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Abstract: The design of passive photonic devices based on geometry optimization can lead to energy-
efficient, small-footprint, and fabrication-ready geometries. In this work, we propose an angle-based
parametrization method to optimize Y-junction splitters based on multimode interferometers. The
selected figure of merit was the transmittance in the SCL and OESCL optical fiber communication
bands. The performances of three optimization methods were compared: (i) particle swarm optimiza-
tion (PSO), (ii) genetic algorithm (GA), and (iii) the covariance matrix adaptation-evolution strategy
(CMA-ES). The results show that CMA-ES parametrization produces similar transmittance results
(≤1.5% of difference) to PSO in the first 40 generations. The CMA-ES results are identical in the SCL
(1460–1625 nm) and OESCL (1260–1625 nm) bands, whereas the GA and PSO executions are slightly
different in terms of the rate and similarity of the figure of merit.

Keywords: optimization methods; genetic algorithms; optical beam splitting; integrated optics;
silicon on insulator

1. Introduction

Photonic integrated circuits (PICs) enable the interconnection of different types of
photonic devices into a single platform. Designing energy-efficient on-chip optical intercon-
nects remains a challenge when scaling the number of devices per chip [1]. Many optical
passive devices work traditionally in the SCL optical communications band, while the
OESCL band has gained attention due to ultra-wideband applications [2].

Among the passive components on a chip, the 3 dB power splitters are present in
the order of dozens [3–5]. A 3 dB power splitter distributes the signal across multiple
optical interconnects and is the essential building block for switches [6,7], modulators [8,9],
and multiplexers [10,11]. Y-junctions based on multi-mode interferometers have become
one of the essential building blocks in photonic integrated circuits [12]. Moreover, many
inverse design methodologies for power splitters are based on multi-mode interferometer
Y-junctions [10,12,13].

There are three main causes for excess loss in fabricated Y-junctions [12,14]: (i) a
low tolerance to fabrication errors, (ii) minimum fabricated resolution available, and (iii)
deviations in the sharp angles (see αi in Section 2.1). Special mask techniques can to
help overcome these problems, e.g., the electron beam technique [13,14]. In this regard,
any device geometry, regardless of the type of optimization, has to be adjusted to the
fabrication tolerances of the machinery available to the designer. This is especially true for
non-intuitive geometries generated by optimization methods. Post-processes are usually
added [13,15], in which the fabrication constraints are fed to a second algorithm to smooth
and tweak the optimized geometry, making it fabrication-ready.
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Figure 1 shows the timeline of some popular optimization algorithms used in the
photonic design and relates them to their adoption (by the number of citations). We observe
that the most popular algorithms are particle swarm optimization (PSO) [16] and genetic
algorithms (GAs) [17]. These algorithms are usually used with default parameters due to
the computational complexity of performing a hyperparameter optimization, which can
limit their performance [18]. The covariance matrix adaptation evolution strategy (CMA-
ES) [19] is a global optimization algorithm that has not been widely adopted. However,
it does not need to optimize its parameters—only its population size. This characteristic
is important because increasing the population size usually leads to a more exhaustive
search. Furthermore, CMA-ES has been demonstrated to be efficient, robust, and easy for
antenna optimization [20]. This motivates us to compare the performance and convergence
of CMA-ES, GA, and PSO.

Figure 1. Timeline of the optimization methods. Adoption by the number of citations in pho-
tonics compared to the total citations (based on Google Scholar results). GA: genetic algorithms;
MMA: moving asymptotes; PSO: particle swarm optimization; L-BFGS-B: limited memory Broy-
den–Fletcher–Goldfarb–Shanno bound constrained; DE: differential evolution; CMA-ES: covariance
matrix adaptation evolution strategy

Figure 1 includes other optimization methods: (i) moving asymptotes (MMA) [21],
(ii) limited memory Broyden–Fletcher–Goldfarb–Shanno bound constrained (L-BFGS-
B) [22], and (iii) differential Evolution (DE) [23]. For a detailed review on optimization
methods, please refer to [18,24,25].

