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Abstract: Indirect time-of-flight (ToF) imaging systems enable a broad array of applications owing to
their high frame rate, strong durability, and low cost. However, the wiggling-related error caused by
the harmonics in the emitted signal significantly affects the range accuracy of indirect ToF imaging
systems. In this paper, we establish a mathematical model of the wiggling-related error and propose
a wiggling-related error correction method for indirect ToF imaging systems. This method adds a
delay measurement and utilizes raw intensity measurements to evaluate the system state based on
an adaptive Kalman filter (AKF), which is easy to implement in most indirect ToF imaging systems.
Simulation and experimental results show that the proposed method performed well in reducing
the wiggling-related error and had good robustness in different integration times. Compared with
the existing methods, the proposed method not only has better performance but also is easier to
implement. We believe that this study provides effective guidance for researchers understanding
the wiggling-related error and a potential direction for the accuracy improvement of indirect ToF
imaging systems.

Keywords: time-of-flight; range accuracy; wiggling-related error; error correction; harmonics;
adaptive Kalman filter

1. Introduction

Over the past years, traditional 2D images have been unable to meet the demand for
information perception, and 3D images have been widely studied and applied. Depth
imaging systems, including stereo vision [1], structured light [2], and time-of-flight (ToF) [3],
can be used to obtain 3D images. ToF imaging possesses the advantages of high real-time
performance, strong durability, small size, and low cost. Therefore, this imaging system is
suitable for a wide array of applications, such as robot navigation [4], security system [5],
3D reconstruction [6], precision farming [7], human-computer interaction [8], etc.

ToF imaging systems can be classified into direct ToF and indirect ToF imaging systems.
Compared to direct ToF imaging systems, indirect ToF imaging systems have higher spatial
resolution and are easier to implement [9,10]. Indirect ToF imaging systems provide range
information by measuring the phase shift between the emitted and reflected sinusoidal
amplitude modulated signals [11]. However, due to hardware limitations, non-sinusoidal
amplitude modulated waveforms, such as square wave modulated signals, are typically
used in indirect ToF imaging systems [12]. The unnecessary harmonics in the modulated
signal will lead to a periodic systematic error known as the wiggling error [13]. On the other
hand, the random error of range measurement caused by photon shot noise [14], called
the wiggling random error in this paper, is also affected by the harmonics and presents
a wiggling feature [15]. In this paper, the above two categories of errors are collectively
referred to as the wiggling-related error. Figure 1 is a simulation of the wiggling-related
error. As shown by the blue line in Figure 1, the wiggling error has four oscillations inside
the unambiguous distance and reaches a value of up to ±143 mm. The maximum distance

Photonics 2023, 10, 170. https://doi.org/10.3390/photonics10020170 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics10020170
https://doi.org/10.3390/photonics10020170
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-0410-8022
https://orcid.org/0000-0003-1868-6517
https://orcid.org/0000-0002-9641-5029
https://doi.org/10.3390/photonics10020170
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics10020170?type=check_update&version=1


Photonics 2023, 10, 170 2 of 18

drift caused by the wiggling random error is more than 50 mm in the simulation (see
Point B). In the actual measurement, the wiggling error and the wiggling random error
are superimposed, which seriously impacts the range accuracy of ToF imaging systems.
Thus, correcting the wiggling-related error for indirect ToF imaging systems is of great
significance.
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Figure 1. Simulation of the wiggling-related error due to unnecessary harmonics from the square
wave modulated signal. In the simulation, the modulation frequency is 12 MHz. At each true distance,
the measurement is repeated 500 times. The gray dots are the range errors of single measurements,
and the dispersion of the dots represents the magnitude of the wiggling random error. The blue line,
which presents the wiggling error, connects the averages of range errors at different distances.

Much of the current research to correct or reduce the wiggling error is to use polyno-
mial functions, look-up tables, B-spline functions, or damped sine functions to compensate
for it [16]. Before the compensation, calibration experiments are required to evaluate the
wiggling-related error, which is a time-consuming task. ToF imaging systems still need to
be recalibrated if any system parameters change, e.g., the integration time, the modulation
frequency, and the harmonic component. Beyond that, the amplitude-dependent error and
the sensor-dependent error are coupled with the wiggling error in the experiments [17], and
the effect of the wiggling random error is ignored during the compensation process. There-
fore, the wrong compensation value often appears in the actual measurement, resulting in
lower accuracy of ToF imaging systems.

