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Abstract: We propose a new quantum state reconstruction method that combines ideas from
compressed sensing, non-convex optimization, and acceleration methods. The algorithm, called
Momentum-Inspired Factored Gradient Descent (MiFGD), extends the applicability of quantum to-
mography for larger systems. Despite being a non-convex method, MiFGD converges provably close
to the true density matrix at an accelerated linear rate asymptotically in the absence of experimental
and statistical noise, under common assumptions. With this manuscript, we present the method,
prove its convergence property and provide the Frobenius norm bound guarantees with respect to the
true density matrix. From a practical point of view, we benchmark the algorithm performance with
respect to other existing methods, in both synthetic and real (noisy) experiments, performed on the
IBM’s quantum processing unit. We find that the proposed algorithm performs orders of magnitude
faster than the state-of-the-art approaches, with similar or better accuracy. In both synthetic and real
experiments, we observed accurate and robust reconstruction, despite the presence of experimental
and statistical noise in the tomographic data. Finally, we provide a ready-to-use code for state
tomography of multi-qubit systems.

Keywords: quantum state tomography; non-convex optimization; matrix factorization; acceleration

1. Introduction

Quantum tomography is one of the main procedures to identify the nature of imperfec-
tions and deviations in quantum processing unit (QPU) implementations [1,2]. Generally,
quantum tomography is composed of two main parts: (i) measuring the quantum sys-
tem, and (ii) analyzing the measurement data to obtain an estimate of the density matrix
(in the case of state tomography [1]), or of the quantum process (in the case of process
tomography [3]). In this manuscript, we focus on the state tomography.

Quantum tomography is generally considered as a non-scalable protocol [4], as the
number of free parameters that define quantum states and processes scale exponentially
with the number of subsystems. In particular, quantum state tomography (QST) suffers
from two bottlenecks. The first concerns about the large amount of data one needs to
collect to perform tomography; the second concerns about numerically searching in an
exponentially increasing space for a density matrix that is consistent with the data.

There have been various approaches to improve the scalability of QST, in terms of the
amount of data required [5–7]. To address the data collection bottleneck, prior information
about the unknown quantum state is often assumed. For example, in compressed sensing
QST [4,8], the density matrix of the quantum system is assumed to be low-rank. In neural
network QST [9–11], the wave-functions are often assumed to be real and positive, confining
the landscape of quantum states (To handle more complex wave-functions, neural network
approaches require a proper re-parameterization of the Restricted Boltzmann machines [9]).
The prior information considered in these cases is that they are characterized by structured
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quantum states [9] (Such assumptions are often the reason behind accurate solutions of
neural network QST in high-dimensional spaces.) Ref. [9] considers also the case of a
completely unstructured case and test the limitation of this technique, which does not
perform as expected, due to lack of any exploitable structure). Similarly, in matrix-product-
state tomography [12,13], one assumes that the quantum state can be represented with low
bond-dimension matrix-product state.

To address the computational bottleneck, several works introduce sophisticated nu-
merical methods to improve the efficiency of QST. In particular, variants of gradient-based
convex solvers—e.g., [14–17]—have been tested on synthetic scenarios [17]. The problem
is that, achieving these results often requires utilizing special-purpose hardwares, such
as Graphics Processing Units (GPUs), on top of carefully designing a proper distributed
system [18]. Thus, going beyond current capabilities requires novel methods that can
efficiently search in the space of density matrices under more realistic scenarios. Impor-
tantly, such numerical methods should come with rigorous guarantees on their convergence
and performance.

The setup we consider here is the estimation of an n-qubit state, under the prior
assumption that the state is close to a pure state, and thus its density matrix is of low-
rank. This assumption is justified by the state-of-the-art experiments, where the aim is to
manipulate the pure states with unitary maps. From a theoretical perspective, the low-rank
assumption implies that we can use compressed sensing techniques [19], which allow the
recovery of the density matrix from relatively fewer measurement data [20,21].

Indeed, compressed sensing QST is widely used for estimating highly-pure quantum
states; e.g., [4,22–24]. However, compressed sensing QST usually relies on convex opti-
mization for the estimation [8], which limits the applicability to relatively small system
sizes [4] (In particular, convex solvers over low-rank structures utilize the nuclear norm
over 2n × 2n matrices. This assumes calculating all 2n eigenvalues of such matrices per
iteration, which has cubic complexity O((2n)3)). On the other hand, non-convex optimiza-
tion approaches could preform much faster than their convex counterparts [25]. Although
non-convex optimization typically lacks convergence guarantees, it was recently shown
that one can formulate the compressed sensing QST as a non-convex problem, and solve it
with rigorous convergence guarantees (under certain but generic conditions), allowing the
state estimation of larger system sizes [26].

Following the non-convex path, we introduce a new algorithm to the toolbox of QST—
the Momentum-Inspired Factored Gradient Descent (MiFGD). Our approach combines the
ideas from compressed sensing, non-convex optimization, and acceleration/momentum
techniques to scale QST beyond the current capabilities. MiFGD includes acceleration
motions per iteration, meaning that it uses two previous iterates to update the next estimate;
see Section 2 for details. The intuition is that if the k-th and (k − 1)-th estimates were
pointing to the correct direction, then both information should be useful to determine
the (k + 1)-th estimate. Of course such approach requires an additional estimate to be
stored—yet, we show both theoretically and experimentally that momentum results in
faster estimation. We emphasize that the analysis becomes non-trivially challenging due to
the inclusion of two previous iterates.

The contributions of the paper are summarized as follows:

(i) We prove that the non-convex MiFGD algorithm asymptotically enjoys an accelerated
linear convergence rate in terms of the iterate distance, in the noiseless measurement
data case and under common assumptions.

(ii) We provide QST results using the real measurement data from IBM’s quantum com-
puters up to 8-qubits, contributing to recent efforts on testing QST algorithms in real
quantum data [22]. Our synthetic examples scale up to 12-qubits effortlessly, leaving
the space for an efficient and hardware-aware implementation open for future work.

(iii) We show through extensive empirical evaluations that MiFGD allows faster estimation
of quantum states compared to the state-of-the-art convex and non-convex algorithms,



Photonics 2023, 10, 116 3 of 46

including recent deep learning approaches [9–11,27], even in the presence of statistical
noise in the measurement data.

(iv) We further increase the efficiency of MiFGD by extending its implementation to utilize
parallel execution over the shared and distributed memory systems. We experimen-
tally showcase the scalability of our approach, which is particularly critical for the
estimation of larger quantum system.

(v) We provide the implementation of our approach at https://github.com/gidiko/
MiFGD (accessed on 20 January 2023), which is compatible with the open-source
software Qiskit [28].

The rest of this manuscript is organized as follows. In Section 2, we set up the problem
in detail, and present our proposed method: MiFGD. Then, we detail the experimental set
up in Section 3, followed by the results in Section 4. Finally, we discuss related and future
works with concluding remarks in Section 5.

2. Methods
2.1. Problem Setup

We consider the estimation of a low-rank density matrix ρ? ∈ Cd×d on an n-qubit Hilbert
space with dimension d = 2n, through the following `2-norm reconstruction objective:

min
ρ∈Cd×d

f (ρ) := 1
2‖A(ρ)− y‖2

2

subject to ρ � 0, rank(ρ) ≤ r.
(1)

Here, y ∈ Rm is the measurement data (observations) (Specific description on how
y is generated and what it represents will follow), and A(·) : Cd×d → Rm is the linear
sensing map, where m� d2. The sensing map relates the density matrix ρ? to (expected,
noiseless) observations through the Born rule: (A(ρ))i = Tr(Aiρ), where {Ai}m

i=1 ∈
Cd×d are matrices closely related to the measured observable or the POVM elements of
appropriate dimensions.

The objective function in Equation (1) has two constraints: the positive semi-definite
constraint: ρ � 0, and the low-rank constraint: rank(ρ) ≤ r. The former is a convex
constraint, whereas the latter is a non-convex one, rendering Equation (1) to be a non-convex
optimization problem (Convex optimization problem requires both the objective function
as well as the constraints to be convex). Following compressed sensing QST results [8],
the unit trace constraint Tr(ρ) = 1 (which should be satisfied by any density matrix by
definition) can be disregarded, without affecting the precision of the final estimate.

A pivotal assumption to apply compressed sensing results is that the linear sensing
map A should satisfy the restricted isometry property, which we recall below.

Definition 1 (Restricted Isometry Property (RIP) [29]). A linear operator A : Cd×d → Rm

satisfies the RIP on rank-r matrices with the RIP constant δr ∈ (0, 1), if the following holds with
high probability for any rank-r matrix X ∈ Cd×d:

(1− δr) · ‖X‖2
F ≤ ‖A(X)‖2

2 ≤ (1 + δr) · ‖X‖2
F. (2)

Such maps (almost) preserve the Frobenius norm of low-rank matrices, and, as an ex-
tension, of low-rank Hermitian matrices. The intuition behind RIP is that the operator A(·)
behaves almost as a bijection between the subspaces Cd×d and Rm for low-rank matrices.

Following recent works [26], instead of solving Equation (1), we propose to solve a
factorized version of it:

min
U∈Cd×r

1
2‖A(UU†)− y‖2

2, (3)

where U† ∈ Cr×d denotes the adjoint of U, and ρ is re-parametrized with ρ = UU†. The
motivation for this reformulation is two-folds. First, by representing the d× d dimensional
density matrix ρ with (the outer product of) its d × r dimensional low-rank factors U,

https://github.com/gidiko/MiFGD
https://github.com/gidiko/MiFGD
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the search space for the density matrix (that is consistent with the measurement data)
significantly reduces, given that r � d. Second, via the reformulation ρ = UU†, both
the PSD constraint and the low-rank constraint are automatically satisfied, transforming
the constrained optimization problem in Equation (1) to the unconstrained optimization
problem in Equation (3). An important implication is that, to solve Equation (3), one can
bypass the projection step onto the PSD and low-rank subspace, which requires a sigular
value decomposition (SVD) of the estimate of the density matrix ρ on every iteration. This
is prohibitively expensive when the dimension d = 2n is large, which is the case for even
moderate number of qubits n. As such, working in the factored space was shown to
improve time and space complexities [26,30–34].

A common approach to solve a factored objective as in Equation (3) is to use gradient
descent [35] on the parameter U, with iterates as follows (We assume the case where
∇ f (·) = ∇ f (·)†. If this does not hold, the theory still holds by carrying around ∇ f (·) +
∇ f (·)† instead of just ∇ f (·), after proper scaling):

Uk+1 = Uk − η∇ f (UkU†
k ) ·Uk (4)

= Uk − ηA†
(
A(UkU†

k )− y
)
·Uk. (5)

Here, Uk ∈ Cd×r is the k-th iterate, and the operator A† : Rm → Cd×d is the adjoint of
A, defined as A†(x) = ∑m

i=1 xi Ai, for x ∈ Rm. The hyperparameter η > 0 is the step size.
This algorithm has been studied in [25,32,34,36–38]. We will refer to the above iteration as
the factored gradient descent (FGD) algorithm, as in [30]. In what follows, we will introduce
our proposed method, the MiFGD algorithm: momentum-inspired factored gradient descent.

2.2. The MiFGD Algorithm

The MiFGD algorithm is a two-step variant of FGD, which iterates as follows:

Uk+1 = Zk − ηA†
(
A(ZkZ†

k )− y
)
· Zk, (6)

Zk+1 = Uk+1 + µ(Uk+1 −Uk). (7)

Here, Zk ∈ Cd×r is a rectangular matrix (with the same dimension as Uk) that ac-
cumulates the “momentum” of the iterates Uk [39]. µ is the momentum parameter that
weighs the amount of mixture of the previous estimate Uk and the current Uk+1 to generate
Zk+1. The above iteration is an adaptation of Nesterov’s accelerated first-order method
for convex problems [40]. We borrow this momentum formulation, and study how the
choice of the momentum parameter µ affects the overall performance in non-convex problem
formulations, such as Equation (3). We note that the theory and algorithmic configurations
in [40] do not generalize to non-convex problems, which is one of the contributions of this
work. Albeit being a non-convex problem, we show that MiFGD asymptotically converges
at an accelerated linear rate around a neighborhood of the optimal value, akin to convex
optimization results [40].

An important observation is that the factorization ρ = UU† is not unique. For
instance, suppose that U? is an optimal solution for Equation (3); then, for any rotation
matrix R ∈ Cr×r satisfying RR† = I, the matrix Û = U?R is also optimal for Equation (3)
(To see this, observe that ρ? = U?U?† = U? IU?† = U?RR†U?† = ÛÛ†). To resolve
this ambiguity, we use the distance between a pair of matrices as the minimum distance
minR∈O‖U −U?R‖F up to rotations, where O = {R ∈ Cr×r | RR† = I}. In words, we
want to track how close an estimate U is to U?, up to the minimizing rotation matrix.