Table 1 shows examples of photonic splitters designed using different algorithms to
those presented in this work. Our CMA-ES-based optimized splitter presents a wider
bandwidth along with a shorter footprint, and we also expect lower losses.

Our work extends an angle-based parametrization [26]. It defines the device’s internal
angles and requires fewer parameters than conventional topological optimization because
its number of parameters depends on one dimension of the design space. In contrast,
conventional topology optimization relies on two design space dimensions. Then, the
optimization of the device is reduced to a medium-dimensional problem, allowing us to
use global optimization [18]. The usage of global optimization is a key difference compared
to other approaches, such as level-set and density topology, which usually rely only on
local optimization [9,24,27].

To the best of our knowledge, we propose the first strict comparison of (i) the wave-
band analysis, (ii) convergence rate, and (iii) similarity of the figure of merit between
three different executions of GA, PSO, and CMA-ES to provide PIC designers with ade-
quate tools for fabrication-ready ultra-broadband 3 dB MMI (multi-mode interferometer)
power splitters.
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Table 1. Comparison of photonic devices designed using iterative optimization algorithms.

Work Device Method Bandwidth Loss Size

Mak 2016 [28] 2 × 2 splitter PSO 1530–1570 nm S: 4.11 dB E: 6 dB 4.8 × 4.8 µm2

Lu 2018 [29] Beam splitter PSO 1500–1600 nm S: no losses 2 × 2 µm2

Chang 2018 [10] 3 dB Y-splitter Subwavelength
inverse design 1520–1580 nm E: 1.5 dB 2.88 × 2.88 µm2

Xu 2022 [30] 3 dB Y-splitter ADTO 1588–2033 nm S: 0.83 dB 5.4 × 2.88 µm2

Xu 2017 [31] 3 dB Y-splitter Nonlinear fast search 1530–1560 nm E: 0.96 dB 3.6 × 3.6 µm2

Piggott 2017 [13] 1 × 3 splitter Inverse design 1400–1700 nm E: 0.64 dB 3.8 × 2.5 µm2

Wang 2016 [32] 3 dB Y-splitter Taper design 1530–1600 nm E: <0.19 dB 5 µm length taper

Tahersima 2019 [33] 3 dB Y-splitter DNN inverse design 1450–1650 nm S: 0.45 dB 2.6 × 2.6 µm2

Our work 3 dB Y-splitter CMA-ES 1260–1625 nm S: 0.15 dB 2 × 1.2 µm2

Losses (S) means the simulation results whereas response (E) signifies the experimental results. PSO: particle
swarm optimization. ADTO: analog and digital topology optimization. DNN: deep neural network.

2. Angle-Based Parametrization

Our goal is to propose a parametrization that achieves functional devices with a high
tolerance to fabrication errors (i) using a lower quantity (∼15) of parameters compared to
the conventional methods, and (ii) by avoiding sharp angles.

2.1. Materials and Methods

We used a silicon-on-insulator (SOI) platform, which is extremely attractive because
of its compatibility with microelectronics, introducing now-popular scalable photonic
integrated circuits.

In the inverse design, we need to specify the permittivity distribution via parametriza-
tion. The most used methods are (i) the density topology and (ii) level-set. In both methods,
the design region is divided into pixels, and a permittivity is associated to each pixel [24].
For more methods, please refer to [34].

A drawback of these methods is that they usually require a high number of parameters
to have the flexibility of exploring desired fabricable devices. The higher the degrees of free-
dom, the better we can explore the designs. However, this process can require considerable
computing resources (i.e., CPU- or memory) [18], leading to significant execution times.

We propose the angle-based parametrization depicted in Figure 2. The pink region depicts
the silicon core and the white background color represents silicon oxide. We divided a
rectangular MMI splitter design region into z equally spaced vertical-aligned segments.
The segments have different widths. Therefore, the division gives us a set of angles
between consecutive segments, where αi|

p
1 are the angles and optimization parameters, and

p = z− 1.
The waveguide width Wg, MMI body length, LMMI , and gap δ can be adjusted to fit

multiple outputs or operation frequencies. For simplicity, we demonstrate a 1 × 2 splitter
working at 1550 nm.

