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Abstract: In this paper, a learning-based fiber specklegram sensor for bending recognition is proposed
and demonstrated. Specifically, since the curvature-induced variations of mode interference in
optical fibers can be characterized by speckle patterns, Resnet18, a classification model based on
convolutional neural network architecture with excellent performance, is used to identify the bending
state and disturbed position simultaneously according to the speckle patterns collected from the
distal end of the multimode fiber. The feasibility of the proposed scheme is verified by rigorous
experiments, and the test results indicate that the proposed sensing system is effective and robust.
The accuracy of the trained model is 99.13%, and the prediction speed can reach 4.75 ms per frame.
The scheme proposed in this work has the advantages of low cost, easy implementation, and a
simple measurement system and is expected to find applications in distributed sensing and bending
identification in complex environments.

Keywords: fiber specklegram sensor; deep learning; convolutional neural networks; bending
measurement

1. Introduction

Curvature sensing is critical in many applications such as architecture, mechanical engi-
neering, and the aerospace industry. Optical fiber curvature sensors have attracted extensive
attention due to their advantages of small size, high sensitivity, and anti-electromagnetic
interference. According to the sensing principle, the reported fiber curvature sensors can
be roughly divided into three categories: fiber interferometer [1–8], long-period fiber grat-
ing (LPFG) [9–15], and fiber Bragg grating (FBG) [16–19]. The above schemes all show
excellent performance, but most of them rely on the expensive experimental setup and
complex sensing structures, which introduces uncertainty and reduces practicality [20].
For example, it is generally necessary to improve the sensitivity of fiber interferometers by
twisting [3], etching [4], splicing [1,7], and tapering [5,8], which sacrifices repeatability and
increases experimental effort. In this context, fiber specklegram sensors based on relatively
simple measurement systems and sensing structures are particularly attractive. Multimode
fiber (MMF) specklegram is a kind of pattern with random intensity distribution, which is
generated by the interference between eigenmodes. Because the statistical characteristics of
speckle patterns are susceptible to external disturbances, fiber specklegram sensors have
excellent sensing performance and are widely used in various fields [20–27].

As a research hotspot in recent years, deep learning, a data-driven method that mines
and learns the inherent characteristics of given data through multi-layer data processing
units, has achieved remarkable results in the engineering field [28,29]. In view of the
extraordinary success achieved in engineering, deep learning has attracted more and more
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attention from researchers in other disciplines. In the past few years, deep learning has
become a new method to demodulate fiber specklegram [30–34]. In 2020, L. Yan et al.
proposed a neural network based on VGG (Visual Geometry Group Network) architecture
to demodulate the fiber specklegram bending sensor, which could analyze 21 bending
states of the MMF with a prediction accuracy of 96.6% [33]. In 2022, G. Li et al. proposed a
fiber specklegram bending sensor based on a regression neural network with a prediction
accuracy of 0.3 m−1 [32]. Data-driven deep learning treats the fiber specklegram sensor as a
black box, allowing the model to learn the mapping relationship between perturbations and
speckle patterns collected at the distal end of the fiber sensor from a large amount of data.
Moreover, the measurement range of the learning-based fiber specklegram sensor only
depends on its calibration range, demonstrating the potential to overcome the shortcomings
of traditional schemes. However, the reported learning-based scheme can only predict a
single parameter and does not fully exploit the potential of deep learning.

In this paper, we proposed and demonstrated a learning-based fiber specklegram
bending sensor that can simultaneously identify the bending state and the disturbed
position. A simple measurement system consisting of a piece of MMF, a laser source, and a
commercial camera is used to sense bending and record the speckle patterns corresponding
to different curvatures. Resnet18, a classification model based on a convolutional neural
network, is used to bridge speckle patterns with the parameters to be measured. The
trained model can output the corresponding bending state and bending position according
to the speckle pattern. Overall, 105 groups of samples collected from different bending
states and bending positions were employed to train the model, and the test results showed
that the recognition accuracy of the trained model could reach 99.13%, and the prediction
speed was 4.75 milliseconds per frame. The learning-based measurement scheme proposed
in this work has the advantages of high stability, good robustness, easy implementation,
and low cost, which is expected to promote the application of fiber specklegram sensors in
actual scenes.