Algorithm 1 contains the details of the MiFGD. As Problem (3) is non-convex, the
initialization plays an important role in achieving global convergence. The initial point U0
is either randomly initialized [36,41,42], or set according to Lemma 4 in [26]:
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ρ0 = U0U†
0 = ΠC

( −1
1+δ2r

· ∇ f (0)
)
= 1

1+δ2r
ΠC

( m

∑
i=1

yi Ai

)
, (8)

where ΠC(·) is the projection onto the set of PSD matrices, δ2r ∈ (0, 1) is the RIP constant
from Definition 1, and∇ f (0) is the gradient of f (·) evaluated at all-zero matrix. Since com-
puting the RIP constant is NP-hard, in practice we compute U0 through
ρ0 = −1

L̂
ΠC
(

∑m
i=1 yi Ai

)
, where L̂ ∈ (1, 11/10]; see Theorem 1 below for details.

Algorithm 1 Momentum-Inspired Factored Gradient Descent (MiFGD)
Input: A (sensing map), y (measurement data), r (rank), and µ (momentum parameter).
• Set U0 randomly or as in Equation (8).
• Set Z0 = U0.
• Set η as in Equation (9).
for k = 0, 1, 2, . . . do

Uk+1 = Zk − ηA†(A(ZkZ†
k )− y

)
· Zk

Zk+1 = Uk+1 + µ(Uk+1 −Uk)
end for
Output: ρ = Uk+1U†

k+1

Compared to randomly selecting U0, the initialization scheme in Equation (8) involves
a gradient and a top-r eigenvalue computations. Yet, Equation (8) provides a more informed
initial point, as it is based on the data {yi, Ai}m

i=1, which could lead to convergence in fewer
iterations in practice, and satisfies the initialization condition of Theorem 1 for small enough
κ (Based on our experiments, in practice, both initializations are applicable and useful).

For the step size η in Algorithm 1, it is set to the following based on our theoretical
analysis (c.f., Lemma A6):

η = 1
4((1+δ2r)‖Z0Z†

0‖2+‖A†(A(Z0Z†
0 )−y)‖2)

, (9)

where Z0 = U0. Similarly to the above, in practice we replace the RIP constant δ2r with L̂.
The step size η remains constant at every iteration, and requires only two top-eigenvalue
computations to obtain the spectral norms ‖Z0Z†

0‖2 and ‖A†(A(Z0Z†
0 − y

)
‖2. These com-

putations can be efficiently implemented by any off-the-shelf eigenvalue solver, such as the
Power Method or the Lanczos method [43].

2.3. Theoretical Guarantees of the MiFGD Algorithm

We now present the formal convergence theorem, where under certain conditions,
MiFGD asymptotically achieves an accelerated linear rate.

Theorem 1 (Accelerated asymptotic convergence rate). Assume that A(·) satisfies the RIP in
Definition 1 with the constant δ2r ≤ 1/10. Initialize U0 = U−1 such that

min
R∈O
‖U0 −U?R‖F = min

R∈O
‖U−1 −U?R‖F ≤

√
σr(ρ?)

103
√

κτ(ρ?)
,

where κ := 1+δ2r
1−δ2r

is the (inverse) condition number of A(·), τ(ρ) := σ1(ρ)
σr(ρ)

is the condition number
of ρ with rank(ρ) = r, and σi(ρ) is the i-th singular value of ρ. Set the step size η such that

[
1−

(√
1+δ2r−

√
1−δ2r

(
√

2+1)
√

1+δ2r

)4
]
· 10

4σr(ρ?)(1−δ2r)
≤ η ≤ 10

4σr(ρ?)(1−δ2r)
,
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and the momentum parameter µ =
εµ

2·103rτ(ρ?)
√

κ
, for user-defined εµ ∈ (0, 1]. Then, for the (noise-

less) measurement data y = A(ρ?) with rank(ρ?) = r, the output of the MiFGD in Algorithm 1
satisfies the following: for any ε > 0, there exist constants Cε and C̃ε such that, for all k,

(
min
R∈O
‖Uk+1 −U?R‖2

F + min
R∈O
‖Uk −U?R‖2

F

)1/2

≤ Cε

(
1−

√
1−δ2r
1+δ2r

+ ε

)k+1
min
R∈O
‖U0 −U?R‖F + ξ · µ · σ1(ρ

?)1/2 · r · C̃ε (10)

≈ Cε

(
1−

√
1−δ2r
1+δ2r

+ ε

)k+1
min
R∈O
‖U0 −U?R‖F + O(µ).

where ξ =
√

1− 4ησr(ρ?)(1−δ2r)
10 . That is, the MiFGD asymptotically enjoys an accelerated linear

convergence rate in iterate distances up to a constant proportional to the momentum parameter µ.

Theorem 1 can be interpreted as follows. The right hand side of Equation (10) depends
on the initial distance minR∈O ‖U0 −U?R‖F akin to convex optimization results, where

asymptotically O
(

1−
√

1−δ2r
1+δ2r

)
appear as the contraction factor. In contrast, the contraction

factor of vanilla FGD [26] is of the order O
(

1− 1−δ2r
1+δ2r

)
.

The main assumption is that the sensing map A(·) satisfies RIP. This assumption
implies that the condition number of f depends on the RIP constants δ2r such that L

µ ∝ 1+δ2r
1−δ2r

,

since the eigenvalues of the Hessian of f , i.e., A† A(·), lie between 1− δ2r and 1 + δ2r (when
restricted to low-rank matrices) (In this sense, the RIP assumption plays the similar role
to assuming f is µ-strongly convex and L-smooth (when restricted to low-rank matrices)).
Such assumption has become standard in the optimization and the signal processing
community [19,25,29]. Hence, MiFGD has better dependency on the (inverse) condition
number of f compared to FGD. Such improvement of the dependency on the condition
number is referred to as “acceleration” in the convex optimization literature [44,45]. Thus,
assuming that the initial points U0 and U−1 are close enough to the optimum as stated in
the theorem, MiFGD decreases its distance to U? at an accelerated linear rate, up to an “error”
level that depends on the momentum parameter µ, which is bounded by 1

2·103rτ(ρ?)
√

κ
.

Theorem 1 requires a strong assumption on the momentum parameter µ, which
depends on quantities that might not be known a priori for general problems. However,
we note that for the special case of QST, we know these quantities exactly: r is the rank of
density matrix—thus, for pure states r = 1; τ(ρ?) is the (rank-restricted) condition number
of the density matrix ρ—for pure states, τ(ρ?) = σ1(ρ)

σr(ρ)
= σ1(ρ)

σ1(ρ)
= 1; and finally, κ is the

condition number of the sensing map, and satisfies: κ ≤ 11/9 given the constraint δ2r ≤ 1/10.
This analysis leads to a momentum value µ ≈ εµ/2211 (This is the numerical value of
µ? we use in experiments in Section 4). However, as we show in both real and synthetic
experiments in Section 4 (and further in Appendix A), the theory is conservative; much
larger values of µ lead to fast, stable, and improved performance. Finally, the bound on
the condition number in Theorem 1 is not strict, and comes out of the analysis we follow;
we point the reader to similar assumptions made where τ(ρ?) is assumed to be constant:
O(1) [46].

The detailed proof of Theorem 1 is provided in Appendix B. The proof differs from state
of the art proofs for non-accelerated factored gradient descent: due to the inclusion of the
memory term, three different terms—Uk+1, Uk, Uk−1—need to be handled simultaneously.
Further, the proof differs from other recent proofs on non-convex, but non-factored, gradient
descent methods, as in [47]: the distance metric over rotations minR∈O ‖Zk − U?R‖F,
where Zk includes estimates from two steps in history, is not amenable to simple triangle
inequality bounds. As a result, a careful analysis is required, including the design of
two-dimensional dynamical systems, where we characterize and bound the eigenvalues of
a 2× 2 contraction matrix.
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3. Experimental Setup
3.1. ρ? Density Matrices and Quantum Circuits

In our numerical and real experiments, we have considered (different subsets of) the
following n-qubit pure quantum states (The content in this subsection is implemented in
the states.py component of our complementary software package: https://github.com/
gidiko/MiFGD (accessed on 20 January 2023)):

1. The (generalized) GHZ state:

|GHZ(n)〉 = |0〉
⊗n + |1〉⊗n
√

2
, n > 2.

2. The (generalized) GHZ-minus state:

|GHZ−(n)〉 =
|0〉⊗n − |1〉⊗n

√
2

, n > 2.

3. The Hadamard state:

|Hadamard(n)〉 =
( |0〉+ |1〉√

2

)⊗n
.

4. A random state |Random(n)〉.
We have implemented these states (on the IBM quantum simulator and/or the IBM’s

QPU) using the following circuits. The GHZ state |GHZ(n)〉 is generated by applying the
Hadamard gate to one of the qubits, and then applying n− 1 CNOT gates between this
qubit (as a control) and the remaining n − 1 qubits (as targets). The GHZ-minus state
|GHZ−(n)〉 is generated by applying the X gate to one of the qubits (e.g., the first qubit)
and the Hadamard gate to the remaining n− 1 qubits, followed by applying n− 1 CNOT
gates between the first qubit (as a target) and the other n− 1 qubits (as controls). Finally,
we apply the Hadamard gate to all of the qubits. The Hadamard state |Hadamard(n)〉 is a
separable state, and is generated by applying the Hadamard gate to all of the qubits. The
random state |Random(n)〉 is generated by a random quantum gate selection: In particular,
for a given circuit depth, we uniformly select among generic single-qubit rotation gates
with 3 Euler angles, and controlled-X gates, for every step in the circuit sequence. For
the rotation gates, the qubits involved are selected uniformly at random, as well as the
angles from the range [0, 1]. For the controlled-X gates, the source and target qubits are also
selected uniformly at random.

We generically denote the density matrix that correspond to pure state |ψ〉 as ρ? =
|ψ〉〈ψ|. For clarity, we will drop the bra-ket notation when we refer to |GHZ(n)〉, |GHZ−(n)〉,
|Hadamard(n)〉 and |Random(n)〉. While the density matrices of the GHZ(n) and GHZ−(n) are
sparse in the {|0〉, |1〉}n basis, the density matrix of Hadamard(n) state is fully-dense in this
basis, and the sparsity of the density matrix that of Random(n) may be different form one
state to another.

3.2. Measuring Quantum States

The quantum measurement model. In our experiments (both synthetic and real), we
measure the qubits in the Pauli basis (This is the non-commutative analogue of the Fourier
basis, for the case of sparse vectors [19,48]). A Pauli basis measurement on an n-qubit
system has d = 2n possible outcomes. The Pauli basis measurement is uniquely defined by
the measurement setting. A Pauli measurement is a string of n letters α := (α1, α2, . . . , αn)
such that αk ∈ {x, y, z} for all k ∈ [n]. Note that there are at most 3n distinct Pauli strings.
To define the Pauli basis measurement associated with a given measurement string α, we
first define the the following three bases on C2×2:

https://github.com/gidiko/MiFGD
https://github.com/gidiko/MiFGD
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Bx =

{
|x, 0〉 :=

1√
2
(|0〉+ |1〉), |x, 1〉 :=

1√
2
(|0〉 − |1〉)

}
,

By =

{
|y, 0〉 :=

1√
2
(|0〉+ i|1〉), |y, 1〉 :=

1√
2
(|0〉 − i|1〉)

}
,

Bz = {|z, 0〉 := |0〉, |z, 1〉 := |1〉}.

These are the eigenbases of the single-qubit Pauli operators, σx, σy, and σz, whose 2× 2
matrix representations are given by:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, and σz =

[
1 0
0 −1

]
.

Given a Pauli setting α, the Pauli basis measurement Πα is defined by the 2n projectors:

Πα =

{∣∣∣v(α)`

〉〈
v(α)`

∣∣∣ =
n⊗

k=1

|αk, `k〉〈αk, `k| : `k ∈ {0, 1} ∀k ∈ [1, n]

}
,

where ` denotes the bit string (`k1 , `k2 , . . . , `kn). Since there are 3n distinct Pauli measure-
ment settings, there are the same number of possible Pauli basis measurements.

Technically, this set forms a positive operator-valued measure (POVM). The projectors
that form Πα are the measurement outcomes (or POVM elements) and the probability to
obtain an outcome |v(α)` 〉〈v

(α)
` | –when the state of the system is ρ?– is given by the Born

rule: 〈v(α)` |ρ?|v
(α)
` 〉 = Tr

(
|v(α)` 〉〈v

(α)
` | · ρ?