A 1 × 2 MMI splitter parametrization can be summarized in three main steps:

(i) First, we divide the initial topology into Wi[i = 1 . . . z] longitudinal equally spaced
segments 1 based on [12,35,36], and we set symmetry on the transverse direction
of the propagation. We also set the values of δ = 0.2 µm and LMMI = 2 µm. This
allows us to reduce the number of angles αi to optimize because the angles on the
upper edge of the device match those at the bottom edge.

(ii) Second, we modify the dimensions of the current width Wi 2 based on the pre-
vious width and angle, as shown in Equation (1). In particular, we can set
W1 = Wg = 0.5 µm for the 1550 nm working window.

Wi = Wi−1 + 2d · tan(αi−1) for i > 1 (1)
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(iii) Third, we place a power monitor 3 at one waveguide output to measure the
transmittance of the fundamental TE (transverse electric) mode in order to establish
the figure of merit.

Figure 2. Layout of the top view of the splitter. The lengths of the widths W1,2,3,...,z were optimized
by the angles, αi, which are the parameters of the optimization. The figure of merit (FOM) is the
transmittance over a window of frequency taken at the monitor.

2.2. Figure of Merit (FOM)

The choice of an FOM is the most critical parameter on the optimization setup. The
FOM is a value used to characterize the performance of the design. We evaluated the
Y-junctions efficiency by the transmittance over a set bandwidth. To improve transmittance
without affecting the area on-chip, we limited the size of the MMI by restricting the
parameter range of the angles and setting an FOM directly proportional to the transmittance
of the fundamental TE mode over a frequency window. We ran the optimizations over
SCL (conventional) and OESCL (wide) bands to obtain MMI geometries and evaluated the
performance.

Our goal is to maximize the FOM. Let T( f ) be the transmittance evaluated at the
frequency f . We propose the FOM as the transmittance accumulated from f1 to f2 shown
in Equation (2).

FOM =
∫ f2

f1

T( f ) d f (2)

where f1 = c
λ1

, f2 = c
λ2

, the frequency is in Terahertz, and c is the speed of light in the
vacuum. The values of λ1 and λ2 depend on the operating band. We define two FOMs:

(i) For the SCL band, λ1 = 1.625 µm and λ2 = 1.46 µm. The ideal value for the
FOM is 10.425 assuming rectangular transmittance windows with a maximum
amplitude of 50% on one output waveguide along the SCL band.

(ii) For the OESCL band, λ1 = 1.625 µm and λ2 = 1.26 µm. The ideal value for the
FOM is 26.721 assuming a transmittance of 50% on one output waveguide along
the OESCL band.
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Although it is more geometry-restrictive than density topology and level-set parametriza-
tion, our approach shows promising results and potential for improvements (see Section 4). We
produced fabrication-ready devices without any additional post-processing steps for smoothing
or tweaking the optimized geometry. In the same fashion, other fabrication constraints can be
morphed into optimization parameters, as we propose here, to produce faster and direct results.

3. Optimization Algorithms

This section details the three evolutionary algorithms used in this work: (i) GA,
(ii) PSO, (iii) CMA-ES. Our implementations of these algorithms are used to independently
optimize the two FOMs defined in Section 2.

3.1. Genetic Algorithm

GA is a metaheuristic inspired by the process of natural selection [17], and GA is used
for the design of novel optic devices such as (i) polarization beam splitters [37,38] and
(ii) Y-branch waveguides [27,33,39].

As depicted in Algorithm 1, GA has four main steps. First, it starts with n individuals
represented by p parameters. Second, it will simulate the evolution of these individuals
during k generations. In each generation, the simulation starts selecting a set of individuals
to survive; those are called parents. Third, parents are combined following a crossover
policy to produce n new individuals that share some parameters with the selected parents.
Finally, the individuals randomly mutate some of their parameters.