It is more reasonable to directly avoid the wiggling-related error from its source, which
means reducing its production instead of attempting to compensate for it. A number of
studies have focused on reducing the wiggling-related error by optimizing the emitted
signals of indirect ToF imaging systems. Hussmann et al. [18] developed an illumination
module that emitted a sine-shape signal with no higher harmonics. Nevertheless, this
method increased the random error of the system. Payne et al. [19] designed a harmonic
rejection sampling methodology, which attenuated harmonics during the sampling. The
experiments verified that this approach improved the measurement linearity in the raw
measurements, but the random noise was also amplified. In [20,21], adjusting the duty
cycle of the square wave signals proved to be effective in correcting the wiggling-related
error. However, the ideal square wave is still challenging to produce, which limits this
method.

The wiggling-related error can also be reduced by changing the calculation formula of
the phase shift [22]. Drayton et al. [23] used the windowed discrete Fourier algorithm to
calculate the phase shift. This algorithm had a good performance in reducing the error yet
changed the sampling process of the ToF imaging system, which is difficult to implement
in commercial indirect ToF imaging systems. The same problem also appeared in [15],
where the third harmonic was eliminated with no significant increase in noise variance
observed. In addition, Feigin et al. used the matrix pencil method to correct the wiggling
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error and the wiggling random error [24]. This method utilized the depth data of multiple
frequencies and hence had low real-time performance.

All these methods suffer from technical disadvantages, such as an increase in the
wiggling random error, difficulty to achieve, or low robustness. For this problem, we
propose a wiggling-related error correction method for indirect ToF imaging systems. The
main contributions include:

1. To reduce the wiggling error, we propose a wiggling error cancelation method. This
method adds a delay measurement without changing the hardware of ToF imaging
systems, which is easy to implement in most indirect ToF imaging systems.

2. To reduce the wiggling random error, we propose a wiggling random error reduction
method based on an adaptive Kalman filter (AKF) for indirect ToF imaging systems.
The method, which has good adaptive performance, utilizes the data of raw intensity
measurements to evaluate the system state in real-time and calculates a more accurate
phase.

3. We establish a mathematical model of the wiggling-related error, which clearly shows
the characteristics of the wiggling-related error. Combining (1) and (2), we propose
a wiggling-related error correction method. The method is verified to have good
performance and robustness in improving the range accuracy of indirect ToF imaging
systems.

This article is organized as follows: Section 2 introduces the principle of ToF imaging
systems and derives the mathematical model of the wiggling-related error. Section 3
describes the proposed wiggling-related error correction method in detail. Section 4
presents the simulation and experimental results and performs the discussions. Finally, the
conclusions are presented in Section 5.

2. Principle
2.1. Principle of ToF Imaging Systems

Indirect ToF imaging systems use cross-correlation to indirectly determine the phase
shift of the reflected signal [25]. The working principle of the indirect ToF imaging system
is illustrated in Figure 2. The light source, triggered by an internal reference signal s(t), is
used to emit the modulated near infrared (NIR) light. After being reflected by the object, the
light will be detected by the pixel field of the ToF sensor. On each pixel, the reflected light is
converted to an electronic signal r(t) and immediately correlates with the reference signal
s(t) at four phase shifts θn = nπ/2 with n = 0–3, producing four intensity measurements
I0 to I3 [13,26]. The process can be expressed as a correlation function:

In = I(θn) = r(t)⊗ s(t) =
1
T

T/2∫
−T/2

r(t)s(t− θn)dt =
1
T

T/2∫
−T/2

r(t)s
(

t− nπ

2

)
dt, n = 0, 1, 2, 3. (1)
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Both the reference and reflected signals are assumed to be sinusoidal functions:

s(t) = As sin(2π f t) + Bs, (2)

r(t) = Ar sin(2π f t− ϕ) + Br, (3)

where f is the modulation frequency of ToF imaging systems, and ϕ is the phase shift
relating to the round-trip time. As and Ar are the corresponding amplitudes of the ref-
erence and reflected signals. Bs and Br are the corresponding offsets of the reference and
reflected signals.