2. Materials and Methods
2.1. Principle of Operation

The illumination light launched into the MMF will be distorted due to the interference
between propagation modes with different propagation constants, resulting in a pattern
with bright and dark spots at the distal end of the fiber. This pattern is the fiber specklegram,
which can be expressed as the coherent superposition of the eigenmodes excited in the
MMF as given as follows:

A(x, y) =
M

∑
m=0

am(x, y) exp(j[φm(x, y)]) (1)

where M is the number of eigenmodes excited in MMF, am(x, y) is the amplitude distri-
bution of the m-th mode, and φm(x, y) is the phase distribution of the m-th mode. In the
experiment, the camera can only detect the intensity distribution of the speckle field, which
can be expressed as follows:

I(x, y) = |A(x, y)|2 =
M

∑
n=0

M

∑
m=0

aman exp(j[φm − φn]) (2)

It can be found that the intensity distribution of the speckle field depends on the
interference between eigenmodes and will change with the variation of mode transmission.
When the fiber is bent, the variation of φm would be different, resulting in a change in the
spatial characteristics of the speckle pattern. Therefore, the specklegram can be interpreted
as a representation of bending behavior of MMF.

The fiber specklegram sensor based on the classification neural network proposed
in this work can simultaneously identify the bending state and the disturbed position



Photonics 2023, 10, 169 3 of 11

according to the speckle pattern. The operation steps of the proposed scheme are as follows:
First of all, some areas on the optical fiber are selected as monitored positions. Then, one of
the positions is selected as the research object, and different disturbances are applied to
the optical fiber at that position. The speckle patterns corresponding to different bending
states are recorded by the camera. At this time, the optical fibers within other positions
remain stationary. All positions are recorded according to the above method, and the
collected speckle patterns are divided into different categories according to the disturbed
position and curvature. Next, the processed speckle patterns are used to generate the
data set and classification table. Since the demodulation model employed in this work
is a classification neural network, it is necessary to encode the disturbed position and
curvature into different categories and use a classification table to store the encoding and
decoding details. The classification table contains two elements, i.e., the category N and
the corresponding coordinates (CP, CC). The values of category N range from 1 to 101,
representing 101 pre-designed categories. The CP in the coordinates (CP, CC) represents
the perturbed position, and CC denotes the curvature. Then, the neural network is trained
using the generated dataset. Finally, the speckle patterns collected in the unknown state are
fed into the network, and the trained model can directly output the classification results
according to the given samples. By querying the classification table, the bending state and
disturbed position of unknown samples can be identified simultaneously according to the
output results of the model. In this work, five monitored positions were selected, and
21 bending states were applied to each position. It should be noted that the measurement
range of the proposed scheme only depends on the calibration range. The model can be
further expanded by increasing the number of monitored positions and bending states.

2.2. Convolutional Neural Network

As a subset of deep learning, convolutional neural networks (CNNs) have attracted a
great deal of attention due to their excellent performance and have achieved remarkable
results in the field of computer science and engineering [35]. CNN extracts the intrinsic
features of the sample by performing multiple and multi-layer convolution operations on
the given data, which can effectively capture useful spatial information and local correla-
tion in the image. In optical and photonics research, CNN is also a guaranteed candidate
to analyze high-dimensional data, such as the spectral response of photonic devices and
speckle patterns of scattering media. The architecture of CNN-based classification neural
network is shown in Figure 1, which is mainly composed of feature extraction and clas-
sification. In feature extraction, the block structure composed of the convolution layer,
pooling layer, and activation function is often used to extract abstract information of given
data. The full-connection layer is utilized to classify objects according to the extracted
high-dimensional information.
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In this work, the classification model used is Resnet [36,37], which won the ILSVRC
(ImageNet Large Scale Visual Recognition Challenge) in 2015. Compared to the con-
ventional CNN, the Resnet model is significantly more effective in solving the gradient
explosion, gradient disappearance, and degradation problems. Since there are obvious
differences between the speckle patterns corresponding to different curvatures, a relatively
simple Resnet18 architecture is used in this work to demodulate the specklegram.

2.3. Experimental Setup

The experimental setup is shown in Figure 2. The illumination light emitted from
the solid-state laser (MGL-III, 532 nm, 50 mW) is launched into the MMF (step index,
62.5/125 µm core/cladding diameters, 1.5 m length). The objective (OBJ2, Nikon, CFI40X,
40×, NA = 0.75) is placed at the output plane of the MMF to image the speckle pattern on a
charge-coupled device (CCD) camera (FLIR, GS3-U3-91S6M-C, 3376 × 2704 pixels).
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Figure 2. Experimental setup of the proposed fiber specklegram bending sensing system. CCD,
charge-coupled device camera; OBJ, objective; MMF, multimode fiber; P, bending position.