Algorithm 1 depicts our implementation, with the following method specifications:

Algorithm 1: Framework of GA
1 population = generate_population(n, p); // n individuals defined by p

angles αi, i ∈ [1, p] in Section 2
2 for t = 0; t < k; t++ do
3 parents = select(population)
4 children = crossover(population, parents); // new angles combinations

(αi, i ∈ [1, p]) are generated for
each of the n individual

5 population = mutation(children) // here updates with new angles αi

• generate_population(n, p): returns n vectors defined by p angles (αi, i ∈ [1, p] defined
in Section 2 with random values from a uniform distribution in the range of the
constrains of each parameter.

• select(population) : chooses q individuals (i.e., we use roulette wheel selection) de-
pending on the probability value probi given by Equation (3):

probi =
FOMi −min(FOM)

∑(FOMj −min(FOM))
(3)

where FOMi is associated with the i-th individual.
• crossover(population, parents): returns n vectors of dimension p. The i-th vector is

the combination of two random parents pai and pbi selected from parents. Its d-th
parameter is defined at random by pai,d or pbi,d with equal probability (i.e., we are
using uniform crossover). This generates new combinations of angles to be evaluated.

• mutation(children): returns the new combinations of the previous step, but each
individual may have some of its parameters added a random value u ∈ U(−r, r). This
updates the angles αi of each individual.

3.2. Particle Swarm Optimization

In [16], the authors proposed PSO to simplify the social behavior of a flock of birds.
It has shown success in discontinuous multidimensional problems in electromagnetism
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applications [18,20,27]. The PSO algorithm is similar to GA, but the i-th individual is related
to a number ν(i) and a p-dimensional vector x(i)best.

We can think of the i-th individual as a particle defined by: (i) its position x(i) (the
p-dimensional vector associated with the individual), (ii) its velocity ν(i), and (iii) the best
position the particle has found so far, named x(i)best. Each particle accumulates speed in a
favorable direction given by the best position found by the particle and the best position
globally found. As a result, particles can move independently of local perturbations. By
adding random walks, the particles can move in unpredictable ways that can potentially
find better directions.

Using the framework of Algorithm 1, we can describe PSO methods as follows:

• generate_population(n, p): returns n particles defined by p angles (αi, i ∈ [1, p]) de-
fined in Section 2, where its attributes have random values from a uniform distribution
in the range of the constraints of each parameter.

• select(population): returns the particle with the best FOM.
• crossover(population, parents): returns the population updated with the use of

Equation (4) (this updates the angles αi, i ∈ [1, p] of each of the n particles) and
Equation (5):

x(i) ← x(i) + ν(i) (4)

ν(i) ← ων(i) + c1r1

(
x(i)b − x(i)

)
+ c2r2

(
xb − x(i)

)
(5)

where xb is the best position globally found, ω, known as inertia weight, represents
the will of the particle to conserve its current velocity, c1 and c2 quantify the relative
attraction of x(i)b and xb, respectively, and r1, r2 ∈ U(0, 1) represent the unpredictable
behavior.

3.3. Covariance Matrix Adaptation Evolution Strategy

CMA-ES [19] is an evolutionary strategy that has shown promising results for the
design of antenna devices [20], splitting/combining [40], and grating filters [41]. The
general idea of CMA-ES, shown in Algorithm 2, is to maintain: (i) an p-dimensional vector
µ where p is the number of parameters (i.e., number of angles), (ii) a matrix C, and (iii) a
number σ to generate n sample points from a distribution N (µ, σ2C).

Algorithm 2: CMA-ES algorithm

1 for t = 0; t < k; t++ do
2 sample() // generate n points from N (µ, σ2C). Each point

is defined by p angles αi, i ∈ [1, p] in Section 2
3 update() // Equation (6)
4 control() // Equation (7)
5 adapt() // Equation (9)

Taking points from this distribution limits the search space to a hyperellipse. Then,
the algorithm evaluates points from the hyperellipse. Using the obtained values, it can
decide to: (i) move the hyperellipse to another search space region and (ii) expand or reduce
the covered region. CMA-ES works iteratively on this idea until the hyperellipse almost
degenerates to a point, which is potentially the global optimum. For a detailed description
of the algorithm, please refer to [42].