Substitute Equations (2) and (3) into Equation (1), the intensity measurements I0 to I3
are simplified to:

In =
As Ar

2
cos
(

ϕ− nπ

2

)
+ BsBr = A cos

(
ϕ− nπ

2

)
+ B, n = 0, 1, 2, 3, (4)

where A represents the amplitude of the correlation function, which is related to the
sensitivity of the ToF sensor, the amplitude of the reference signal, the reflectivity of the
scene, and the attenuation of the light. B represents the offset of the correlation function,
which is determined by the intensity of the background light [23].

With the four-step phase shifting algorithm [27], the phase and amplitude can be
estimated as:

ϕ = arctan
(

I1 − I3

I0 − I2

)
, (5)

A =

√
(I0 − I2)

2 + (I1 − I3)
2

2
. (6)

From the measured phase and the speed of light c, the range is finally inferred by:

d =
ϕc

4π f
. (7)

2.2. Analysis of the Wiggling-Related Error

Due to the harmonics in the modulated signal, indirect ToF imaging systems suffer
from the wiggling-related error, which significantly impacts the range accuracy. The
wiggling-related error consists of the wiggling error and the wiggling random error. In this
section, a mathematical model is derived to predict the wiggling error and the wiggling
random error.

2.2.1. Wiggling Error

In the above, we assume that both the reference and reflected signals follow sinusoidal
shapes. However, they are non-sinusoidal waveforms, causing higher-order harmonics in
the correlation function. The higher-order odd harmonics cannot be filtered by the four-
step phase shifting algorithm and thus will be aliased on the fundamental harmonic [28].
This leads to the wiggling error of the measured phase carried out with Equation (5). As
illustrated in Figure 3a, there is a nonlinear relation between the measured phase and the
true phase.
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This paper considers odd harmonics up to the fifth-order, and the other higher har-
monics can be ignored because of their insignificant amplitudes. According to [12], the
intensity measurements of the correlation function with the third and fifth harmonics can
be expressed as:

I′n = A1 cos
(

ϕ− nπ

2

)
+ A3 cos

[
3
(

ϕ− nπ

2

)]
+ A5 cos

[
5
(

ϕ− nπ

2

)]
+ B, n = 0, 1, 2, 3, (8)

where A1, A3, and A5 are the corresponding amplitudes of the fundamental, third-order,
and fifth-order harmonics. Submitting Equation (8) into Equation (5), the measured phase
can be written as:

ϕ′ = arctan
(

I′1 − I′3
I′0 − I′2

)
= arctan

(
A1 sin ϕ− A3 sin 3ϕ + A5 sin 5ϕ

A1 cos ϕ + A3 cos 3ϕ + A5 cos 5ϕ

)
. (9)

The wiggling error can be derived as the following form [29]:

∆ϕ = ϕ′ − ϕ = arctan
(

A1 sin ϕ−A3 sin 3ϕ+A5 sin 5ϕ
A1 cos ϕ+A3 cos 3ϕ+A5 cos 5ϕ

)
− arctan

(
sin ϕ
cos ϕ

)
= arctan

[
−(A3−A5) sin 4ϕ

A1+(A3+A5) cos 4ϕ

]
= −arctan

(
q sin 4ϕ−r sin 4ϕ

1+q cos 4ϕ+r cos 4ϕ

)
,

(10)

where q = A3/A1 and r = A5/A1. Using the Taylor expansion, the above equation is
simplified to:

∆ϕ ≈ −(q− r) sin 4ϕ +

(
q2

2
− r2

2

)
sin 8ϕ. (11)

Typically, we have r � q � 1, because A1 is much larger than A3 and A3 is much
larger than A5. Therefore, the part of sin 8ϕ in Equation (11) can be ignored. The wiggling
error can be written in a more concise form:

∆ϕ ≈ −(q− r) sin 4ϕ = −p sin 4ϕ, (12)

where p is a constant related to the harmonic component. Equation (12) indicates that
the magnitude of the wiggling error depends on the true phase and the amplitudes of
the harmonics. In the simulation, the wiggling error shows four sine periods as the true
phase transverses from 0 to 2π (see Figure 3b). The maximum wiggling error reaches
±38.01 mrad, leading to a distance measurement error of±75.62 mm under the modulation
frequency of 12 MHz.

