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Abstract: Based on a dual-polarization dual-parallel Mach–Zehnder modulator (DP-DPMZM), an
all-optical frequency divider is proposed and experimentally demonstrated. Two radio frequency
(RF) signals are modulated on an optical carrier to work as a dual-beam master laser (ML). The
optical signals of the ML are injected into a distributed feedback (DFB) laser to initiate the period-two
(P2) state oscillation. By beating the output of the slave laser (SL) via circulator in a photodetector, a
frequency divider with tunable factors can be achieved. The innovation of the scheme lies in having a
simple structure and only requires optical devices, which is operated in wide RF frequency range
without any electrical amplifiers before the photodetector to increase the conversion gain. Experiment
results also demonstrate that the frequency division factors can be adjusted.

Keywords: optically injected semiconductor laser; dual-beam injection; microwave photonics; mi-
crowave frequency diver

1. Introduction

Frequency dividers are of great importance in radio astronomy, clock comparison
and signal processing [1,2] because they can be widely used in generating millimeter
waves or frequency synchronization. In radar systems, it is necessary to mix the received
high-frequency echo signal with the local oscillator (LO) signal to realize frequency down
conversion, so that low-speed electrical devices can be used for signal post-processing. In
practical applications, instead of directly using an electrical signal generator to generate
low-frequency signals, we need to process the received high-frequency signals to obtain
low-frequency signals. Traditionally, frequency dividers include digital or analog types [3].
In contrast to several typical structures of the frequency dividers, they have a high operating
band and low power consumption and serve as the first stage of high-frequency dividing.
However, all these structures have limited bandwidth because of the bandwidth restrictions
of electric filters. Previous designs have faced conflicts between achieving a high operating
band and a wide locking range. Thanks to the advantages of microwave photonics, various
photonic-based dividers are implemented using a regenerative technique or an injection-
locking technique in an optoelectronic oscillator (OEO) loop. For a typical divider system,
an OEO loop requires a number of optical and electrical components such as an electrical
amplifier and electrical power splitter. For instance, by incorporating a frequency mixer
and an optical filter, the frequency division factor can be tuned [4]. Furthermore, a Mach–
Zehnder modulator (MZM) operated at the carrier suppression point was used to prevent
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OEO free-running oscillation [5]. The method in [6] employed an optical filter and a dual-
parallel Mach–Zehnder modulator (DPMZM) to achieve tuning the frequency division
factor by adjusting the delay of the OEO loop. Some other methods based on Fourier
domain mode-locking [7] were proposed to achieve half-division of frequency.

All-optical microwave frequency dividers based on optical injection [8,9] were pro-
posed to obtain different frequency-division factors, which can be implemented by har-
nessing the nonlinear dynamics of the semiconductor lasers. These reported techniques
rely on direct modulation, which are limited by the low speed of carrier migration in the
devices. To overcome this problem, a MZM operated by a radio frequency (RF) is used to
generate dual beams which are injected into a distributed feedback (DFB) laser to realize
a 1/2 frequency component [10]. However, none of these methods can realize a tunable
frequency-division factor.

In this paper, we present a simple integrable and compact all-optical microwave di-
vider with a tunable frequency-division factor. Theoretically, it can be designed with a high-
operating frequency because it does not require any electrical amplifiers. By controlling
the direct current (DC) bias voltage of the dual-polarization dual-parallel Mach–Zehnder
modulator (DP-DPMZM) at a specific point to generate an RF-modulated optical signal for
injection of a DFB laser to stimulate period-two (P2) oscillation, a frequency divider can be
experimentally achieved. Two RF sources are used to realize a tunable frequency-division
factor, and the power of the DFB is sensitive for the P2 station in our scheme. Owing to the
frequency-tunable master laser, the dual-beam injection of P2 dynamics can be achieved.