In Algorithm 2, we consider global variables for the sake of simplicity. We summarize
CMA-ES in five steps. In line 1, we repeat the same procedures k times. In iteration t, we
start with line 2 sampling n random p−dimensional (each dimension corresponds to an
angle αi defined in Section 2) points xi, where x is sorted in descending order by evaluating
the FOM. The points are obtained from the distribution N (µ, σ2C). The next steps update
the parameters µ, σ, and C such that we can evaluate different angle parametrizations
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(potentially with better FOM values) in the next iterations. In line 3, we update the mean µ
using a weighted average of the sample points; see Equation (6).

µ(t+1) ←
n

∑
i=1

wixi (6)

The coefficients wi are fixed and chosen to proportionate larger contributions to the
best-performing points; then, the mean µ is moved to a favorable region. Next, we need to
properly change σ to reduce or expand the hyperellipse of the next iteration. Therefore, in
line 4, we control σ using Equations (7) and (8).

σ(t+1) ← σ(t) exp
(

cσ

dσ

(
||pσ||

E||N (0, I)|| − 1
)

︸ ︷︷ ︸
evolution path comparison

)
(7)

E||N (0, I)|| =
√

2

Γ
(

p+1
2

)
Γ
( p

2
)
 (8)

where pσ is a cumulative variable that tracks steps over time, cσ ∈ [0, 1] is a variable
that determines the cumulation time for pσ, and dσ ≈ 1 is a damping parameter that
determines the possible rate of change in σ(t+1). The key part of Equation (7) is the evolution
path comparison; here, the length of pσ is compared to its expected length under random
selection. From this comparison, we can control σ as increasing, decreasing, or keeping its
value. Finally, in line 5, we change Σ in a favorable direction using Equation (9).

C(t+1) =

cumulative update︷ ︸︸ ︷(
1− c1cc(1− hσ)(2− cc)− c1 − cµ

)
C(t)

+ c1 pC pT
C︸ ︷︷ ︸

rank-one update

+ cµ

n

∑
i=1

w′iδ
(i)
(

δ(i)
)T

︸ ︷︷ ︸
rank-µ update

(9)

where cµ ≤ 1 is the learning rate for the rank-µ update, c1 ≤ 1− cµ is the learning rate for the
rank-one update, cc ∈ [0, 1] is the learning rate for the cumulative update, hσ is the evaluation
of a unit step function used to properly update the evolution path, pC is a cumulative
vector used to update the covariance matrix, w′i is a modification of the coefficients wi, and
δ(i) is the sampled deviations.

In Equation (9), the first term (cumulative update) retains the information of the previous
covariance matrix. The second term (rank-one update) allows for elongating the distribution
along a favorable axis. The third term (rank-µ update) increases the search in areas where
good solutions are likely to exist. The combination of the three terms changes C to move
the hyperellipse in a favorable direction.

3.4. Algorithm’s Implementation

Our angle-based method (Section 2) was optimized with each of the algorithms using
the parameters in Table 2 following the variables described in the three previous sections.
We used p = 11 angles to parametrize the splitter. For the optimization, we executed
the algorithms k = 100 times and each step works with n = 40 exploratory designs. The
parameter r is described in Section 3.1 and the parameters ω, ci in Section 3.2.
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Table 2. Algorithm’s parameters.

Parameter Value Description

n 40 population size
k 100 number of iterations
p 11 number of characteristics
q 10 number of selected parents
r 3 range of random change in parameters
ω 1 inertia weight
ci 1 relative attraction coefficients

Let us impose the non-optimized geometry limits of our 3 dB Y-junction: a 2000 nm
long and 1500 nm wide rectangular multi-mode interferometer (when αi = 0 and all Wi are
the same). Thus, using p = 11 the feature size of each subsegment is well above 120 nm,
which is the limit of fabrication of many UV-lithography processes even by multi-project
wafer standards [43].