2.2.2. Wiggling Random Error

The main noise sources of indirect ToF imaging systems are photon shot noise, dark
noise, and readout noise [30,31]. Among these noise sources, the shot noise is the dominant
noise source in indirect ToF imaging systems [32]. This noise is introduced in the intensity
measurement process, which can be regarded as counting photons by the charge and leads
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to a random error of phase measurement. In this paper, we focus on the random error
caused by the photon shot noise. According to [12,33], we can approximate the intensity
measurement as a random process with Gaussian distribution. Supposing the measured
intensities I0 to I3 have the same variance σ2, the variance of the measured phase can be
estimated as [12]:

σ2
ϕ =

σ2

2A2 , (13)

where A is the measured amplitude calculated by Equation (6).
Normally, the variance σ2 in ToF imaging systems can be considered to be an invariant

constant, which is a safe assumption for ideal scenes since intensities are generated through
the same process with the same intensity of light by the charges in the ToF sensor. However,
the measured amplitude A is phase-dependent when harmonics are present, as shown in
Figure 4a. It can be deduced from Equation (13) that the variance σ2

ϕ is therefore related to
the true phase. As shown in Figure 4b, the magnitude of the variance also shows periodic
oscillations, and the maximum variance of the measured phase is approximately 19.61
mrad2. Therefore, the presence of harmonics and shot noise causes the wiggling random
error of the measured phase.
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3. Methods
3.1. Wiggling Error Cancelation Method

It can be seen from Figure 3b that the wiggling error of indirect ToF imaging systems is
a sinusoidal periodic function. Taking advantage of the periodicity, we propose a wiggling
error cancelation method (see Figure 5), which combines two phase measurements to
eliminate the wiggling error.
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As illustrated in Figure 5a, the phase shift of the reflected signal is measured without
other operations in the first measurement. Theoretically, the true phase, the wiggling error,
and the measured phase are as follows:

ϕreal
1st = ϕ, (14)

∆ϕ1st = −p sin 4ϕreal
1st = −p sin 4ϕ, (15)

ϕmeasure
1st = ϕreal

1st + ∆ϕ1st = ϕ− p sin 4ϕ, (16)

where ϕ is the phase shift corresponding to the physical distance d. In the second measure-
ment, the emitted signal is delayed for T/8, which is equivalent to a phase delay of π/4.
Therefore, the phase shift of the reflected signal will also increase by π/4. The true phase,
the wiggling error, and the measured phase in the second measurement are as follows:

ϕreal
2nd = ϕ + π/4, (17)

∆ϕ2nd = −p sin 4ϕreal
2nd = −p sin 4(ϕ + π/4) = p sin 4ϕ, (18)

ϕmeasure
2nd = ϕreal

2nd + ∆ϕ2nd = ϕ + π/4 + p sin 4ϕ. (19)

It can be inferred from Figure 5b, Equation (15), and Equation (18) that the wiggling
errors of the two measurements are exactly opposite. Therefore, we add the measured
phases of the two measurements to cancel the wiggling error and get the phase shift ϕ:

ϕmeasure
1st + ϕmeasure

2nd − π/4 = 2ϕ. (20)

The operation process of the wiggling error cancelation method is as follows:

1. In the first measurement, calculate the measured phase ϕmeasure
1st without other opera-

tions;
2. In the second measurement, delay the emitted signal for T/8 and calculate the mea-

sured phase ϕmeasure
2nd ;

3. Combine ϕmeasure
1st and ϕmeasure

2nd to calculate the measured phased after the wiggling
error cancelation:

ϕmeasure =
ϕmeasure

1st + ϕmeasure
2nd − π/4
2

. (21)

3.2. Wiggling Random Error Reduction Method

The magnitude of the measured phase’s variance (or noise level) may be different at
different true distances, so traditional filtering algorithms are difficult to achieve a good
effect in denoising. For this reason, this section depicts a wiggling random error reduction
method based on an adaptive Kalman filter for indirect ToF imaging systems.