)
.

The RIP and expectation values of Pauli observables. Starting with the requirements of
our algorithm, the sensing map A : Cd×d → Rm we consider is comprised of a collection of
matrices {Ai ∈ Cd×d}m

i=1, such that yi = Tr(Aiρ
?). We denote the vector (y1, . . . , ym) by y.

When no prior information about the quantum state is assumed, to ensure its (robust)
recovery, one must choose a set m sensing matrices Ai, so that d2 of them are linearly
independent. One example of such choice is the POVM elements of the 3n Pauli basis mea-
surements.

Yet, when it is known that the state-to-be-reconstructed is of low-rank, theory on
low-rank recovery problems suggests that Ai could just be “incoherent” enough with
respect to ρ? [20], so that recovery is possible from a limited set of measurements, i.e.,
with m � d2. In particular, it is known [4,20,21] that if the sensing matrices correspond
to random Pauli monomials, then m = O(r · d · poly(log d)) Ai’s are sufficient for a suc-
cessful recovery of ρ?, using convex solvers for Equation (1) (The main difference be-
tween [4,20] and [21] is that the former guarantees recovery for almost all choices of
m = O(r · d · poly(log d)) random Pauli monomials, while the latter proves that there
exists a universal set of m = O(r · d · poly(log d)) Pauli monomials Ai that guarantees
successful recovery).

A Pauli monomial Pi is an operator in the set Pi ∈ {1, σx, σy, σz}⊗n, that is, an n-
fold tensor product of single-qubit Pauli operators (including the identity operator). For
convenience we re-label the single-qubit Pauli operators as σ0 := 1, σ1 := σx, σ2 := σy, and
σ3 := σz, so that we can also write Pi =

⊗n
k=1 σik with ik ∈ {0, . . . , 3} for all k ∈ [n]. These

results [4,20,21] are feasible since the Pauli-monomial-based sensing map A(·) obeys the
RIP property, as in Definition 1 (In particular, the RIP is satisfied for the sensing mechanisms
that obeys (A(ρ?))i =

d√
mTr(A∗i ρ?), i = 1, . . . , m. Further, the case considered in [21] holds

for a slightly larger set than the set of rank-r density matrices: for all ρ ∈ Cd×d such
that ‖ρ‖∗ ≤

√
r‖ρ‖F). For the remainder of this manuscript, we will use the term “Pauli

expectation value” to denote Tr(Aiρ
?) = Tr(Piρ

?).
From Pauli basis measurements to Pauli expectation values. While the theory for com-

pressed sensing was proven for Pauli expectation values, in real QPUs, experimental data
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is obtained from Pauli basis measurements. Therefore, to make sure we are respecting the
compressed sensing requirements on the sensing map, we follow this protocol:

(i) We sample m = O(r · d · poly(log d)) or m = measpc · d2 Pauli monomials uniformly
over {σi}⊗n with i ∈ {0, . . . , 3}, where measpc ∈ [0, 1] represents the percentage of
measurements out of full tomography.

(ii) For every monomial, Pi, in the generated set, we identify an experimental setting α(i)
that corresponds to the monomial. There, qubits, for which their Pauli operator in
Pi is the identity operator, are measured, without loss of generality, in the σ3 basis.
For example, for n = 3 and Pi = σ0 ⊗ σ1 ⊗ σ1, we identify the measurement setting
α(i) = (z, x, x).

(iii) We measure the quantum state in the Pauli basis that corresponds to α(i), and record
the outcomes.

To connect the measurement outcomes to the expectation value of the Pauli monomial,
we use the relation:

Tr(Piρ
?) = ∑

`∈{0,1}n
(−1)

χ
f (`) · Tr

(
|v(α(i))` 〉〈v(α(i))` | · ρ?

)
, (11)

where f (`) : {0, 1}n → {0, 1}n is a mapping that takes a bit string ` and returns a new bit
string ˜̀ (of the same size) such that ˜̀k = 0 for all k’s for which ik = 0 (that is, the locations
of the identity operators in Pi), and χ ˜̀ is the parity of the bit string ˜̀.

3.3. Algorithmic Setup

In our implementation, we explore a number of control parameters, including the
maximum number of iterations maxiters, the step size η, the relative error from succes-
sive state iterates reltol, the momentum parameter µ, the percentage of the complete
set of measurements (i.e., over all possible Pauli monomials) measpc, and the seed. In
the sequel experiments we set maxiters = 1000, η = 10−3, and reltol = 5× 10−4, un-
less stated differently. Regarding acceleration, µ = 0 when acceleration is muted; we
experiment over the range of values µ ∈ { 1

8 , 1
4 , 1

3 , 3
4} when investigating the accelera-

tion effect, beyond the theoretically suggested µ?. In order to explore the dependence
of our approach on the number of measurements available, measpc varies over the set
of {5%, 10%, 15%, 20%, 40%, 60%}; seed is used for differentiating repeating runs with
all other parameters kept fixed (maxiters is num_iterations in the code; also reltol is
relative_error_tolerance, measpc is complete_measurements_percentage).

Denoting ρ̂ the estimate of ρ? by MiFGD, we report on outputs including:

• The evolution with respect to the distance between ρ̂ and ρ?: ‖ρ̂− ρ?‖F, for various
µ’s.

• The number of iterations to reach reltol to ρ? for various µ’s.
• The fidelity of ρ̂, defined as Tr

(
ρ?ρ̂
)

(for rank-1 ρ?), as a function of the acceleration
parameter µ in the default set.

In our plots, we sweep over our default set of measpc values, repeat 5 times for each
individual setup, varying supplied seed, and depict their 25-, 50- and 75-percentiles.

3.4. Experimental Setup on Quantum Processing Unit (QPU)

We show empirical results on 6- and 8-qubit real data, obtained on the 20-qubit IBM
QPU ibmq_boeblingen. The layout/connectivity of the device is shown in Figure 1. The
6-qubit data was from qubits [0, 1, 2, 3, 8, 9], and the 8-qubit data was from [0, 1, 2, 3, 8, 9, 6, 4].
The T1 coherence times are [39.1, 75.7, 66.7, 100.0, 120.3, 39.2, 70.7, 132.3] µs, and T2 coherence
times are [86.8, 94.8, 106.8, 63.6, 156.5, 66.7, 104.5, 134.8] µs. The circuit for generating 6-qubit
and 8-qubit GHZ states are shown in Figure 1. The typical two qubit gate errors measured
from randomized benchmarking (RB) for relevant qubits are summarized in Table 1.
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Figure 1. Left panel: Layout connectivity of IBM backend ibmq_boeblingen; Middle and right
panels: Circuits used to generate 6-qubit state (left) and 8-qubit GHZ state (right). qbit refers to the
quantum registers used in qiskit, and q corresponds to qubits on the real device.

Table 1. Two qubit error rates for the relevant gates used in generating 6-qubit and 8-qubit GHZ
states on ibmq_boeblingen.

C0X1 C1X2 C2X3 C3X8 C8X9 C3X4 C1X6

0.0072 0.0062 0.0087 0.0077 0.0152 0.0167 0.0133

The QST circuits were generated using the tomography module in qiskit-ignis
(https://github.com/Qiskit/qiskit-ignis (accessed on 20 January 2023)). For complete QST
of a n-qubits state 3n circuits are needed. The result of each circuit is averaged over 8192,
4096 or 2048, for different n-qubit scenarios. To mitigate for readout errors, we prepare and
measure all of the 2n computational basis states in the computation basis to construct a
calibration matrix C. C has dimension 2n by 2n, where each column vector corresponds to
the measured outcome of a prepared basis state. In the ideal case of no readout error, C is
an identity matrix. We use C to correct for the measured outcomes of the experiment by
minimizing the function:

min
vcal∈Rd

‖Cvcal − vmeas‖2 subject to ∑
i

vcal
i = 1, vcal

i ≥ 0, ∀i = 1, . . . , d (12)

Here vmeas and vcal are the measured and calibrated outputs, respectively. The min-
imization problem is then formulated as a convex optimization problem and solved by
quadratic programming using the package cvxopt [49].

4. Results
4.1. MiFGD on 6- and 8-Qubit Real Quantum Data

We realize two types of quantum states on IBM QPUs, parameterized by the number
of qubits n for each case: the GHZ−(n) and the Hadamard(n) circuits. We collected measure-
ments over all possible Pauli settings by repeating the experiment for each setting a number
of times: these are the number of shots for each setting. The (circuit, number of shots)
measurement configurations from IBM Quantum devices are summarized in Table 2.

Table 2. QPU settings.

Circuit GHZ−(6)GHZ−(6)GHZ−(6) GHZ−(6)GHZ−(6)GHZ−(6) GHZ−(8)GHZ−(8)GHZ−(8) GHZ−(8)GHZ−(8)GHZ−(8) Hadamard(6)Hadamard(6)Hadamard(6) Hadamard(8)Hadamard(8)Hadamard(8)

# shots 2048 8192 2048 4096 8192 4096

In Appendix A, we provide target error list plots for the evolution of ‖ρ̂− ρ?‖2
F for

reconstructing all the settings in Table 2, both for real data and for simulated scenarios.
Further, we provide plots that relate the effect of momentum acceleration on the final
fidelity observed for these cases. For clarity, in Figure 2, we summarize the efficiency
of momentum acceleration, by showing the reconstruction error only for the following

https://github.com/Qiskit/qiskit-ignis
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settings: maxiters = 1000, η = 10−3, reltol = 5× 10−4, and measpc = 20%. In the plots,
µ = 0 corresponds to the FGD algorithm in [30], µ? corresponds to the value obtained
through our theory, while we use µ ∈

{
1
8 , 1

4 , 1
3 , 3

4

}
to study the acceleration effect. For

µ?, per our theory, we follow the rule µ? ≈ εµ/2211 for εµ ∈ (0, 1]; see also Section 2 for
details (For this application, σr(ρ?) = 1, τ(ρ?) = 1, and r = 1 by construction; we also
approximated κ = 1.223, which, for user-defined εµ = 1, results in µ? = 4.5 · 10−4. Note
that smaller εµ values result into a smaller radius of the convergence region; however,
more pessimistic εµ values result into small µ, with no practical effect in accelerating the
algorithm). Note that, in most of the cases, the curve corresponding to µ = 0 is hidden
behind the curve corresponding to µ ≈ µ?. We run each QST experiment for 5 times for
random initializations. We record the evolution of the ‖ρ̂− ρ?‖2

F error at each step, and
stop when the relative error of successive iterates gets smaller than reltol or the number
of iterations exceeds maxiters (whichever happens first). To implement measpc = 20%, we
follow the description given in Equation (11) with m = measpc · d2.
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Figure 2. Target error list plots ‖ρ̂− ρ?‖2
F versus method iterations using real IBM QPU data. Top-

left: GHZ−(6) with 2048 shots; Top-middle: GHZ−(6) with 8192 shots; Top-right: GHZ−(8) with 2048
shots; Bottom-left: GHZ−(8) with 4096 shots/copies of ρ?; Bottom-middle: Hadamard(6) with 8192
shots; Bottom-right: Hadamard(8) with 4096 shots. All cases have measpc = 20%. Shaded area
denotes standard deviation around the mean over repeated runs in all cases.

To highlight the level of noise existing in real quantum data, in Figure 3, we repeat the
same setting using the QASM simulator in qiskit-aer. This is a parallel, high performance
quantum circuit simulator written in C++ that can support a variety of realistic circuit level
noise models.
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Figure 3. Target error list plots ‖ρ̂− ρ?‖2
F versus method iteration using synthetic IBM’s quantum

simulator data. Top-left: GHZ−(6) with 2048 shots; Top-middle: GHZ−(6) with 8192 shots; Top-right:
GHZ−(8) with 2048 shots; Bottom-left: GHZ−(8) with 4096 shots; Bottom-middle: Hadamard(6) with
8192 shots; Bottom-right: Hadamard(8) with 4096 shots. All cases have measpc = 20%. Shaded area
denotes standard deviation around the mean over repeated runs in all cases.

Figure 2 summarizes the performance of our proposal on different ρ?, and for different
µ values on real IBM QPU data. All plots show the evolution of ‖ρ̂− ρ?‖F across iterations,
featuring a steep dive to convergence for the largest value of µ we tested: we report that
we also tested µ = 0, which shows only slight worse performances than µ?. Figure 2
highlights the universality of our approach: its performance is oblivious to the quantum
state reconstructed, as long as it satisfies purity or it is close to a pure state. Our method
does not require any additional structure assumptions in the quantum state.