To monitor curvature and disturbed position simultaneously, it is necessary to collect
data under different conditions. Five positions are selected from the MMF and labeled P1,
P2, P3, P4, and P5, respectively. The length L of each monitored position is 80 mm, and the
distance L2 between adjacent positions is 100 mm. The bending response of each position is
measured using the setup described in the upper panel of Figure 2. The optical fiber within
the position to be measured is mounted on the gripper to keep all movement restrictions
except along fiber axis-direction freedom. A displacement d is applied in the middle of
the fiber within the position, which is controlled by a precise micrometer driver. In this
case, the curvature radius R of the multimode fiber (MMF), as shown in Figure 3, can be
approximately expressed as given:

R2 = (R− d)2 + (
L
2
)

2
(3)
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Therefore, the curvature C of the bent fiber can be expressed as follows [14]:

C =
1
R

=
2d

d2 +
L2

4

(4)

2.4. Data Preparation

The preparation of the dataset can be divided into two steps. The first step is to
collect speckle patterns corresponding to different bending states and different perturbed
positions. Specifically, the first marked position P1 is selected as the research object. Then,
the bending state of the fiber within position P1 is changed, and the speckle patterns
corresponding to different curvatures are recorded. In this process, other marked positions
need to remain static. In this work, the applied displacement d is from 0 mm to 2 mm, and
the corresponding curvature is from 0 m−1 to 2.5 m−1. The displacement step is 0.1 mm,
and 21 groups of data are collected, including 20 different bending states and original
states. Next, 20 images are collected for each group, and the collection process is repeated
10 times to ensure that the model could thoroughly learn the change rule. For all monitored
positions, the speckle pattern corresponding to the original state is the same. Therefore,
the original state only needs to be collected once at position P1. All marked positions were
tested according to the above method, and 20,200 speckle patterns were obtained. The
second step is to make the training set and test set according to the collected data. The
captured 20,200 specklegrams are randomly divided into 12,120 training, 4040 validation,
and 4040 testing sets.

3. Results and Discussion

The Resnet18 was implemented on a computer equipped with an NVIDIA RTX2060
graphics processing unit and i7-10857H CPU. During training, the solver is designated as
Adam, the maximum number of epochs is 30, and the batch size is set as 30. The initial
learning rate is set to 0.01 and adjusted every 10 epochs. The transfer learning strategy
is utilized when training the Resnet18 model. Specifically, the weights of the feature
extraction layer of the Resnet18 network, which was pre-trained on the ImageNet dataset,
are extracted and loaded onto the model built in this work. Then, the dataset consisting
of speckle patterns, as described in Section 2.4, is used to train the built model. Transfer
learning can alleviate the uncertainty caused by initial value sensitivity, which is conducive
to improving learning ability and convergence speed.

Before learning, the images in the data set need to be preprocessed. The format of
the speckle pattern captured by the camera is 3376 × 2704 pixels. In general, since high-
dimensional input samples will seriously reduce the convergence speed of the model,
high-resolution images will not be directly fed into the neural network. In this work, the
collected speckle pattern is cut into a window centered on the speckle and downsampled
to 224 × 224 pixels. To more intuitively demonstrate the variation of the speckle pattern
induced by curvature, the specklegrams corresponding to different curvatures are collected
from position P1 and displayed in Figure 4. The upper panel of Figure 4 shows the speckle
patterns when the curvature is 0 m−1, 0.62 m−1, 1.25 m−1, and 1.87 m−1, respectively, while
the bottom panel shows the difference between adjacent patterns. It can be found that there
are apparent differences between speckle patterns corresponding to different curvatures at
the same position, which is consistent with the previous analysis.

To study the feasibility of multi-parameter measurement scheme based on speckle
pattern, the same curvature was applied to the five calibrated positions, respectively, and
the corresponding speckle patterns were collected, as shown in Figure 5. The upper panel
of Figure 5 shows the speckle patterns collected from positions P1, P2, P3, P4, and P5,
respectively, while the bottom panel is the difference between adjacent patterns. When the
same disturbance is applied to different positions of the optical fiber, the speckle patterns
generated at the distal end of the MMF are also different. Therefore, it can be concluded
that when the fiber is disturbed with different intensity or from different positions, the
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speckle patterns observed at the output plane of MMF are different, which indicates that
the multi parameter measurement based on speckle patterns is feasible.
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Next, the preprocessed dataset is employed to train the Resnet18 model. The learning
curves of the Resnet18 model are shown in Figure 6, where Figure 6a depicts the relationship
between classification accuracy and epoch during the training process. The loss during
learning is plotted as a function of the epoch, as shown in Figure 6b. The training time of the
Resnet18 model is 177 min. It can be found that after 10 epochs, the Resnet18 model tends to
converge and reaches a stable state with high accuracy, indicating that the model has learned
the mapping relationship between speckle pattern and curvature quickly and thoroughly. In
addition, this model shows similar classification accuracy in both the training set and test set,
which demonstrates that the trained model has satisfactory generalization ability.