First, we establish the discrete linear system model of ToF imaging systems [34]. The
Kalman filter assumes that the real state of the system at time k is evolved from the state at
time k− 1. The state-space equation and the observation equation are written as:

xk = Fxk−1 + wk, (22)

zk = Hxk + vk, (23)

where xk is the system state vector, F is the state transition matrix, and wk is the process noise
with a Gaussian distribution, whose covariance matrix is Q. zk is the measurement vector,
H is the measurement matrix, vk is the measurement noise with a Gaussian distribution,
whose covariance matrix is R.

For ToF imaging systems, the measurement vector zk is formed by the intensity
measurements I0 to I3 at time k:

zk =
[
I0k I1k I2k I3k

]T . (24)
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According to Equation (4), the intensity measurements at time k can be written as:

Ink = Ak cos
(

ϕk − nπ
2
)
+ Bk = Ak

(
cos ϕk cos nπ

2 + sin ϕk sin nπ
2
)
+ Bk

=
[

cos nπ
2 sin nπ

2 1
][

Ak cos ϕk Ak sin ϕk Bk
]T , n = 0, 1, 2, 3.

(25)

Submitting Equation (25) into Equation (24), the measurement vector can be further
derived as:

zk =


I0k
I1k
I2k
I3k

 =


cos 0 sin 0 1

cos π/2 sin π/2 1
cos π sin π 1

cos 3π/2 sin 3π/2 1


Ak cos ϕk

Ak sin ϕk
Bk

 = Hxk. (26)

From the above description, we can obtain the system state vector xk and the measure-
ment matrix H:

xk =
[
Ak cos ϕk Ak sin ϕk Bk

]T , (27)

H =


1 0 1
0 1 1
−1 0 1

0 −1 1

. (28)

In a static scene, we have xk = xk−1 + wk. Thus, the state transition matrix F can be
expressed as:

F =

 1 0 0
0 1 0
0 0 1

. (29)

Therefore, indirect ToF imaging systems are linearized. From the system state vector
shown in Equation (27), the measured phase at time k can be estimated as:

ϕk = arctan
(

xk[2]
xk[1]

)
. (30)

It can be noticed from Section 2.2 that the variance of the intensity measurement
is constant, so the covariance matrix of the measurement noise R can be regarded as a
constant. However, due to the wiggling random error, the measured phase’s variance
may differ at different true phases. It can be deduced that the level of process noise wk in
Equation (22) varies with the phase. Therefore, the covariance matrix Q is not a constant
and varies with the true phase. The standard Kalman filter (SKF) consists of prediction
and update [35], where R and Q are regarded as constants. Therefore, the SKF is hard to
estimate the state of ToF imaging systems accurately. To address this issue, we introduce an
evaluation stage based on the maximum likelihood criterion in the adaptive Kalman filter
to adapt Q [36]. The AKF can adjust the filter gain factor according to the covariance matrix
Q, effectively reducing the temporal Gaussian noise and hence the wiggling random error.
The specific steps of the AKF are given as follows:

1. Initialization: Initialize the state estimate x̂0, the error covariance matrix P0, the
covariance matrix Q, and the covariance matrix R;

2. Time Prediction: Calculate the predicted state estimate x̂−k and the predicted error
covariance matrix P−k :

x̂−k = Fx̂k−1, (31)

P−k = FPk−1FT + Q; (32)
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3. Measurement Update: Calculate the Kalman gain Kk, the updated error covariance
matrix Pk, the innovation sequence rk, and the updated state estimate x̂k:

Kk =
P−k HT

HP−k HT + R
, (33)

Pk = (I − Kk H)P−k , (34)

rk = zk − Hx̂−k , (35)

x̂k = x̂−k + Kkrk, (36)

where I is a 3 × 3 identity matrix;
4. Covariance Estimation: Calculate the estimated covariance of the innovation se-

quence Ĉrk, and update the covariance matrix Q:

Ĉrk =
1
L

k

∑
j=k−L+1

rjrT
j , (37)

Q = KkĈrkKT
k , (38)

where L represents the length of the sliding window in the AKF.