To highlight the effect of real noise on the performance of MiFGD, we further plot
its performance on the same settings but using measurements coming from an idealized
quantum simulator. Figure 3 considers the exact same settings as in Figure 2. It is obvious
that MiFGD can achieve better reconstruction performance when data are less erroneous.
This also highlights that, in real noisy scenarios, the radius of the convergence region of
MiFGD around ρ? is controlled mostly by the the noise level, rather than by the inclusion of
momentum acceleration.

Finally, in Figure 4, we depict the fidelity of ρ̂ achieved using MiFGD, defined as Tr
(
ρ?ρ̂
)
,

versus various µ values and for different circuits (ρ?). Shaded area denotes standard
deviation around the mean over repeated runs in all cases. The plots show the significant
gap in performance when using real quantum data versus using synthetic simulated data
within a controlled environment.
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Figure 4. Fidelity list plots where we depict the fidelity of ρ̂ to ρ?. From left to right: (i) GHZ−(6) with
2048 shots; (ii) GHZ−(6) with 8192 shots; (iii) GHZ−(8) with 2048 shots; (iv) GHZ−(8) with 4096 shots;
(v) Hadamard(6) with 8192 shots; (vi) Hadamard(8) with 4096 shots. All cases have measpc = 20%.
Shaded area denotes standard deviation around the mean over repeated runs in all cases.

4.2. Performance Comparison with Full Tomography Methods in Qiskit

We compare the MiFGD with publicly available implementations for QST reconstruction.
Two common techniques for QST, included in the qiskit-ignis distribution [28], are:
(i) the CVXPY fitter method, that uses the CVXPY convex optimization package [50,51]; and
(ii) the lstsq method, that uses least-squares fitting [52]. Both methods solve the full
tomography problem (In [8], it was sown that the minimization program (13) yields a robust
estimation of low-rank states in the compressed sensing. Thus, one can use CVXPY fitter
method to solve Equation (13) with m � d2 Pauli expectation value to obtain a robust
reconstruction of ρ?) according to the following expression:

min
ρ∈Cd×d

f (ρ) := 1
2‖A(ρ)− y‖2

2

subject to ρ � 0, Tr(ρ) = 1.
(13)

We note that MiFGD is not restricted to “tall” U scenarios to encode PSD and rank
constraints: even without rank constraints, one could still exploit the matrix decomposition
ρ = UU† to avoid the PSD projection, ρ � 0, where U ∈ Cd×d. For the lstsq fitter method,
the putative estimate ρ̂ is rescaled using the method proposed in [52]. For CVXPY, the convex
constraint makes the optimization problem a semidefinite programming (SDP) instance.
By default, CVXPY calls the SCS solver that can handle all problems (including SDPs) [53,54].
Further comparison results with matrix factorization techniques from the machine learning
community is provided in the Appendix for n = 12.

The settings we consider for full tomography are the following: GHZ(n), Hadamard(n)
and Random(n) quantum states (for n = 3, . . . , 8). We focus on fidelity of reconstruction
and computation timings performance between CVXPY, lstsq and MiFGD. We use 100%
of the measurements. We experimented with states simulated in QASM and measured
taking 2048 shots. For MiFGD, we set η = 0.001, µ = 3

4 , and stopping criterion/tolerance
reltol = 10−5. All experiments are run on a Macbook Pro with 2.3 GHz Quad-Core Intel
Core i7CPU and 32GB RAM.

The results are shown in Figure 5; higher-dimensional cases are provided in Table 3.
Some notable remarks: (i) For small-scale scenarios (n = 3, 4), CVXPY and lstsq attain
almost perfect fidelity, while being comparable or faster than MiFGD. (ii) The difference
in performance becomes apparent from n = 6 and on: while MiFGD attains 98% fidelity
in <5 s, CVXPY and lstsq require up to hundreds of seconds to find a good solution.
(iii) Finally, while MiFGD gets to high-fidelity solutions in seconds for n = 7, 8, CVXPY and
lstsq methods could not finish tomography as their memory usage exceeded the system’s
available memory.
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Figure 5. Fidelity versus time plots using synthetic IBM’s quantum simulator data. Left panel:
GHZ−(n) for n = 3, 4; Middle panel: Hadamard−(n) for n = 3, 4; Right panel: Random−(n) for
n = 3, 4.

Table 3. Fidelity of reconstruction and computation timings using 100% of the complete mea-
surements. Rows correspond to combinations of number of qubits (7∼8), synthetic circuit, and
tomographic method (MiFGD, Qiskit’s lstsq and CVXPY fitters. 2048 shots per measurement circuit.
For MiFGD, η = 0.001, µ = 3

4 , reltol = 10−5. All experiments are run on a 13” Macbook Pro with
2.3 GHz Quad-Core Intel Core i7 CPU and 32 GB RAM.

Circuit Method Fidelity Time (s)

GHZ(7) MiFGD 0.969397 10.6709
Hadamard(7) MiFGD 0.969397 10.4926
Random(7) MiFGD 0.968553 9.59607
All above lstsq, CVXPY Memory limit exceeded

GHZ(8) MiFGD 0.940389 35.0666
Hadamard(8) MiFGD 0.940390 37.5331
Random(8) MiFGD 0.942815 36.3251
All above lstsq, CVXPY Memory limit exceeded

It is noteworthy that the reported fidelities for MiFGD are the fidelities at the last
iteration, before the stopping criterion is activated, or the maximum number of iterations is
exceeded. However, the reported fidelity is not necessarily the best one during the whole
execution: for all cases, we observe that MiFGD finds intermediate solutions with fidelity
>99%. Though, it is not realistic to assume that the iteration with the best fidelity is known
a priori, and this is the reason we report only the final iteration fidelity.

4.3. Performance Comparison of MiFGD with Neural-Network Quantum State Tomography

We compare the performance of MiFGD with neural network approaches. Per [9–11,27],
we model a quantum state with a two-layer Restricted Boltzmann Machine (RBM). RBMs
are stochastic neural networks, where each layer contains a number of binary stochastic
variables: the size of the visible layer corresponds to the number of input qubits, while the
size of the hidden layer is a hyperparameter controlling the representation error. We experi-
ment with three types of RBMs for reconstructing either the positive-real wave function, the
complex wave function, or the density matrix of the quantum state. In the first two cases the
state is assumed pure while in the last, general mixed quantum states can be represented.
We leverage the implementation in QuCumber [10], PositiveRealWaveFunction (PRWF),
ComplexWaveFunction (CWF), and DensityMatrix (DM), respectively.
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We reconstruct GHZ(n), Hadamard(n) and Random(n) quantum states (for n = 3, . . . , 8),
by training PRWF, CWF, and DM neural networks (We utilize GPU (NVidia GeForce GTX 1080
TI,11GB RAM) for faster training of the neural networks) with measurements collected by
the QASM Simulator.

For our setting, we consider measpc = 50% and shots = 2048. The set of measurements
is presented to the RBM implementation, along with the target positive-real wave function
(for PRWF), complex wavefunction (for CWF) or the target density matrix (for DM) in a suitable
format for training. We train Hadamard and Random states with 20 epochs, and GHZ state with
100 epochs (We experimented higher number of epochs (up to 500) for all cases, but after
the reported number of epochs, Qucumber methods did not improve, if not worsened).
We set the number of hidden variables (and also of additional auxilliary variables for
DM) to be equal to the number of input variables n and we use 100 data points for both
the positive and the negative phase of the gradient (as per the recommendation for the
defaults). We choose k = 10 contrastive divergence steps and fixed the learning rate to
10 (per hyperparameter tuning). Lastly, we limit the fitting time of Qucumber methods
(excluding data preparation time) to be three hours. To compare to the RBM results, we run
MiFGD with η = 0.001, µ = 3

4 , reltol = 10−5 and using measpc = 50%, keeping previously
chosen values for all other hyperparameters.

We report the fidelity of the reconstruction as a function of elapsed training time for
n = 3, 4 in Figure 6 for PRWF, CWF, and DM. We observe that for all cases, Qucumber methods
are orders of magnitude slower than MiFGD. E.g., for n = 8, for all three states, CWF and DM
did not finish a single epoch in 3 h, while MiFG achieves high fidelity in less than 30 s. For
the Hadamard(n) and Random(n), reaching reasonable fidelities is significantly slower for
both CWF and DM, while PRWF hardly improves its performance throughout the training. For
the GHZ case, CWF and DM also shows non-monotonic behaviors: even after a few thousands
of seconds, fidelities have not “stabilized”, while PRWF stabilizes in very low fidelities. In
comparison MiFGD is several orders of magnitude faster than both CWF and DM and fidelity
smoothly increases to comparable or higher values. Further, in Table 4, we report final
fidelities (within the 3 h time window), and reported times.
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Figure 6. Fidelity versus time plots on MiFGD, PRWF, CWF, and DM, using synthetic IBM’s quantum
simulator data. Left panel: GHZ(n) for n = 3, 4; Middle panel: Hadamard(n) for n = 3, 4; Right panel:
Random(n) for n = 3, 4.
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Table 4. Fidelity of reconstruction and computation timings using measpc = 50% and shots = 2048.
Rows correspond to combinations of number of qubits (3∼8), final fidelity within the 3h time limit,
and computation time. For MiFGD, η = 0.001, µ = 3

4 , tol = 10−5. For FGD, η = 0.001, tol = 10−5.
“N/A” indicates that the method could not complete a single epoch in 3 h training time limit, and
thus could not provide any fidelity result. All experiments are run on a NVidia GeForce GTX 1080 TI,
11 GB RAM.

Circuit Method

MiFGDMiFGDMiFGD FGDFGDFGD PRWFPRWFPRWF CWFCWFCWF DMDMDM

GHZ(3) Fidelity 0.997922 0.997857 0.314167 0.401737 0.005389
Time (s) 0.348652 1.061421 42.27607 1649.224 3279.118

Hadamard(3) Fidelity 0.997229 0.994191 0.912268 0.997914 0.997222
Time (s) 0.706872 2.399405 8.492405 325.7040 656.6696

Random(3) Fidelity 0.991063 0.988746 0.074774 0.997493 0.989754
Time (s) 1.447057 3.431218 8.345135 322.4730 640.8185

GHZ(4) Fidelity 0.996029 0.996041 0.204313 0.276491 0.138459
Time (s) 0.733128 2.081035 126.2749 10756.87 >3 h

Hadamard(4) Fidelity 0.996078 0.996083 0.894883 0.998071 0.997389
Time (s) 0.852895 2.368223 25.15520 2087.540 4613.964

Random(4) Fidelity 0.998850 0.998876 0.152971 0.984164 0.972877
Time (s) 0.713302 2.380326 26.18863 2185.091 4802.495

GHZ(5) Fidelity 0.992105 0.992106 0.132725 0.274665 0.005138
Time (s) 0.946350 3.287358 395.3379 >3 h >3 h

Hadamard(5) Fidelity 0.992102 0.992100 0.869603 0.998246 0.996516
Time (s) 1.183290 3.895312 79.39444 9319.140 >3 h

Random(5) Fidelity 0.995126 0.995109 0.015913 0.623273 0.086777
Time (s) 0.988173 3.407487 79.22450 9275.836 >3 h

GHZ(6) Fidelity 0.984352 0.984340 0.089355 0.437323 0.310067
Time (s) 3.829866 13.306954 1167.985 >3 h >3 h

Hadamard(6) Fidelity 0.984384 0.984377 0.842515 0.990849 0.998077
Time (s) 2.500354 8.661999 246.0011 >3 h >3 h

Random(6) Fidelity 0.989543 0.989536 0.143145 0.784873 0.302534
Time (s) 1.991154 7.604232 237.7037 >3 h >3 h

GHZ(7) Fidelity 0.969174 0.969168 0.058387 0.080648 N/A
Time (s) 6.174129 15.895504 3633.082 >3 h >3 h

Hadamard(7) Fidelity 0.969156 0.969156 0.818174 0.996586 N/A
Time (s) 6.324469 16.283301 713.9404 >3 h >3 h

Random(7) Fidelity 0.967640 0.967619 0.141745 0.06568 N/A
Time (s) 6.802577 16.594162 746.2630 >3 h >3 h

GHZ(8) Fidelity 0.940601 0.940600 0.0400391 N/A N/A
Time (s) 21.16011 36.892739 >3 h >3 h >3 h

Hadamard(8) Fidelity 0.940638 0.940638 0.794892 N/A N/A
Time (s) 22.30246 41.472961 2344.796 >3 h >3 h

Random(8) Fidelity 0.939418 0.939416 0.050521 N/A N/A
Time (s) 22.81059 41.193810 2196.259 >3 h >3 h

4.4. The Effect of Parallelization

We study the effect of parallelization in running MiFGD. We parallelize the iteration
step across a number of processes, that can be either distributed and network connected, or
sharing memory in a multicore environment. Our approach is based on Message Passing
Interface (MPI) specification [55], which is the lingua franca for interprocess communication
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in high performance parallel and supercomputing applications. A MPI implementation
provides facilities for launching processes organized in a virtual topology and highly tuned
primitives for point-to-point and collective communication between them.

