266 W/m/K;
an asymmetry factor of −0.34 [67]). The results obtained are shown in Figure 10c,d, and in
Video S1 and Video S2. For these experiments, we slightly changed the optical setup used for
the reconstruction of the longitudinal intensity distribution of the generated multiple optical
bottles the changed part as shown in the grey area of Figure 10a. The micro objective MO2
(4×, NA = 0.1) was used to focus the modulated laser beam inside a glass cuvette C. Thus,
generated multiple optical bottle beams were formed inside the cuvette. To load the particles
into the generated traps, we sprayed carbon nanoparticles using a syringe. Then, a lens L5 and
a video camera CAM2 were used to record a movie demonstrating trapping and confinement
of the particles inside the generated traps (see Figure 10c). During the recording of the movie,
the initial laser power decreased from 500 to 20 mW (Video S1). At the beginning of the
recording, many particles were trapped in the generated laser beam. However, a decrease
in the laser power led to the escape of unstable trapped particles from the beam. At a laser
power of 20 mW, only three particles trapped in the three generated optical bottle beams
remain trapped three-dimensionally stably (Video S2).
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UHCCD00800KPA, 1600 × 1200 pixels, 3.34 μm pixel size). (b) The longitudinal intensity distribu-
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white dashed circles) trapped using the generated multiple optical bottles (Visualization 1). In the 
left part of the image, the light scattered by a wall of the glass cuvette is shown. (d) An image of the 
particle trapped in the first optical bottle observed in the transverse (xy) plane (Visualization 2). The 
scale bar is 20 μm. 

Figure 10. Optical trapping with multiple optical bottles generated an axicon with phase jumps.
(a) The optical setup used for the generation of the desired multiple optical bottles: Laser is a solid-
state laser (λ = 532 nm), L1, L2, L3, L4, and L5 are lenses with focal lengths of 25, 150, 500, 150, and
50 mm respectively, M1, M2, M3, and M4 are mirrors, SLM is a reflective spatial light modulator
HOLOEYE PLUTO VIS (1920×1080 pixels, pixel size of 8 µm), D is a circular diaphragm, MO is a
micro objective (4×, NA = 0.1), C is a glass cuvette, CAM1 and CAM are video cameras (TOUPCAM
UHCCD00800KPA, 1600 × 1200 pixels, 3.34 µm pixel size). (b) The longitudinal intensity distribution
of the generated multiple optical bottles. The white dashed circles show the dark regions of the
generated traps. (c) An image of three agglomerations of carbon nanoparticles (indicated by the white
dashed circles) trapped using the generated multiple optical bottles (Video S1). In the left part of the
image, the light scattered by a wall of the glass cuvette is shown. (d) An image of the particle trapped
in the first optical bottle observed in the transverse (xy) plane (Video S2). The scale bar is 20 µm.

4. Conclusions

In this work, we investigated the generation of both light needles on the optical axis
with a controllable location and optical bottle beams using an axicon with an amplitude
or phase jump. The parameters of generated light needles, such as their length and their
position on the axis, are defined by the axicon parameter α and the dimensions of the
used annular aperture. We showed that the use of several annular apertures makes it
possible to form a chain of light needles with a certain length and position. It was proposed
to use this approach to form optical bottle beams at the desired location on the optical
axis. In this case, the formation of an optical bottle occurs because of the blocking of the
part of the illuminating laser beam by an annular screen. The light rays from the central
and peripheral parts of the axicon form the “neck” and “bottom” of the bottle, and the
cavity of the bottle is formed on the segment of the optical axis corresponding to the
blocking ring. We showed that similar but more accurate and efficient results could also be
obtained when we use an axicon with phase jumps. The numerically obtained results were
approved by experiments. In addition, we showed laser trapping of three light-absorbing
agglomerations of carbon nanoparticles in the air using the light fields generated by the
designed axicons. Such optical traps find a lot of applications in optical manipulation and
can be used for simultaneous trapping and guiding of several investigated particles that
speed up the manipulation process.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/photonics10020200/s1. Video S1: three agglomerations
of carbon nanoparticles trapped using the generated multiple optical bottles (xz-plane); Video S2:
particle trapped in the first optical bottle observed in the transverse (xy) plane.

https://www.mdpi.com/article/10.3390/photonics10020200/s1
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