2. Principle

The schematic diagram of the proposed all-optical frequency divider is shown in
Figure 1. A continuous tunable laser with a carrier frequency fc is fed into the DP-DPMZM,
which is divided into two paths. The DP-DPMZM in the upper path consists of two or-
thogonally polarized dual-parallel Mach–Zehnder modulators (DPMZM). The x-DPMZM
consists of sub-MZM1 and sub-MZM2, which are driven by RF1 with the connect of a
90◦ hybrid. The y-DPMZM consists of sub-MZM3 and sub-MZM4, which are driven by
RF2 with the connect of another 90◦ hybrid. By biasing all four sub-MZMs at minimum
transmission points, and we set the main DC biases of the DPMZMs at quadrature trans-
mission points, and carrier-suppressed singe sideband (CS-SSB) modulated optical signals
are generated. The DP-DPMZM can adjust the frequency division factor by changing RF1
and RF2 signals, respectively, to realize a carrier-suppressed single sideband. The optical
field at the output of x-DPMZM is given by [11].

Ex(t) ∝ EMZM1 + EMZM2ejφx

∝ 1
8 E0ejω0t[ejβRF1 sin ωRF1t + e−jβRF1 sin ωRF1t+jπ +

(
ejβRF1 cos ωRF1t + e−jβRF1 cos ωRF1t+jπ)ejφx

]
∝ 1

4 E0ejω0t

{
J1(βRF1)ejωRF1t − J1(βRF1)e

−jωRF1 t+[
J1(βRF1)e

jωRF1 t+ π
2 + J1(βRF1)e

−jωRF1 t+ π
2
]
ejφx

} (1)

where ω0 and E0 are the angular frequency and amplitude of the optical carrier. ωRF1
is the angular frequency of the RF1 signal, βRF1 = πVRF1/Vπ is the modulation index
corresponding to RF2 loaded on the sub-MZMs, Vπ is the half-wave voltage of the sub-
MZMs, J0 and J1 are the zeroth- and first-order Bessel functions of the first kind, φx is the
phase shift introduced by main DC bias of the x-DPMZM.

Similarly, sub-MZM3 and sub-MZM4 are driven by the RF2 signal in the CS-SSB
station, the optical field at the output of y-DPMZM is given by [11].

Ey(t) ∝ EMZM3 + EMZM4ejφy

∝ 1
8 E0ejω0t

[
ejβRF2 sin ωRF2t + e−jβRF2 sin ωRF2t+jπ +

(
ejβRF2 cos ωRF2t + e−jβRF2 cos ωRF2t+jπ)ejφy

]
∝ 1

4 E0ejω0t

{
J1(βRF2)ejωRF2t − J1(βRF2)e−jωRF2 t+[
J1(βRF2)ejωRF2 t+ π

2 + J1(βRF2)e−jωRF2 t+ π
2

]
ejφy

} (2)



Photonics 2023, 10, 138 3 of 8

where ω0 and E0 are the angular frequency and amplitude of the optical carrier, ωRF2
is the angular frequency of the RF2 signal, βRF2 = πVRF2/Vπ is the modulation index
corresponding to RF2 loaded on the sub-MZMs, φy is the phase shift introduced by main
DC bias of the y-DPMZM.

Afterwards, two orthogonally polarized signals are combined by a polarization beam
combiner (PBC) and amplified by an erbium-doped fiber amplifier (EDFA). By tuning the
state of the polarization controller (PC), the optical field of the DP-DPMZM is expressed as

E(t) ∝ cos(α)Ex(t) + sin(α)Ey(t)ejϕPC

∝ 1
2 E0

[
J1(βRF1)e(jω0t+jωRF1t) + J1(βRF2)e(jω0t+jωRF2t)

] (3)

where α is the angle between the axial direction of the polarizer and the principal axis of
the PBC, and ϕPC is the PC-introduced phase shift between the two orthogonal polarization
states. The RF1 and RF2 modulated optical signal are referred to as an injection light wave
from a master laser (ML). The dual-beam is injected into the DFB slave laser (SL) by an
optical circulator. The SL has a free running frequency fs, which is between the dual-beam
of the ML as shown in Figure 2.
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Figure 1. Scheme of proposed all-optical microwave frequency divider.
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Figure 2. (a) Optical frequency of the ML and the SL. (b) Optical frequency of the SL in P2.