We assign to each process a subset of the measurement labels consumed by the parallel
computation. At each step, a process first computes the local gradient-based corrections
due only to its assigned Pauli monomials and corresponding measurements. These local
gradient-based corrections will then (i) need to be communicated, so that they can be added,
and (ii) finally, their sum will be shared across all processes to produce a global update for U
for next step. We accomplish this structure in MPI using MPI_Allreduce collective commu-
nication primitive with MPI_SUM as its reduction operator: the underlying implementation
will ensure minimum communication complexity for the operation (e.g., log p steps for
p processes organized in a communication ring) and thus maximum performance (This
communication pattern can alternatively be realized in two stages, as naturally suggested
in its structure: (i) first invoke MPI’s MPI_Reduce primitive, with MPI_SUM as its reduction
operator, which results in the element-wise accumulation of local corrections (vector sum)
at a single, designated root process, and (ii) finally, send a “copy” of this sum from root
process to each process participating in the parallel computation (broadcasting); MPI_Bcast
primitive can be utilized for this latter stage. However, MPI_Allreduce is typically faster,
since its actual implementation is not constrained by the requirement to have the sum
available at a specific, root process, at an intermediate time point - as the two-stage approach
implies). We leverage mpi4py [56] bindings to issue MPI calls in our parallel Python code.

We conducted our parallel experiments on a server equipped with 4 × E7-4850 v2
CPUs @ 2.30GHz (48/96 physical/virtual cores), 256 GB RAM, using shared memory
multiprocessing over multiple cores. We experimented with states simulated in QASM and
measured taking 8192 shots; parallel MiFGD runs with default parameters and using all
measurements (measpc = 100%). Reported times are wall-clock computation time. These
exclude initialization time for all processes to load Pauli monomials and measurements:
we here target parallelizing computation proper in MiFGD.

In our first round of experiments, we investigate the scalability of our approach. We
vary the number p of parallel processes (p = 1, 2, 4, 8, 16, 32, 48, 64, 80, 96), collect timings for
reconstructing GHZ(4), Random(6) and GHZ−(8) states and report speedups Tp/T1 we gain
from MiFGD in Figure 7 Left . We observe that the benefits of parallelization are pronounced
for bigger problems (here: n = 8 qubits) and maximum scalability results when we use all
physical cores (48 in our platform).
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Figure 7. Left panel: Scalability of our approach as we vary the number p of parallel processes.
Middle panel: Fidelity function versus time consumed for different number of processes p. Right
panel: The effect of momentum for a fixed scenario with Hadamard(10) state, p = 48, and varying
momentum from µ = 0 to µ = 1

4 .

Further, we move to larger problems (n = 10 qubits: reporting on reconstructing
Hadamard(10) state) and focus on the effect parallelization to achieving a given level of
fidelity in reconstruction. In Figure 7 Middle, we illustrate the fidelity as a function of the
time spent in the iteration loop of MiFGD for (p = 8, 16, 32, 48, 64): we observe the smooth
path to convergence in all p counts which again minimizes compute time for p = 48. Note
that in this case we use measpc = 10% and µ = 1

4 .
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Finally, in Figure 7 Right, we fix the number of processes to p = 48, in order to
minimize compute time and increase the percentage of used measurements to 20% of the
total available for Hadamard(10). We vary the acceleration parameter, µ = 0 (no acceleration)
to µ = 1

4 and confirm that we indeed get faster convergence times in the latter case while
the fidelity value remains the same (i.e., coinciding upper plateau value in the plots). We
can also compare with the previous fidelity versus time plot, where the same µ but half the
measurements are consumed: more measurements translate to faster convergence times
(plateau is reached roughly 25% faster; compare the green line with the yellow line in the
previous plot).

5. Conclusions and Discussions

We have introduced the MiFGD algorithm for the factorized form of the low-rank QST
problems. We proved that, under certain assumptions on the problem parameters, MiFGD
converges linearly to a neighborhood of the optimal solution, whose size depends on
the momentum parameter µ, while using acceleration motions in a non-convex setting.
We demonstrate empirically, using both simulated and real data, that MiFGD outperforms
non-accelerated methods on both the original problem domain and the factorized space,
contributing to recent efforts on testing QST algorithms in real quantum data [22]. These
results expand on existing work in the literature illustrating the promise of factorized
methods for certain low-rank matrix problems. Finally, we provide a publicly available
implementation of our approach, compatible to the open-source software Qiskit [28], where
we further exploit parallel computations in MiFGD by extending its implementation to
enable efficient, parallel execution over shared and distributed memory systems.

Despite our theory does not apply to the Pauli basis measurement directly (i.e., using
randomly selected Pauli bases Πα, does not lead to the `2-norm RIP), using the data from random
Pauli basis measurements directly could provide excellent tomographic reconstruction
with MiFGD. Preliminary results suggest that only O(r · log d) random Pauli bases should be
taken for a reconstruction, with the same level of accuracy as with O(r · d · log d) expectation
values of random Pauli matrices. We leave the analysis of our algorithm in this case for
future work, along with detailed experiments.

5.1. Related Work

Matrix sensing. The problem of low-rank matrix reconstruction from few samples
was first studied within the paradigm of convex optimization, using the nuclear norm
minimization [29,57,58]. The use of non-convex approaches for low-rank matrix recovery—
by imposing rank-constraints—has been proposed in [59–61]. In all these works, the
convex and non-convex algorithms involve a full, or at least a truncated, singular value
decomposition (SVD) per algorithm iteration. Since SVD can be prohibitive, these methods
are limited to relatively small system sizes.

Momentum acceleration methods are used regularly in the convex setting, as well as in
machine learning practical scenarios [62–67]. While momentum acceleration was previously
studied in non-convex programming setups, it mostly involve non-convex constraints
with a convex objective function [47,61,68,69]; and generic non-convex settings but only
considering with the question of whether momentum acceleration leads to fast convergence
to a saddle point or to a local minimum, rather than to a global optimum [45,70–72].

The factorized version for semi-definite programming was popularized in [73]. Effec-
tively the factorization of a the set of PSD matrices to a product of rectangular matrices
results in a non-convex setting. This approach have been heavily studied recently, due to
computational and space complexity advantages [25,26,30–34,36–38,41,74–76]. None of the
works above consider the inclusion and analysis of momentum. Moreover, the Procrustes
Flow approach [32,34] uses certain initializations techniques, and thus relies on multiple
SVD computations. Our approach on the other hand uses a single, unique, top-r SVD
computation. Comparison results beyond QST are provided in the appendix.
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Compressed sensing QST using non-convex optimization. There are only few works that
study non-convex optimization in the context of compressed sensing QST. The authors
of [16] propose a hybrid algorithm that (i) starts with a conjugate-gradient (CG) algorithm
in the factored space, in order to get initial rapid descent, and (ii) switch over to accelerated
first-order methods in the original ρ space, provided one can determine the switch-over
point cheaply. Using the multinomial maximum likelihood objective, in the initial CG
phase, the Hessian of the objective is computed per iteration (i.e., a 4n × 4n matrix), along
with its eigenvalue decomposition. Such an operation is costly, even for moderate values
of qubit number n, and heuristics are proposed for its completion. From a theoretical
perspective, [16] provide no convergence or convergence rate guarantees.

From a different perspective, [77] relies on spectrum estimation techniques [78,79]
and the Empirical Young Diagram algorithm [80,81] to prove that O(rd/ε) copies suffice to
obtain an estimate ρ̂ that satisfies ‖ρ̂− ρ?‖2

F ≤ ε; however, to the best of our knowledge,
there is no concrete implementation of this technique to compare with respect to scalability.

Ref. [82] proposes an efficient quantum tomography protocol by determining the
permutationally invariant part of the quantum state. The authors determine the minimal
number of local measurement settings, which scales quadratically with the number of
qubits. The paper determines which quantities have to be measured in order to get the
smallest uncertainty possible. See [83] for a more recent work on permutationally invariant
tomography. The method has been tested in a six-qubit experiment in [84].

Ref. [22] presented an experimental implementation of compressed sensing QST of a
n = 7 qubit system, where only 127 Pauli basis measurements are available. To achieve
recovery in practice, the authors proposed a computationally efficient estimator, based
on gradient descent method in the factorized space. The authors of [22] focus on the
experimental efficiency of the method, and provide no specific results on the optimization
efficiency, neither convergence guarantees of the algorithm. Further, there is no available
implementation publicly available.

Similar to [22], Ref. [26] also proposes a non-convex projected gradient decent algo-
rithm that works on the factorized space in the QST setting. The authors prove a rigorous
convergence analysis and show that, under proper initialization and step-size, the algo-
rithm is guaranteed to converge to the global minimum of the problem, thus ensuring a
provable tomography procedure. Our results extend these results by including acceleration
techniques in the factorized space. The key contribution of our work is proving convergence of
the proposed algorithm in a linear rate to the global minimum of the problem, under com-
mon assumptions. Proving our results required developing a whole set of new techniques,
which are not based on a mere extension of existing results.

Compressed sensing QST using convex optimization. The original formulation of com-
pressed sensing QST [4] is based on convex optimization methods, solving the trace-norm
minimization, to obtain an estimation of the low-rank state. It was later shown [8] that
essentially any convex optimization program can be used to robustly estimate the state. In
general, there are two drawbacks in using convex optimization optimization in QST. Firstly,
as the dimension of density matrices grow exponentially in the number of qubits, the
search space in convex optimization grows exponentially in the number of qubits. Secondly,
the optimization requires projection onto the PSD cone at every iteration, which becomes
exponentially hard in the number of qubits. We avoid these two drawbacks by working in the
factorized space. Using this factorization results in a search space that is substantially smaller
than its convex counterpart, and moreover, in a single use of top-r SVD during the entire ex-
ecution algorithm. Bypassing these drawbacks, together with accelerating motions, allows
us to estimate quantum states of larger qubit systems than state-of-the-art algorithms.

Full QST using non-convex optimization. The use of non-convex algorithms in QST was
studied in the context of full tomography as well. By “full tomography” we refer to the
situation where an informationally complete measurement is performed, so that the input
data to the algorithm is of size 4n. The exponential scaling of the data size restrict the
applicability of full tomography to relatively small system sizes. In this setting non-convex
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algorithms which work in the factored space were studied [85–89]. Except of the work [88],
we are not aware of theoretical results on the convergence of the proposed algorithm due
to the presence of spurious local minima. The authors of [88] characterize the local vs. the
global behavior of the objective function under the factorization ρ = UU† and discuss how
existing methods fail due to improper stopping criteria or due to the lack of algorithmic
convergence results. Their work highlights the lack of rigorous convergence results of
non-convex algorithms used in full quantum state tomography. There is no available
implementation publicly available for these methods as well.

Full QST using convex optimization. Despite the non-scalability of full QST, and the
limitation of convex optimization, a lot of research was devoted to this topic. Here, we
mention only a few notable results that extend the applicability of full QST using specific
techniques in convex optimization. Ref [52] shows that for given measurement schemes
the solution for the maximum likelihood is given by a linear inversion scheme, followed
by a projection onto the set of density matrices. More recently, the authors of [18] used a
combination of the techniques of [52] with the sparsity of the Pauli matrices and the use of
GPUs to perform a full QST of 14 qubits. While pushing the limit of full QST using convex
optimization, obtaining full tomographic experimental data for more than a dozen qubits is
significantly time-intensive. Moreover, this approach is highly centralized, in comparison
to our approach that can be distributed. Using the sparsity pattern property of the Pauli
matrices and GPUs is an excellent candidate approach to further enhance the performance
of non-convex compressed sensing QST.

QST using neural networks. Deep neural networks are ubiquitous, with many applica-
tions to science and industry. Recently, [9–11,27] show how machine learning and neural
networks can be used to perform QST, driven by experimental data. The neural network
architecture used is based on restricted Boltzmann machines (RBMs) [90], which feature
a visible and a hidden layer of stochastic binary neurons, fully connected with weighted
edges. Test cases considered include reconstruction of W state, magnetic observables of
local Hamiltonians, the unitary dynamics induced by Hamiltonian evolution. Comparison
results are provided in the Main Results section. Alternative approaches include condi-
tional generative adversarial networks (CGANs) [91,92]: in this case, two dueling neural
networks, a generator and a discriminator, learn to generate and identify multi-modal
models from data.