The generalization ability of the trained model is quantified using the testing set. The
classification speed can reach 4.75 milliseconds per frame. By convention, the confusion
matrix of the trained model on the testing set is calculated, as shown in Figure 7. Confusion
matrix, a visual tool, is generally used to describe the deviation between the predicted
value and the true value. It can be found from Figure 7 that most of the elements in the
confusion matrix are gathered on the diagonal, indicating that there is good consistency
between the true value and the predicted value obtained by using the trained model.

To quantitatively describe the generalization ability of the proposed scheme, the
absolute position classification error and the absolute curvature classification error of the
trained model on the test set were calculated separately, as shown in Figure 8. Figure 8a
depicts the histogram of the absolute position-classification error. It can be found that
the recognition accuracy of the model for the disturbed positions is 100%. Figure 8b
shows the histogram of the absolute curvature classification error. The trained model has a
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demodulation accuracy of 99.13% for curvature, and most of the errors are concentrated
around the target value.
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Figure 6. Learning curve of model based on Resnet18 architecture. (a) The training accuracy is plotted
as a function of epochs. (b) The relationship between loss and epochs.
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Figure 8. The generalization ability of the trained model is described quantitatively. (a) The histogram of
the absolute position classification error. (b) The histogram of the absolute curvature classification error.

Both vibration and temperature fluctuations introduce uncertainty into the measure-
ment process. To estimate the measurement uncertainty, a long-term quantification of
the stability of the measurement system was performed. In the stability test, the bending
state of the fiber was kept constant for about 10 h at room temperature. A speckle pattern
was collected from the distal end of the fiber every minute, and the Pearson correlation
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coefficient (PCC) was used to describe the correlation between these speckle patterns. The
test results are shown in Figure 9. It can be found that although the correlation between the
speckle patterns decreases with time, the correlation consistently remains above 97% for at
least 10 h, demonstrating the robustness of the proposed sensing system.
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Figure 9. Stability test results of the sensing system.

In addition, the proposed scheme is also applicable to demodulate simultaneous
perturbations applied to multiple positions. The fibers within positions P1, P2, and P3 are
considered as study targets, and the states of the fibers within positions P4 and P5 are kept
constant. Three displacements (i.e., 0 mm, 1 mm, and 2 mm) are applied to the fiber within
each selected position, resulting in a total of 27 configurations. Then, 200 speckle patterns
are collected for each configuration according to the method described in Section 2.4, and
the collected samples are divided into a training set and a test set according to a 4:1 ratio.
The accuracy of the trained model is verified using the test set, and the confusion matrix is
shown in Figure 10. The coordinates (Y1, Y2, Y3) used in Figure 10 are employed to describe
the deformation state, where the x of the Yx represents the x-th monitored position, and the
value of each Yx is defined as the applied displacement; i.e., 0 is 0 mm, 1 is 1 mm, and 2 is
2 mm. It can be found that the elements in the confusion matrix are clustered around the
diagonal, and the classification accuracy of the model is 99.63%. The model proposed in this
work is not only effective for single-point excitation but also applicable to the demodulation
of simultaneous bending, demonstrating the superiority and generalization ability of the
proposed scheme.
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Compared with the reported fiber specklegram bending sensor based on the convolu-
tional neural network [32,33], the advantages of the proposed scheme are mainly reflected
in two aspects. On the one hand, the scheme proposed in this paper has higher recognition
accuracy. The accuracy of the reported bending identification scheme based on CNN
architecture is 96.6%, while the accuracy of Resnet18 can reach 99.13%. On the other hand,
the scheme described in this work can identify the bending state and the disturbed position
simultaneously, which provides an enlightening reference for using neural networks to
solve the distributed sensing problem. Compared with the reported KNN method [38],
the proposed scheme in this work improves the demodulation speed and classification
accuracy by approximately 10 times and 8%, respectively, demonstrating the superiority of
the proposed scheme.

4. Conclusions

In conclusion, we demonstrated a learning-based fiber specklegram bending sensor,
and rigorous experiments were carried out to verify its feasibility and effectiveness. Specifi-
cally, a CNN-based classification neural network was used to simultaneously identify the
bending state and the disturbed position according to the speckle pattern recorded from the
distal end of MMF. The experimental results indicate that the proposed bending recognition
scheme is effective and robust, and the accuracy and prediction speeds of the trained model
are 99.13% and 4.75 ms per frame, respectively. Furthermore, the proposed scheme is also
applicable to demodulate simultaneous perturbations applied to multiple positions, and
the classification accuracy of the model is 99.63%. The proposed scheme in this work only
requires a relatively simple measurement system (based on a laser source and commercial
camera) and a section of MMF, providing a promising candidate for distributed optical
fiber sensing and bending recognition in complex environments.
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