4. Results

We executed each algorithm with a fixed number of iterations using the parameters
in Table 2. The executions were run three times in the bands SCL for commonly optical
interconnected applications and OESCL for ultra-wideband applications. We used this dif-
ferentiated frequency window approach to test the robustness of the transmittance integral
defined in Equation (2). Lumerical’s 2.5D variational FDTD was run on the solutions. All
optimized designs depend on the initial population and thus on the initial guess. Before
our work evaluation, we performed an exploratory analysis for validation, executing an
optimization for all algorithms four times each. This was performed individually with a dif-
ferent initial random guess because we do not want to make additional assumptions about
the final design and wanted to simply let the optimization algorithms find some patterns.

Our results are presented in three main terms:

(i) Convergence rate is the algorithm’s speed in achieving FOM stability, with a varia-
tion <2%. To calculate it, we used the mean (Geomean) of the FOM trend.

(ii) To evaluate the similarity of the FOM, we defined the deviation factor ∆FOM as
the absolute difference between the geometric mean, Geomean, and the actual FOM
trend value, ∆FOMi,j = |Geomeani − FOMi,j|, where j is each algorithm execu-
tion, i.e., PSO1, PSO2, and PSO3, and i is the type of algorithm, i.e., GeomeanPSO,
GeomeanGA, or GeomeanCMA−ES. Additionally, the maximum FOM was also con-
sidered to characterize the performance of each method.

(iii) The waveband analysis was performed over a defined band, either SCL or OESCL.
We analyzed the maximum and minimum transmittance values to characterize a
planar response of the device over the given frequency. We considered variations
≤1% of the transmittance to be under the fabrication error limit.

The average optimization total execution time was 12 h for a 100-iteration analysis for
each algorithm. Our experiments were performed on an individual workstation with an
Intel i7 processor 4th gen and 32 GB of RAM.

4.1. Convergence Rate

Figure 3 depicts the FOM trend for each optimization run over the SCL (top) and
OESCL (bottom) bands. From Figure 3 (top), we make two key observations regarding the
Geomean. First, GeomeanCMA−ES shows that CMA-ES is the fastest algorithm, converging
at the 40th generation. Notice that PSO has a high initial growth rate; however, the <2%
criteria is only met in the 71st iteration. Second, GA exhibits the slowest convergence rate;
it converges at the ∼90th iteration, obtaining the lowest FOM.
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Figure 3. History of the FOM for each algorithm (GA, PSO and CMA-ES) in every optimization
process. (Top) SCL band. (Bottom) OESCL band.

From Figure 3 (bottom), we make three observations. First, in the OESCL band, the
fastest method, regardless of its maximum FOM (25.6), is the GA, which converges at
the 20th generation. However, as seen here and in the SCL analysis, the FOM values
constantly get stuck. This is a drawback for the GA, even after 100 generations. Second,
GeomeanCMA−ES achieves a maximum FOM at the 42nd generation; however, its maxi-
mum is just behind that of GeomeanPSO. Lastly, the PSO algorithm achieved a maximum
FOM over 26, which is greater than FOMGA at the ∼50th generation.

We conclude that the CMA-ES algorithm is the fastest and has a similar FOM to PSO
in the SCL-band analysis. In the OESCL-band, its maximum FOM decays ∼2% in relative
amplitude, and its convergence rate stays almost the same at the ∼40th generation. This
consistency is a desirable feature for a global optimization algorithm.

4.2. Similarity of the FOM

We expect that ∆FOM decreases as the number of iteration increases; however, this
is not the case for the GA in the SCL band depicted in Figure 4 (top). From this figure,
we make two key observations. First, GA has the most dissimilar FOM trends among its
three executions. Each GA execution finds a different best parametrization multiple times
through its 100 generations. Second, CMA-ES and PSO have a clear stabilization of ∆FOM.
This is especially true for CMA-ES after the 40th generation. The similarity of the FOM is
down to 0.05, and this result constitutes the best one for the SCL band analysis.