QST for Matrix Product States (MPS). This is the case of highly structured quantum
states where the state is well-approximated by a MPS of low bond dimension [12,13]. The
idea behind this approach is, in order to overcome exponential bottlenecks in the general
QST case, we require highly structured subsets of states, similar to the assumptions made
in compressed sensing QST. MPS QST is considered an alternative approach to reduce the
computational and storage complexity of QST.

Direct fidelity estimation. Rather than focusing on entrywise estimation of density
matrices, the direct fidelity estimation procedure focuses on checking how close is the state
of the system to a target state, where closeness is quantified by the fidelity metric. Classic
techniques require up to 2n/ε4 number of samples, where ε denotes the accuracy of the
fidelity term, when considering a general quantum state [93,94], but can be reduced to
almost dimensionality-free 1/ε2 number of samples for specific cases, such as stabilizer
states [95–97]. Shadow tomography is considered as an alternative and generalization
of this technique [98,99]; however, as noted in [94], the procedure in [98,99] requires
exponentially long quantum circuits that act collectively on all the copies of the unknown
state stored in a quantum memory, and thus has not been implemented fully on real
quantum machines. A recent neural network-based implementation of such indirect QST
learning methods is provided here [100].

The work in [93,94], goes beyond simple fidelity estimation, and utilizes random single
qubit rotations to learn a minimal sketch of the unknown quantum state by which one
that can predict arbitrary linear function of the state. Such methods constitute a favorable
alternative to QST as they do not require number of samples that scale polynomially with
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the dimension; however, this, in turn, implies that these methods cannot be used in general
to estimate the density matrix itself.
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Appendix A. Additional Experiments

Appendix A.1. IBM Quantum System Experiments: GHZ−(6) Circuit, 2048 Shots
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Figure A1. Target error list plots for reconstructing GHZ−(6) circuit using real measurements from
IBM Quantum system experiments.
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Figure A2. Target error list plots for reconstructing GHZ−(6) circuit using synthetic measurements
from IBM’s quantum simulator.
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Figure A3. Convergence iteration plots for reconstructing GHZ−(6) circuit using using real measure-
ments from IBM Quantum system experiments and synthetic measurements from Qiskit simula-
tion experiments.
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Figure A4. Fidelity list plots for reconstructing GHZ−(6) circuit using using real measurements from
IBM Quantum system experiments and synthetic measurements from Qiskit simulation experiments.

Appendix A.2. IBM Quantum System Experiments: GHZ−(8) Circuit, 2048 Shots

0 1000
Iterations

10
0

6
×

10
−

1

‖ρ̂
−
ρ
?
‖2 F

0 500
Iterations

10
0

6
×

10
−

1

0 200
Iterations

10
0

6
×

10
−

1

0 200
Iterations

10
0

6
×

10
−

1

0 100
Iterations

10
0

6
×

10
−

1

0 50
Iterations

10
0

6
×

10
−

1

µ = 0 µ = 1/8 µ = 1/4 µ = 1/3 µ = 3/4 µ = µ?

Figure A5. Target error list plots for reconstructing GHZ−(8) circuit using real measurements from
IBM Quantum system experiments.
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Figure A6. Target error list plots for reconstructing GHZ−(8) circuit using synthetic measurements
from IBM’s quantum simulator.
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Figure A7. Convergence iteration plots for reconstructing GHZ−(8) circuit using using real measure-
ments from IBM Quantum system experiments and synthetic measurements from Qiskit simula-
tion experiments.

µ? 1
8

1
4

1
3

3
4

Momentum µ

0.
7

0.
8

0.
9

F
id

el
it

y

µ? 1
8

1
4

1
3

3
4

Momentum µ

0.
8

0.
9

µ? 1
8

1
4

1
3

3
4

Momentum µ

0.
8

0.
9

µ? 1
8

1
4

1
3

3
4

Momentum µ

0.
8

0.
9

µ? 1
8

1
4

1
3

3
4

Momentum µ

0.
8

0.
9

µ? 1
8

1
4

1
3

3
4

Momentum µ

0.
8

0.
9

GHZMinus/Qiskit simulator GHZMinus/IBMQ device

Figure A8. Fidelity list plots for reconstructing GHZ−(8) circuit using using real measurements from
IBM Quantum system experiments and synthetic measurements from Qiskit simulation experiments.

Appendix A.3. IBM Quantum System Experiments: GHZ−(8) Circuit, 4096 Shots
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Figure A9. Target error list plots for reconstructing GHZ−(8) circuit using real measurements from
IBM Quantum system experiments.
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Figure A10. Target error list plots for reconstructing GHZ−(8) circuit using synthetic measurements
from IBM’s quantum simulator.
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Figure A11. Convergence iteration plots for reconstructing GHZ−(8) circuit using using real measure-
ments from IBM Quantum system experiments and synthetic measurements from Qiskit simula-
tion experiments.
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Figure A12. Fidelity list plots for reconstructing GHZ−(8) circuit using using real measurements from
IBM Quantum system experiments and synthetic measurements from Qiskit simulation experiments.

Appendix A.4. IBM Quantum System Experiments: Hadamard(6) Circuit, 8192 Shots
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Figure A13. Target error list plots for reconstructing Hadamard(6) circuit using real measurements
from IBM Quantum system experiments.
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Figure A14. Target error list plots for reconstructing Hadamard(6) circuit using synthetic measure-
ments from IBM’s quantum simulator.



Photonics 2023, 10, 116 25 of 46

µ? 1
8

1
4

1
3

3
4

Momentum µ

80
0

90
0

10
00

It
er

at
io

ns

µ? 1
8

1
4

1
3

3
4

Momentum µ

60
0

80
0

10
00

µ? 1
8

1
4

1
3

3
4

Momentum µ

40
0

60
0

80
0

10
00

µ? 1
8

1
4

1
3

3
4

Momentum µ

25
0

50
0

75
0

10
00

µ? 1
8

1
4

1
3

3
4

Momentum µ

20
0

40
0

µ? 1
8

1
4

1
3

3
4

Momentum µ

10
0

20
0

Hadamard/Qiskit simulator Hadamard/IBMQ device

Figure A15. Convergence iteration plots for reconstructing Hadamard(6) circuit using using real mea-
surements from IBM Quantum system experiments and synthetic measurements from Qiskit simulation.
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Figure A16. Fidelity list plots for reconstructing Hadamard(6) circuit using using real measurements from
IBM Quantum system experiments and synthetic measurements from Qiskit simulation experiments.

Appendix A.5. IBM Quantum System Experiments: Hadamard(8) Circuit, 4096 Shots
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Figure A17. Target error list plots for reconstructing Hadamard(8) circuit using real measurements
from IBM Quantum system experiments.
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Figure A18. Target error list plots for reconstructing Hadamard(8) circuit using synthetic measure-
ments from IBM’s quantum simulator.
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Figure A19. Convergence iteration plots for reconstructing Hadamard(8) circuit using using real mea-
surements from IBM Quantum system experiments and synthetic measurements from Qiskit simulation.
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Figure A20. Fidelity list plots for reconstructing Hadamard(8) circuit using using real measurements
from IBM Quantum system experiments and synthetic measurements from Qiskit simulation experi-
ments.

Appendix A.6. Synthetic Experiments for n = 12

We compare MiFGD with (i) the Matrix ALPS framework [61], a state of the art projected
gradient descent algorithm, and an optimized version of matrix iterative hard thresholding, oper-
ating on the full matrix variable ρ, with adaptive step size η (we note that this algorithm
has outperformed most of the schemes that work on the original space ρ; see [61]); (ii) the
plain Procrustes Flow/FGD algorithm [25,26,32], where we use the step size as reported
in [25], since the later has reported better performance than vanilla Procrustes Flow. We note
that the Procrustes Flow/FGD algorithm is similar to our algorithm without acceleration. Further,
the original Procrustes Flow/FGD algorithm relies on performing many iterations in the
original space ρ as an initialization scheme, which is often prohibitive as the problem
dimensions grow. Both for our algorithm and the plain Procrustes Flow/FGD scheme, we
use random initialization.

To properly compare the algorithms in the above list, we pre-select a common set of
problem parameters. We fix the dimension d = 4096 (equivalent to n = 12 qubits), and the
rank of the optimal matrix ρ? ∈ Rd×d to be r = 10 (equivalent to a mixed quantum state
reconstruction). Similar behavior has been observed for other values of r, and are omitted.
We fix the number of observables m to be m = c · d · r, where c ∈ {3, 5}. In all algorithms,
we fix the maximum number of iterations to 4000, and we use the same stopping criterion:
‖ρi+1 − ρi‖F/‖ρi‖F ≤ tol = 10−3. For the implementation of MiFGD, we have used the
momentum parameter µ = 2

3 , as well as the theoretical µ value.
The procedure to generate synthetically the data is as follows: The observations y are

set to y = A(ρ?) + w for some noise vector w; while the theory holds for the noiseless case,
we show empirically that noisy cases are robustly handled by the same algorithm. We use
permuted and subsampled noiselets for the linear operator A [101]. The optimal matrix
ρ? is generated as the multiplication of a tall matrix U? ∈ Rd×r such that ρ? = U?U?>,
and ‖ρ?‖F = 1, without loss of generality. The entries of U? are drawn i.i.d. from a
Gaussian distribution with zero mean and unit variance. In the noisy case, w has the same
dimensions with y, its entries are drawn from a zero mean Gaussian distribution with
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norm ‖w‖2 = 0.01. The random initialization is defined as U0 drawn i.i.d. from a Gaussian
distribution with zero mean and unit variance.

The results are shown in Figure A21. Some notable remarks: (i) While factorization
techniques might take more iterations to converge compared to non-factorized algorithms,
the per iteration time complexity is much less, such that overall, factorized gradient descent
converges more quickly in terms of total execution time. (ii) Our proposed algorithm,
even under the restrictive assumptions on acceleration parameter µ, performs better than the
non-accelerated factored gradient descent algorithms, such as Procrustes Flow. (iii) Our
theory is conservative: using a much larger µ we obtain a faster convergence; the proof
for less strict assumptions for µ is an interesting future direction. In all cases, our findings
illustrate the effectiveness of the proposed schemes on different problem configurations.
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Figure A21. Synthetic example results on low-rank matrix sensing in higher dimensions (equivalent
to n = 12 qubits). Top row: Convergence behavior vs. time elapsed. Bottom row: Convergence
behavior vs. number of iterations. Left panel: c = 5, noiseless case; Center panel: c = 3, noiseless
case; Right panel: c = 5, noisy case, ‖w‖2 = 0.01.

Appendix A.7. Asymptotic Complexity Comparison of lstsq, CVXPY, and MiFGD

We first note that lstsq can be only applied to the case we have a full tomographic
set of measurements; this makes lstsq algorithm inapplicable in the compressed sensing
scenario, where the number of measurements can be significantly reduced. Yet, we make
the comparison by providing information-theoretically complete set of measurements to
lstsq and CVXPY, as well as to MiFGD, to highlight the efficiency of our proposed method,
even in the scenario that is not exactly intended in our work. Given this, we compare in
detail the asymptotic scailing of MiFGD with lstsq and CVXPY below:

• lstsq is based on the computation of eigenvalues/eigenvector pairs (among other
steps) of a matrix of size equal to the density matrix we want to reconstruct. Based
on our notation, the density matrices are denoted as ρ with dimensions 2n × 2n.
Here, n is the number of qubits in the quantum system. Standard libraries for
eigenvalue/eigenvector calculations, like LAPACK, reduce a Hermitian matrix to
tridiagonal form using the Householder method, which takes overall a O

(
(2n)3) com-

putational complexity. The other steps in the lstsq procedure either take constant
time, or O(2n) complexity. Thus, the actual run-time of an implementation depends
on the eigensystem solver that is being used.
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• CVXPY is distributed with the open source solvers; for the case of SDP instances,
CVXPY utilizes the Splitting Conic Solver ( SCS) (https://github.com/cvxgrp/scs (ac-
cessed on 20 January 2023)), a general numerical optimization package for solving
large-scale convex cone problems. SCS applies Douglas-Rachford splitting to a ho-
mogeneous embedding of the quadratic cone program. Based on the PSD constraint,
this again involves the computation of eigenvalues/eigenvector pairs (among other
steps) of a matrix of size equal to the density matrix we want to reconstruct. This takes
overall a O

(
(2n)3) computational complexity, not including the other steps performed

within the SCS solver. This is an iterative algorithm that requires such complexity
per iteration. Douglas-Rachford splitting methods enjoy O( 1

ε ) convergence rate in
general [53,102,103]. This leads to a rough O((2n)3 · 1

ε ) overall iteration complexity
(This is an optimistic complexity bound since we have skipped several details within
the Douglas-Rachford implementation of CVXPY).