The wiggling random error reduction method is illustrated in Figure 6. The method
inputs the measurement vector zk (intensity measurements of a ToF imaging system) into
the AKF, and outputs the system state vector xk. Combining Equation (30), we can calculate
the measured phase after the wiggling random error reduction.
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3.3. Wiggling-Related Error Correction Method

Combining the contents of Sections 3.1 and 3.2, we propose a wiggling-related error
correction method, shown in Figure 7. The ToF imaging system performs two measure-
ments successively and obtain the measurement vectors z1st and z2nd. Then, the corrected
phase is obtained by the following three steps:
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1. State Evaluation: Input z1st and z2nd into the AKF and obtain the system state vectors
x1st and x2nd;

2. Phase Calculation: Calculate the measured phases ϕmeasure
1st and ϕmeasure

2nd for the two
measurements. In this step, the wiggling random errors of two measurements are
reduced;

3. Phase Correction: Calculate the corrected phase ϕmeasure. In this step, the wiggling
error is reduced.

4. Results and Discussions

In this section, we first verify the performance of the wiggling-related error correction
method by MATLAB simulation, where the intensity measurements are constructed accord-
ing to the model in Section 2.2. Then, using the experimental platform built in Section 4.2,
the derived mathematical model and effectiveness of the proposed method applied on real
measurements are verified.

4.1. Simulation

In the simulation, two measurements were implemented at different true phases from
0 to 2π with steps of π/180. At each true phase, 2000 frames of data for the first and second
measurements were simulated separately. The measured intensities of two measurements
at the ith true phase in the jth frame were constructed with Equations (39) and (40), where
ϕi is the true phase, and N(j) represents the Gaussian noise with a mean value of zero and
a variance of σ2. Table 1 lists the parameters used in the simulation.

I1st
n,i (j) = A1 cos

(
ϕi −

nπ

2

)
+ A3 cos

[
3
(

ϕi −
nπ

2

)]
+ A5 cos

[
5
(

ϕi −
nπ

2

)]
+ B + N(j), n = 0, 1, 2, 3. (39)

I2nd
n,i (j) = A1 cos

[(
ϕi +

π

4

)
− nπ

2

]
+ A3 cos

[
3
[(

ϕi +
π

4

)
− nπ

2

]]
+ A5 cos

[
5
[(

ϕi +
π

4

)
− nπ

2

]]
+ B + N(j), n = 0, 1, 2, 3. (40)

For the measured phases, we applied the standard deviation (STD) to evaluate the
wiggling random error. The Root-mean-square error (RMSE) was chosen to evaluate the
wiggling-related error in general. Both the systematic error (wiggling error) and the random
error affect the magnitude of the RMSE. The STD and the RMSE of the measured phase at
the ith true phase are expressed as:

STDi =

√√√√ 1
N

N

∑
j=1

[
ϕM

i (j)− ϕM
i

]2
, (41)
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RMSEi =

√√√√ 1
N

N

∑
j=1

[
ϕM

i (j)− ϕi
]2, (42)

where N represents the number of measured frames at each phase, ϕM
i (j) is the measured

phase at the ith true phase in the jth frame, ϕM
i is the average of the measured phases at

the ith true phase.

Table 1. The parameters used in the simulation.

Parameters Symbol Value

The amplitude of the fundamental harmonic A1 500 LSB
The amplitude of the third-order harmonic A3 20 LSB
The amplitude of the fifth-order harmonic A5 1 LSB

The offset of the correlation function B 500 LSB
The variance of the intensity measurement σ2 9 LSB2

The initial state estimate x̂0
[
0 0 0

]T

The initial error covariance matrix P0 I3×3
The initial covariance matrix of the process noise Q 0.5I3×3

The initial covariance matrix of the measurement noise R 10I4×4
The length of the sliding window L 20

We first evaluated the denoising performance of the AKF. Figure 8a–c show the
measured phase sequence at six of the true phases. In each figure, the true phase sequence
was kept constant. We inputted the measurement vector sequences of the first measurement
at different true phases into SKF or AKF and obtained the measured phase sequences. The
raw measured phase sequences were obtained by Equation (5). It was obvious that AKF
had better performance than SKF and effectively reduced the STD of the measured phase
on the selected true phases, thereby reducing the wiggling random error. In addition, it
can be found that there is a deviation between the measured phase and the true phase (see
Figure 8a,c,d,f), which was caused by the wiggling error.