From Figure 4 (bottom), we make the following observations. First, the PSO has the
best similarity of FOM in the OESCL analysis, with ∆FOM ≤ 0.1 after convergence at the
18th generation. Second, GA and CMA-ES algorithms have around the same similarities
as FOM in the convergence region. However, CMA-ES keeps the same pattern as the
SCL analysis, while the GA cannot be directly compared. We conclude that PSO and
CMA-ES results are more congruent in their pattern of convergence than the GA, even after
evaluating them with different FOM integrals.
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Figure 4. Similarity of the FOM for each algorithm (GA, PSO, and CMA-ES) in every optimization
process. (Top) SCL-band. (Bottom) OESCL-band.

4.3. Waveband Analysis

Zhang et al. [12] proposed a longitudinal segmentation approach for the inverse
design of Y-junction splitters using PSO over the 1500–1580 nm band. This segment-based
approach resembles our proposal. However, it requires additional post-processing, such
as geometry smoothing. Figure 5 depicts the waveband comparison between [12] and
our CMA-ES best result. Our approach shows an improved transmittance of <1550 nm
wavelengths. The footprint of our device is only 5% larger than Zhang’s device, and it
does not need additional processing. These features motivate us to evaluate our method’s
performance on a broader band.

Figure 5. Waveband performance of our work compared with Zhang’s device [12]. Our work shows
the best result using CMA-ES.

Based on our definition of the FOM, which considers the integrals over the SCL and
OESCL frequency domain, we expect planarity from the SCL band, given that it represents
the narrower band between the two.

At first glance, the results shown in Figure 6 confirm our expectation. Note that
the figure depicts the best and worst executions for each algorithm. Additionally, we
calculated the difference between the minimum and maximum values of transmittance in
the waveband for each of the three different runs. We make two key observations. First, in
the SCL band, PSO is ≤1%, GA is ≤1.5%, and CMA-ES is also ≤1%. All executions show
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similar transmittances, and their differences are around the fabrication-error limit. Second,
the OESCL results show that the GA is up to 4%, whereas PSO is ≤1.4% and CMA-ES is
≤2%, respectively.

Figure 6. Waveband analysis of the best (solid lines) and the worst (dashed lines) executions for each
algorithm. (Top) SCL-band and (Bottom) OESCL-band.

Figure 7 depicts the electric field distribution at 1330 nm and 1550 nm. It shows that
the gap between the arms (δ in Figure 2) is more constraining than the angles of the junction.
This is because of our angle-based parametrization method. We observe a smooth transition
from the MMI region through the two spline-shaped arms in both bands. Fabrication is
feasible using photolithography.

Figure 7. Normalized electric field distributions achieved with the best parameters after the the
CMA-ES optimization at the O- and C-bands. Note that at 1330 nm (left), the evanescent field has a
smaller magnitude than at 1550 nm (right) resulting in smaller loss at the gap between the two arms.

We conclude that even when the FOM integral of the OESCL band defined in
Equation (2) goes up to more than 2.5 times the value of the integral of the SCL band,
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only the transmittance of the GA executions is affected. The effect on the other two meth-
ods remains under the fabrication error limit.

5. Conclusions

We proposed the angle-based parametrization of a 3 dB Y-junction splitter that produces
foundry fabrication-ready devices and optimized new geometries evaluating three evolu-
tionary algorithms: PSO, GA, and CMA-ES. We evaluated the algorithms considering their
convergence rate, the similarity of FOM, and the performance of their waveband analysis.

We found that although CMA-ES is a global optimization algorithm, it can be applied
to photonic devices’ topological optimization just by defining the population size. Our
analysis shows that CMA-ES parametrizations produce similar transmittance results to
PSO but in fewer generations. This result persists in optimizations executed in the SCL and
OESCL-bands, whereas GA and PSO executions fluctuate.
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