• For MiFGD, and for sufficiently small momentum value, we require O(
√

κ · log( 1
ε ))

iterations to get close to the optimal value. Per iteration, MiFGD does not involve any
expensive eigensystem solvers, but relies only on matrix-matrix and matrix-vector
multiplications. In particular, the main computational complexity per iteration origins
from the iteration:

Uk+1 = Zk − ηA†
(
A(ZkZ†

k )− y
)
· Zk,

Zk+1 = Uk+1 + µ(Uk+1 −Uk).

Here, Uk, Zk ∈ R2n×r for all k. Observe that A(ZkZ†
k ) ∈ Rm where each element

is computed independently. For an index j ∈ [m], (A(ZkZ†
k ))j = Tr(AjZkZ†

k ) re-
quires O((2n)2 · r) complexity, and thus computing A(ZkZ†

k )− y requires O((2n)2 · r)
complexity, overall. By definition the adjoing operation A† : Rm → C2n×2n

satis-
fies: A†(x) = ∑m

i=1 xi Ai; thus, the operation A†(A(ZkZ†
k )− y

)
is still dominated by

O((2n)2 · r) complexity. Finally, we perform one more matrix-matrix multiplication
with Zi, which results into an additional O((2n)2 · r) complexity. The rest of the opera-
tions involve adding 2n × r matrices, which does not dominate the overall complexity.
Combining the iteration complexity with the per-iteration computational complexity,
MiFGD has a O((2n)2 · r · √κ · log( 1

ε )) complexity.

Combining the above, we summarize the following complexities:

O((2n)3)︸ ︷︷ ︸
lstsq

vs O((2n)3 · 1
ε )︸ ︷︷ ︸

CVXPY

vs O((2n)2 · r ·
√

κ · log( 1
ε ))︸ ︷︷ ︸

MiFGD

Observe that (i) MiFGD has the best dependence on the number of qubits and the
ambient dimension of the problem, 2n; (ii) MiFGD applies to cases that lstsq is inapplicable;
(iii) MiFGD has a better iteration complexity than other iterative algorithms, while has a
better polynomial dependency on 2n.

Appendix B. Detailed Proof of Theorem 1

For notational brevity, we first denote U+ ≡ Uk+1, U ≡ Uk, U− ≡ Uk−1 and Z ≡ Zk.
Let us start with the following equality. For RZ ∈ O as the minimizer of minR∈O ‖Z −
U?R‖F, we have:

‖U+ −U?RZ‖2
F = ‖U+ − Z + Z−U?RZ‖2

F (A1)

= ‖U+ − Z‖2
F + ‖Z−U?RZ‖2

F − 2〈U+ − Z, U?RZ − Z〉. (A2)

The proof focuses on how to bound the last part on the right-hand side. By the
definition of U+, we get:

https://github.com/cvxgrp/scs
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〈U+ − Z, U?RZ − Z〉 =
〈

Z− ηA†
(
A(ZZ†)− y

)
Z− Z, U?RZ − Z

〉

= η
〈
A†
(
A(ZZ†)− y

)
Z, Z−U?RZ

〉

Observe the following:
〈
A†
(
A(ZZ†)− y

)
Z, Z−U?RZ

〉
=
〈
A†
(
A(ZZ†)− y

)
, ZZ† −U?RZZ†

〉

=
〈
A†
(
A(ZZ†)− y

)
, ZZ† − 1

2 U?U?† + 1
2 U?U?† −U?RZZ†

〉

= 1
2

〈
A†
(
A(ZZ†)− y

)
, ZZ† −U?U?†

〉

+
〈
A†
(
A(ZZ†)− y

)
, 1

2 (ZZ† + U?U?†)−U?RZZ†
〉

= 1
2

〈
A†
(
A(ZZ†)− y

)
, ZZ† −U?U?†

〉

+ 1
2

〈
A†
(
A(ZZ†)− y

)
, (Z−U?RZ)(Z−U?RZ)

†
〉

.

By Lemmata A7 and A8, we have:

‖U+ −U?RZ‖2
F = ‖U+ − Z‖2

F + ‖Z−U?RZ‖2
F − 2〈U+ − Z, U?RZ − Z〉

= η2‖A†
(
A(ZZ†)− y

)
Z‖2

F + ‖Z−U?RZ‖2
F

− η
〈
A†
(
A(ZZ†)− y

)
, ZZ† −U?U?†

〉

− η
〈
A†
(
A(ZZ†)− y

)
, (Z−U?RZ)(Z−U?RZ)

†
〉

≤ η2‖A†
(
A(ZZ†)− y

)
Z‖2

F + ‖Z−U?RZ‖2
F

− 1.0656η2
∥∥∥A†(A(ZZ†)− y)Z

∥∥∥
2

F
− η 1−δ2r

2 ‖U?U?† − ZZ†‖2
F

+ η

(
θσr(ρ

?) · ‖Z−U?RZ‖2
F

+ 1
200 β2 · η̂ ·

( 3
2+2|µ|

)2

(
1−
( 3

2+2|µ|
) 1

103

)2 · ‖A†(A(ZZ†)− y) · Z‖2
F

)

Next, we use the following lemma:

Lemma A1 ([32] (Lemma 5.4)). For any W, V ∈ Cd×r, the following holds:

‖WW† −VV†‖2
F ≥ 2(

√
2− 1) · σr(VV†) ·min

R∈O
‖W −VR‖2

F.

From Lemma A1, the quantity ‖U?U?† − ZZ†‖2
F satisfies:

‖U?U?† − ZZ†‖2
F ≥ 2(

√
2− 1) · σr(ρ

?) ·min
R∈O
‖Z−U?R‖2

F = 2(
√

2− 1) · σr(ρ
?) · ‖Z−U?RZ‖2

F,

which, in our main recursion, results in:
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‖U+ −U?RZ‖2
F ≤ η2‖A†

(
A(ZZ†)− y

)
Z‖2

F + ‖Z−U?RZ‖2
F

− 1.0656η2
∥∥∥A†(A(ZZ†)− y)Z

∥∥∥
2

F
− η(
√

2− 1)(1− δ2r)σr(ρ
?)‖Z−U?RZ‖2

F

+ η

(
θσr(ρ

?) · ‖Z−U?RZ‖2
F

+ 1
200 β2 · η̂ ·

( 3
2+2|µ|

)2

(
1−
( 3

2+2|µ|
) 1

103

)2 · ‖A†(A(ZZ†)− y) · Z‖2
F

)

(i)
≤ η2‖A†

(
A(ZZ†)− y

)
Z‖2

F + ‖Z−U?RZ‖2
F

− 1.0656η2
∥∥∥A†(A(ZZ†)− y)Z

∥∥∥
2

F
− η(
√

2− 1)(1− δ2r)σr(ρ
?)‖Z−U?RZ‖2

F

+ η

(
θσr(ρ

?) · ‖Z−U?RZ‖2
F

+ 1
200 β2 · 10

9 η ·
( 3

2+2|µ|
)2

(
1−
( 3

2+2|µ|
) 1

103

)2 · ‖A†(A(ZZ†)− y) · Z‖2
F

)

(ii)
=


1 + 1

200 β2 · 10
9 ·

( 3
2+2|µ|

)2

(
1−
( 3

2+2|µ|
) 1

103

)2 − 1.0656


η2‖A†(A(ZZ†)− y) · Z‖2

F

+
(

1 + ηθσr(ρ
?)− η(

√
2− 1)(1− δ2r)σr(ρ

?)
)
‖Z−U?RZ‖2

F

where (i) is due to Lemma A6, and (ii) is due to the definition of U+.

Under the assumptions that µ = σr(ρ?)1/2

103
√

κτ(ρ?)
· ε

4·σ1(ρ?)1/2·r , for ε ∈ (0, 1) user-defined,

and δ2r ≤ 1
10 , the main constants in our proof so far simplify to:

β =
1 +

( 3
2 + 2|µ|

)
· 1

103

1−
( 3

2 + 2|µ|
)
· 1

103

= 1.003, and β2 = 1.006,

by Corollary A3. Thus:

1 + 1
200 β2 · 10

9 ·
( 3

2+2|µ|
)2

(
1−
( 3

2+2|µ|
) 1

103

)2 − 1.0656 ≤ −0.0516,

and our recursion becomes:

‖U+ −U?RZ‖2
F ≤ −0.0516 · η2 · ‖A†(A(ZZ†)− y) · Z‖2

F

+
(

1 + ηθσr(ρ
?)− η(

√
2− 1)(1− δ2r)σr(ρ

?)
)
‖Z−U?RZ‖2

F.

Finally, we have

θ =
(1−δ2r)

(
1+
( 3

2+2|µ|
) 1

103

)2

103 + (1 + δ2r)
(

2 +
(

3
2 + 2|µ|

)
· 1

103

)(
3
2 + 2|µ|

)
· 1

103

(i)
= (1− δ2r) ·



(

1+( 3
2+2|µ|) 1

103

)2

103 + κ
(

2 +
(

3
2 + 2|µ|

)
· 1

103

)(
3
2 + 2|µ|

)
· 1

103




≤ 0.0047 · (1− δ2r).
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where (i) is by the definition of κ := 1+δ2r
1−δ2r

≤ 1.223 for δ2r ≤ 1
10 , which is one of our

assumptions as explained above. Combining the above in our main inequality, we obtain:

‖U+ −U?RZ‖2
F ≤ −0.0516 · η2 · ‖A†(A(ZZ†)− y) · Z‖2

F

+
(

1 + ησr(ρ
?)(1− δ2r) · (0.0047−

√
2 + 1)

)
‖Z−U?RZ‖2

F

≤
(

1− 4ησr(ρ?)(1−δ2r)
10

)
‖Z−U?RZ‖2

F. (A3)

Taking square root on both sides, we obtain:

‖U+ −U?RZ‖F ≤
√

1− 4ησr(ρ?)(1−δ2r)
10 · ‖Z−U?RZ‖F

Let us define ξ =
√

1− 4ησr(ρ?)(1−δ2r)
10 . Using the definitions Z = U + µ(U −U−) and

RZ ∈ arg min
R∈O
‖Z−U?R‖F, we get

‖U+ −U?RZ‖F ≤ ξ ·min
R∈O
‖Z−U?R‖F = ξ ·min

R∈O
‖U + µ(U −U−)−U?R‖F

= ξ ·min
R∈O
‖U + µ(U −U−)− (1− µ + µ)U?R‖F

(i)
≤ ξ · |1 + µ| ·min

R∈O
‖U −U?R‖F + ξ · |µ| ·min

R∈O
‖U− −U?R‖F + ξ · |µ| · rσ1(ρ

?)1/2

where (i) follows from steps similar to those in Lemma A5. Further observe that

min
R∈O
‖U+ −U?R‖F ≤ ‖U+ −U?RZ‖F,

which leads to:

min
R∈O
‖U+ −U?R‖F

≤ ξ · |1 + µ| ·min
R∈O
‖U −U?R‖F + ξ · |µ| ·min

R∈O
‖U− −U?R‖F + ξ · |µ| · rσ1(ρ

?)1/2. (A4)

Including two subsequent iterations in a single two-dimensional first-order system,
we get the following characterization:

[
minR∈O ‖Uk+1 −U?R‖F

minR∈O ‖Uk −U?R‖F

]
≤
[

ξ · |1 + µ| ξ · |µ|
1 0

]
·
[

minR∈O ‖Uk −U?R‖F
minR∈O ‖Uk−1 −U?R‖F

]

+

[
1
0

]
· ξ · |µ| · σ1(ρ

?)1/2 · r.

Now, let xj := minR∈O ‖Uj −U?R‖F. Then, we can write the above relation as

[
xk+1

xk

]
≤
[

ξ · |1 + µ| ξ · |µ|
1 0

]

︸ ︷︷ ︸
:=A

·
[

xk
xk−1

]
+

[
1
0

]
· ξ · |µ| · σ1(ρ

?)1/2 · r,

where we denote the “contraction matrix” by A. Observe that A has non-negative values.
Unfolding the above recursion for k iterations, we obtain:

[
xk+1

xk

]
≤ Ak+1 ·

[
x0

x−1

]
+

(
k

∑
t=0

At

)
·
[

1
0

]
· ξ · |µ| · σ1(ρ

?)1/2 · r (A5)
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Taking norms on both sides, we get

∥∥∥∥
[

xk+1
xk

]∥∥∥∥ ≤
∥∥∥∥∥Ak+1 ·

[
x0

x−1

]
+

(
k

∑
t=0

At

)
·
[

1
0

]
· ξ · |µ| · σ1(ρ

?)1/2 · r
∥∥∥∥∥

(i)
≤
∥∥∥∥Ak+1 ·

[
x0

x−1

]∥∥∥∥+
∥∥∥∥∥

(
k

∑
t=0

At

)
·
[

1
0

]
· ξ · |µ| · σ1(ρ

?)1/2 · r
∥∥∥∥∥

(ii)
≤
∥∥∥Ak+1

∥∥∥ ·
∥∥∥∥
[

x0
x−1

]∥∥∥∥+
∥∥∥∥∥

(
k

∑
t=0

At

)
·
[

1
0

]
· ξ · |µ| · σ1(ρ

?)1/2 · r
∥∥∥∥∥, (A6)

where (i) is by triangle inequality, and (ii) is by submultiplicativity of matrix norms.
To bound Equation (A6), we will use spectral analysis. We first recall the definition of

the spectral radius of a matrix M:

ρ(M) := max{|λ| : λ ∈ Sp(M)},

where Sp(M) is the set of all eigenvalues of M. We then use the following lemma:

Lemma A2 (Lemma 11 in [104]). Given a matrix M and ε > 0, there exists a matrix norm ‖ · ‖
such that

‖M‖ ≤ ρ(M) + ε.