For dual-beam optical injection locking of a semiconductor, the competitions of dy-
namics have been studied and analyzed [12]. Three general scenarios are shown during
injecting a dual-beam from the ML into the SL, including stable locking, periodic oscillation,
and chaos. There are two factors affecting nonlinear dynamic states in semiconductors,
which is the injection strength ξ and the detuning frequency fi. The ξ means the amplitude
ratio between the ML and the SL. The fi means the two injections beams frequencies offset
from the ML. The SL is interacted with the dual-beam of the ML. Due to the modulation of
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the DP-DPMZM, the dual-beam frequencies of the ML can be adjusted by changing the
RF1 and RF2 signals. This process will cause various nonlinear dynamic states, depending
on the control of ξ and fi. When the period-two (P2) dynamics are achieved, the output
frequency spectrum of the SL consists of fM1 − n∆f /2, fM1 + ∆f /2 and fM2 + n∆f /2, where
n is non-negative integer, fM1 and fM2 are frequency components of the two ML beams,
then the frequency separation ∆f = fRF1 − fRF2 is the subtraction of the RF1 and RF2 signals,
and the SL frequency fs is suppressed.

The dual-beam frequency of the ML is fc + fRF1 and fc + fRF2, as shown in Figure 2a. We
define the fc + fRF1 as f − ∆f and fc + fRF2 as f. The frequency division factor can be defined
as the basic signal frequency divided by the obtained signal frequency. Therefore, in the
P2 station, as shown in Figure 2b, the frequencies of SL output spectrum are including
components at f ± n∆f /2. When the RF1 has been determined, making the DFB oscillating
at P2 state, we can obtain any frequency division factor by adjusting RF2. The output
electrical filed of the SL under P2 state can be expressed as

ESL(t) ∝
1
2

E0(t)ejω0t ·
∞

∑
n=0

A± n
2

e
±j( n

2 ω∆ f t±θ± n
2
)

(4)

where A±n/2 and θ±n/2 are the amplitude and phase of the optical frequency at f ± n∆f /2.
The output of the SL is detected by a photodetector via circulator. In the proposed system,
we can change the injection strength to realize P2 state for microwave dividers, other than
OEO loop, it does not need any electrical component or optical amplifiers to compensate
the loss.

3. Experiment Results

A proof-of-concept experiment was carried out based on the schematic indicated in
Figure 1. An optical carrier generated a continuous-wave (CW) from a tunable laser (Yenista
Optics TUNIC-T100S-HP). It is coupled with a polarization controller (PC), which was
adjusted to keep the polarization axis matching the DP-DPMZM (Fujistu FTM7977HQA).
Two RF signals were generated by microwave signal generators. By setting the DC biases,
the RF modulated optical signal, which is also regarded as the injection light from the ML,
passed through a PC and PBC. After amplified by an EDFA, the optical signal was routed
from Port 1 to Port 2 through an optical circulator. The DFB laser connected to Port 2 and
the photodetector connected to Port 3 of the circulator.

The wavelength of the free running DFB laser is 1545.35 nm. The frequency com-
ponents in Figure 3 are the original ML carrier and sidebands and P2 station. The P2
station frequency components are in the middle of the RF modulation sidebands and have
different amplitudes. The frequency components close to the DFB laser frequency have
higher amplitudes than those away from the DFB laser frequency. In the P2 state of the
DFB laser, there are multiple frequency components, which are caused by the resonator in
the laser and will not affect the system performance. The ML is modulated by RF signals,
and its sidebands are adjustable to make SL wavelength in the middle. The spectrum of the
optical signal was measured by the optical spectrum analyzer (OSA, Yokogawa AQ6730D).
The resolution of the OSA is 0.02 nm, in which it is difficult to distinguish the RF and LO
signals in optical spectra. When the ML is injected into the SL, the resonant state in the DFB
cavity will change, with the upper and lower RF modulation sidebands. The frequency
divider output spectrum is shown in Figure 3. The optical signal-to-noise ratio (OSNR) is
related to the P2 state of optical injection and the input optical power. The optical frequency
components contain the ML carrier and sidebands. By adjusting them in the middle of the
RF modulation sidebands, they have different amplitudes. The optical signal near the SL
frequency has higher optical power and better OSNR. The P2 station of the laser will also
affect the OSNR, this is reflected in the influence of laser cavity length on P2 resonance.
The DFB laser is operated at 25 ◦C and its output power is 0.35 dBm.
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Figure 3. Optical spectrum of the microwave frequency divider.