Furthermore, we evaluated the performance of the wiggling-related error correction
method (see Figure 9). The measured phase before correction was calculated by Equation (5),
using the first measurement. Using the two measurements shown in Equations (39) and (40),
we obtained the corrected phase according to the method in Section 3.3. The phase error at
each frame is plotted as the points in Figure 9a. The blue and red lines connect the average
errors at different true phases before and after correction, representing the wiggling errors.
Figure 9b,c show the STD and the RMSE of the measured phase, respectively, where the
phase before correction, for fairness, uses double the first measurement data (4000 frames).

The result, as shown in Figure 9a, shows a four-cycle wiggling error before correction.
The peak-to-peak value (PPV) of the wiggling error was approximately 76.14 mrad. In
contrast, the wiggling error significantly reduced after correction, and the PPV of the
wiggling error reduced to about 1.83 mrad. The remaining wiggling error was caused
by the part of sin 8ϕ in Equation (11). Moreover, there was a significant random error
before correction. As we can see, the blue dots were distributed around the blue line. It
can be noticed from the distribution of the red dots and Figure 9b that the random error
greatly reduced. The arithmetic mean of STDs µSTD over all phases decreased from 4.24 to
0.28 mrad. In general, the proposed method performed well in the wiggling-related error
correction. As illustrated in Figure 9c, the arithmetic mean of RMSEs µRMSE over all phases
reduced significantly from 24.81 to 0.60 mrad, which means that the wiggling-related error
was only 2.4% of that before correction.
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4.2. Experiment

The experimental system is shown in Figure 10. We used a high-reflectivity plate as
the measured object to avoid the amplitude-dependent error caused by non-linearities of
the ToF sensor [17,37,38]. The ToF imaging system was attached to the slide rail. In the ToF
imaging system, the delay generator of the ToF sensor could delay the emitted light signal
by T/8 without changing the hardware, thereby realizing the wiggling error cancelation.
The phase calculation and the phase correction were performed in the processing module
of the ToF imaging system, where the parameters of AKF were the same as those set in
the simulation.
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To obtain the phase error for different true phases, we typically moved the plate to
different distances. However, the wiggling-related error cannot be accurately presented by
using this approach. On the one hand, the measured intensity is saturated at close distances,
leading to a phase calculation bias. On the other hand, the amplitude of the reflected signal
significantly decreases at long distances, which causes an amplitude-dependent error. A
more sensible way is to add an electronic delay to the emitted signal. In this way, different
distances are emulated by changing the delay. This approach minimizes the effect of the
other errors on the experiment, such as the amplitude-dependent error, the multipath effect
of the scene, and the non-uniformity error [39].

In the experiment, the modulation frequency of the ToF imaging system was set to
12 MHz. Therefore, the unambiguous distance was 12.5 m according to Equation (7). The
physical distance between the plate and the ToF imaging system remained unchanged.
Then, the electronic delay increased in steps of 2 ns, equivalent to an increase of 0.048π in
the true phase, until the true phase spans 0 to 2π (0–12.5 m of the true distance). At each
true phase, 200 frames of the data were captured. The experiment was carried out under
the integration times of 600 µs, 400 µs, and 200 µs. The results are shown in Figures 11–13.
Table 2 gives the statistical parameters, including the PPV of wiggling error in Figure 11,
the average of STDs µSTD in Figure 12 and the average of RMSEs µRMSE in Figure 13.
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Table 2. Statistical result of Figures 11–13.

Parameter
600 µs 400 µs 200 µs

Before After Before After Before After

PPV (mrad) 89.15 11.85 88.70 12.44 89.90 12.75
µSTD (mrad) 4.35 0.51 4.98 0.58 6.72 0.71

µRMSE (mrad) 28.03 2.20 28.85 2.44 28.95 3.04

Figure 11 shows the phase error in the experiment. As expected, we can notice four
oscillations with the true phase spanning 0 to 2π before correction. The PPVs of the
wiggling errors at integration times of 600 µs,400 µs, and 200 µs were approximately 89.15,
88.70, and 89.90 mrad. This error was reduced to the PPVs of 11.85, 12.24, and 12.75 mrad
after correction, which was a significant improvement.