The electrical spectrum of microwave frequency divider is shown in Figure 4, which is
measured with an electrical signal analyzer (ESA). The RF1 and RF2 signals are 5 GHz and
11 GHz, respectively. The beams emitted from the SL are captured by the photodetector
(PD). The ∆f /2 is 3 GHz, then the 8 GHz frequency component is obtained. This proves
that the function of the frequency divider can be realized through an all-optical method.
Because the RF signals peak frequency emitted by the two electrical signal generators are
different between 5 GHz and 11 GHz, this causes the target signal peak frequency not to be
8 GHz. The power of the 8 GHz frequency component is −38.2 dBm, with the RF signal is
0 dBm, the system has a conversion gain of −38.2 dBm. The full width at half maximum
(FWHM) depends on elements of device system, such as the RF signals generated from the
electrical signal generators. There are no optical amplifiers before the photodetector, and
there are no electrical amplifiers to increase the conversion gain.
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Microwave frequency division for different input RF signals was investigated. By
changing the RF1 and RF2 signals to obtain different ∆f /2, we can obtain tunable frequency-
division factors. Table 1 shows the RF signals data in the experiment, ftarget is the target
frequency that we need to obtain. By changing the RF signals, the proposed all-optical
frequency divider can realize any division factors, as shown in Figure 5. The frequency
divider output electrical spectrum measured on ESA connected to PD. First, we adjust the
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RF2 signal to 11 GHz. By changing the RF1 signal to 5 GHz and 7 GHz, respectively, we
can generate 8 GHz and 9 GHz ftarget signals. Then the RF1 signals are set to 5 GHz, 6 GHz
and 7 GHz, respectively, and the corresponding RF2 signals are set to 15 GHz, 14 GHz
and 13 GHz, respectively, and the ftarget values are all 10 GHz. At last, we adjusted RF1
signal to 7 GHz and RF2 signal to 15 GHz,17 GHz, so that ftarget can generate 11 GHz and
12 GHz signals. The frequency component at 8 GHz to 12 GHz can be seen, this verifies the
adjustable division factor frequency divider operation.

Table 1. The RF signal data in experiment.

RF1 (GHz) RF2 (GHz) ∆f /2 (GHz) f target (GHz)

5 11 3 8
7 11 2 9
5 15 5 10
6 14 4 10
7 13 3 10
7 15 4 11
7 17 5 12
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Figure 5. Electrical spectrum of the proposed all-optical microwave frequency divider.

As shown in Figure 6, with the change in RF1 and RF2 signals, we keep the ftarget as
10 GHz. The RF1 signal is 5 GHz, 6 GHz, 7 GHz, respectively. The RF2 signal is 15 GHz,
14 GHz, 13 GHz, respectively. The frequency divider corresponding to the change of
different RF1 and RF2 signals has different frequency division factors, and the final target
frequency signal is 10 GHz. The corresponding power of the state noise and frequency peak
value under different frequency division factors is different. By controlling the RF signals,
the proposed all-optical microwave frequency divider can achieve different frequency
division factors. The systems parameters such as optical power and SL frequency can
be optimized to extend the signal noise rate (SNR). In Figure 6, the State1 (RF1 = 5 GHz,
RF2 = 15 GHz) has the SNR over 22 dBm, and the State 2 (RF1 = 6 GHz, RF2 = 14 GHz)
and the State 3 (RF1 = 7 GHz, RF2 = 13 GHz) have the SNR about 18 dBm and 12 dBm,
respectively. This is caused by the different RF signals value. For the influence of optical
power for oscillation state, the ML power was changed accordingly as the input RF signal
frequency value to ensure the SL was in P2 state.
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Figure 6. Electrical spectrum of the proposed all-optical microwave frequency divider, with the f target

is 10 GHz.

4. Conclusions

A tunable division factors all-optical microwave divider is proposed, and experiment
demonstrated. Based on the dual-beam injection effect, the DFB laser is oscillating in a
P2 state. With the help of DP-DPMZM, two CS-SSB sidebands are generated to inject
in the DFB by driving two RF signals in two orthogonal DPMZM branches. Then the
optical frequency component is produced. There is no electrical component and optical or
electrical amplifier in the proposed scheme. The power of the 8 GHz frequency component
is −38.2 dBm, with the RF signal is 0 dBm, the system has a conversion gain of −38.2 dBm.
Experimental results demonstrate that the frequency division factors can be adjusted.
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