As shown in Figure 12, the STD, which represents the magnitude of the wiggling ran-
dom error, also demonstrated the predicted wiggling phenomenon. It can be noticed from
Table 2 that the random error increased as the integration time decreased. At integration
times of 600 µs, 400 µs, and 200 µs, values of µSTD are 4.35, 4.98, and 6.72 mrad, respectively.
The proposed method had good adaptive performance and performed well in the wiggling
random error reduction at various integration times. The values of µSTD were about 0.51,
0.58, and 0.71 mrad after correction.

Figure 13 shows the RMSE of the measured phase for different true phases. We
compared the µRMSE in Table 2, which represents the magnitude of the wiggling-related,
and found that values of µRMSE were reduced by about 92.2% (integration time of 600 µs),
91.5% (integration time of 400 µs), and 89.5% (integration time of 200 µs). Therefore, the
proposed method can effectively improve the range accuracy of the indirect ToF imaging
system and has certain robustness in different integration times.

It can be noticed from the experimental results that the wiggling-related error followed
the shape of the simulation. However, the values of each parameter obtained in the
experiment were larger than those in the simulation. This phenomenon was because
the harmonic component of the emitted signal in the experiment was more complicated
than the one in the simulation, and temperature also affected the results. Despite all this,
experimental results can still verify the derived mathematical model. In addition, the
performance of the proposed method degrades a little as the integration time decreases,
which is caused by the PMD sensor’s nonlinearity.

To better illustrate the effectiveness of the proposed method, we compared the method
with several existing methods in [15,18,20]. The PPV of the phase error, calculated as the
difference between the maximum and minimum phase errors, was chosen to evaluate the
wiggling-related error before and after correction. The result is shown in Table 3. Compared
with the existing methods, the proposed method has the optimal performance in correcting
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the wiggling-related error. In addition, the existing methods require some hardware
changes, while our method is easier to implement in most indirect ToF imaging systems.

Table 3. Comparison of the proposed method with the existing methods. The phase error in [15] is
obtained directly from the results of the paper, while the phase errors in [18,20] are calculated from
the distance error and the modulation frequency in the corresponding documents. The data of the
proposed method is calculated from the phase error under the integration time of 600 µs.

Method
Harmonics

Cancellation

PPV of the Phase Error (mrad) Reduction
Ratio Implementation

Before After

Streeter et al. [15] 3rd 70.00 20.00 71.4% Change intensity
measurement process

Hussmann et al. [18] 2nd–5th 83.78 11.73 86.0% Add an illumination
module

Payne et al. [20] 3rd and 5th 99.53 19.35 80.6% Add an additional
FPGA

The proposed method 3rd and 5th 114.50 14.64 87.2% Add a delay
measurement

5. Conclusions

In this paper, we derive a mathematical model of the wiggling-related error and
propose a wiggling-related error correction method for indirect ToF imaging systems. This
method adds a delay measurement and utilizes raw intensity measurements to evaluate the
system state based on the AKF, which is easy to implement in most indirect ToF imaging
systems. Simulation and experimental results showed that the wiggling-related error is
significant, and the proposed method has a good performance in reducing the wiggling-
related error. The PPV of the wiggling error significantly reduced after correction (from
89.15 to 11.85 mrad at the integration time of 600 µs). Meanwhile, µSTD decreased by
at least 88.3% (from 4.35 to 0.51 mrad at the integration time of 600 µs). Moreover, the
proposed method had good robustness under different integration times. The values of
µRMSE reduced by about 92.2% (integration time of 600 µs), 91.5% (integration time of
400 µs), and 89.5% (integration time of 200 µs).

We believe that this study provides effective guidance for researchers understanding
the wiggling-related error and a potential direction for the accuracy improvement of indirect
ToF imaging systems. Our future works will further optimize the proposed method to
develop ToF imaging systems with higher performance.
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