We further use the Gelfand’s formula:

Lemma A3 (Theorem 12 in [104]). Given any matrix norm ‖ · ‖, the following holds:

ρ(M) = lim
k→∞
‖Mk‖1/k

The proofs for the above lemmata can be found in [104]. Using Lemmas A2 and A3,
we have that for any ε > 0, there exists Kε ∈ N such that

‖Ak‖1/k ≤ (ρ(A) + ε) for all k.

Further, let Cε := maxk<Kε
max

{
1, ‖Ak‖

(ρ(A)+ε)k

}
. Then, we have

‖Ak‖ ≤ Cε(ρ(A) + ε)k for all k ≥ Kε. (A7)

Hence, using Equation (A7) in Equation (A6), we have

∥∥∥∥
[

xk+1
xk

]∥∥∥∥ ≤
∥∥∥Ak+1

∥∥∥ ·
∥∥∥∥
[

x0
x−1

]∥∥∥∥+
∥∥∥∥∥

(
k

∑
t=0

At

)
·
[

1
0

]
· ξ · |µ| · σ1(ρ

?)1/2 · r
∥∥∥∥∥

≤ Cε(ρ(A) + ε)k+1
∥∥∥∥
[

x0
x−1

]∥∥∥∥ (A8)

+

∥∥∥∥∥

[
1
0

]
· ξ · |µ| · σ1(ρ

?)1/2 · r · Cε ·
k

∑
t=0

(ρ(A) + ε)t

∥∥∥∥∥.

Therefore, asymptotically, the convergence rate is O(ρ(A)k+1), where ρ(A) is the
spectral radius of the contraction matrix A. We thus compute ρ(A) below. Since A is a
2× 2 matrix, its eigenvalues are:



Photonics 2023, 10, 116 33 of 46

λ1,2 =
ξ · |1 + µ|

2
±
√

ξ2(1 + µ)2

4
+ ξ · |µ|

(i)
=⇒ ρ(A) := max{λ1, λ2} = λ1 =

ξ · |1 + µ|
2

+

√
ξ2(1 + µ)2

4
+ ξ · |µ|,

where (i) follows since every term in λ1,2 is positive.
To show an accelerated convergence rate, we want the above eigenvalue (which

determines the convergence rate) to be bounded by 1−
√

1−δ2r
1+δ2r

(This is akin to the notion
of acceleration and optimal method (for certain function classes) from convex optimization
literature, where the condition number appears inside the

√· term. For details, see [39,44]).
To show this, first note that this term is bounded above as follows:

λ1 =
ξ · |1 + µ|

2
+

√
ξ2(1 + µ)2

4
+ ξ · |µ|

(i)
≤ ξ +

√
ξ2 + ξ

(ii)
≤ ξ +

√
2ξ

(ii)
≤ (
√

2 + 1)
√

ξ,

where (i) is by the conventional bound on momentum: 0 < µ < 1, and (ii) is by the relation
ξ2 ≤ ξ ≤ √ξ for 0 ≤ ξ ≤ 1. Therefore, to show an accelerated rate of convergence, we
want the following relation to hold:

(
√

2 + 1)
√

ξ ≤ 1−
√

1−δ2r
1+δ2r

⇐⇒
√

ξ ≤
√

1 + δ2r −
√

1− δ2r

(
√

2 + 1)
√

1 + δ2r
. (A9)

Recalling our definition of ξ =
√

1− 4ησr(ρ?)(1−δ2r)
10 , the problem boils down to choos-

ing the right step size η such that the above inequality on ξ in Equation (A9) is satisfied.
With simple algebra, we can show the following lower bound on η:


1−

(√
1 + δ2r −

√
1− δ2r

(
√

2 + 1)
√

1 + δ2r

)4

 · 10

4σr(ρ?)(1− δ2r)
≤ η

Finally, the argument inside the
√· term of ξ =

√
1− 4ησr(ρ?)(1−δ2r)

10 > 0 has to be
non-negative, yielding the following upper bound on η:

η ≤ 10
4σr(ρ?)(1− δ2r)

.

Combining two inequalities, and noting that the term
[

1−
(√

1+δ2r−
√

1−δ2r
(
√

2+1)
√

1+δ2r

)4
]

is

bounded above by 1, we arrive at the following bound on η:

1−

(√
1 + δ2r −

√
1− δ2r

(
√

2 + 1)
√

1 + δ2r

)4

 · 10

4σr(ρ?)(1− δ2r)
≤ η ≤ 10

4σr(ρ?)(1− δ2r)
. (A10)

In sum, for the specific η satisfying Equation (A10), we have shown that

ρ(A) = λ1 =
ξ · |1 + µ|

2
+

√
ξ2(1 + µ)2

4
+ ξ · |µ| ≤ 1−

√
1− δ2r

1 + δ2r
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Above bound translates Equation (A8) into:

∥∥∥∥
[

xk+1
xk

]∥∥∥∥ ≤ Cε(ρ(A) + ε)k+1
∥∥∥∥
[

x0
x−1

]∥∥∥∥+
∥∥∥∥∥

[
1
0

]
· ξ · |µ| · σ1(ρ

?)1/2 · r · Cε ·
k

∑
t=0

(ρ(A) + ε)t

∥∥∥∥∥

≤ Cε

(
1−

√
1−δ2r
1+δ2r

+ ε

)k+1∥∥∥∥
[

x0
x−1

]∥∥∥∥+
∥∥∥∥∥

[
1
0

]
· ξ · |µ| · σ1(ρ

?)1/2 · r · Cε ·
k

∑
t=0

(ρ(A) + ε)t

∥∥∥∥∥

Without loss of generality, we can take the Euclidean norm from the above (By the
equivalence of norms [105], Cε can absorb additional constants), which yields:

∥∥∥∥
[

xk+1
xk

]∥∥∥∥
2
≤ Cε

(
1−

√
1−δ2r
1+δ2r

+ ε

)k+1∥∥∥∥
[

x0
x−1

]∥∥∥∥
2
+

∥∥∥∥∥

[
1
0

]
· ξ · |µ| · σ1(ρ

?)1/2 · r · Cε ·
k

∑
t=0

(ρ(A) + ε)t

∥∥∥∥∥
2

= Cε

(
1−

√
1−δ2r
1+δ2r

+ ε

)k+1√
x2

0 + x2
−1 + ξ · |µ| · σ1(ρ

?)1/2 · r · Cε ·
k

∑
t=0

(ρ(A) + ε)t

= Cε

(
1−

√
1−δ2r
1+δ2r

+ ε

)k+1√
x2

0 + x2
−1 + ξ · |µ| · σ1(ρ

?)1/2 · r · Cε · 1−(ρ(A)+ε)k+1

1−(ρ(A)+ε)
.

Re-substituting xj = minR∈O ‖Uj −U?R‖F, and using the same initialization for U0
and U−1, we get:

(
min
R∈O
‖Uk+1 −U?R‖2

F + min
R∈O
‖Uk −U?R‖2

F

)1/2

≤ Cε

(
1−

√
1−δ2r
1+δ2r

+ ε

)k+1(
2 min

R∈O
‖U0 −U?R‖2

F

)1/2
+ ξ · |µ| · σ1(ρ

?)1/2 · r · Cε · 1−(ρ(A)+ε)k+1

1−(ρ(A)+ε)

= Cε

(
1−

√
1−δ2r
1+δ2r

+ ε

)k+1
min
R∈O
‖U0 −U?R‖F + ξ · |µ| · σ1(ρ

?)1/2 · r · C̃ε

≈ Cε

(
1−

√
1−δ2r
1+δ2r

+ ε

)k+1
min
R∈O
‖U0 −U?R‖F + O(µ),

where in the equality, with slight abuse of notation, we absorbed
√

2 factor to Cε, and

similarly absorbed the last term such that C̃ε = Cε · 1−(ρ(A)+ε)k+1

1−(ρ(A)+ε)
. This concludes the proof

for Theorem 1.

Supporting Lemmata

In this subsection, we present a series of lemmata, used for the proof of Theorem 1.

Lemma A4. Let U ∈ Cd×r and U? ∈ Cd×r, such that ‖U −U?R‖F ≤ σr(ρ?)1/2

103
√

κτ(ρ?)
for some

R ∈ O, where ρ? = U?U?†, κ := 1+δ2r
1−δ2r

> 1, for δ2r ≤ 1
10 , and τ(ρ?) := σ1(ρ

?)
σr(ρ?)

> 1. Then:

σ1(ρ
?)1/2

(
1− 1

103

)
≤ σ1(U) ≤ σ1(ρ

?)1/2
(

1 + 1
103

)

σr(ρ
?)1/2

(
1− 1

103

)
≤ σr(U) ≤ σr(ρ

?)1/2
(

1 + 1
103

)

Proof. By the fact ‖ · ‖2 ≤ ‖ · ‖F and using Weyl’s inequality for perturbation of singular
values [106] (Theorem 3.3.16), we have:

|σi(U)− σi(U?)| ≤ σr(ρ?)1/2

103
√

κτ(ρ?)
≤ σr(ρ?)1/2

103 , 1 ≤ i ≤ r.
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Then,

− σr(ρ?)1/2

103 ≤ σ1(U)− σ1(U?) ≤ σr(ρ?)1/2

103 ⇒

σ1(ρ
?)1/2 − σr(ρ?)1/2

103 ≤ σ1(U) ≤ σ1(ρ
?)1/2 + σr(ρ?)1/2

103 ⇒
σ1(ρ

?)1/2
(

1− 1
103

)
≤ σ1(U) ≤ σ1(ρ

?)1/2
(

1 + 1
103

)
.

Similarly:

− σr(ρ?)1/2

103 ≤ σr(U)− σr(U?) ≤ σr(ρ?)1/2

103 ⇒

σr(ρ
?)1/2 − σr(ρ?)1/2

103 ≤ σr(U) ≤ σr(ρ
?)1/2 + σr(ρ?)1/2

103 ⇒
σr(ρ

?)1/2
(

1− 1
103

)
≤ σr(U) ≤ σr(ρ

?)1/2
(

1 + 1
103

)
.

In the above, we used the fact that σi(U?) = σi(ρ
?)1/2, for all i, and the fact that

σi(ρ
?)1/2 ≥ σj(ρ

?)1/2, for i ≤ j.

Lemma A5. Let U ∈ Cd×r, U− ∈ Cd×r, and U? ∈ Cd×r, such that minR∈O ‖U −U?R‖F ≤
σr(ρ?)1/2

103
√

κτ(ρ?)
and minR∈O ‖U− −U?R‖F ≤ σr(ρ?)1/2

103
√

κτ(ρ?)
, where ρ? = U?U?†, and κ := 1+δ2r

1−δ2r
> 1, for

δ2r ≤ 1
10 , and τ(ρ?) := σ1(ρ?)

σr(ρ?)
> 1. Set the momentum parameter as µ =

σr(ρ?)1/2

103
√

κτ(ρ?)
· ε

4·σ1(ρ?)1/2·r , for

ε ∈ (0, 1) user-defined. Then,

‖Z−U?RZ‖F ≤
( 3

2 + 2|µ|
)
· σr(ρ?)1/2

103
√

κτ(ρ?)
.

Proof. Let RU ∈ arg minR∈O ‖U −U?‖F and RU− ∈ arg minR∈O ‖U− −U?R‖F. By the
definition of the distance function:

‖Z−U?RZ‖F = min
R∈O
‖Z−U?R‖F = min

R∈O
‖U + µ(U −U−)−U?R‖F

= min
R∈O
‖U + µ(U −U−)− (1− µ + µ)U?R‖F

≤ |1 + µ| · ‖U −U∗RU‖F + |µ| · ||U− −U∗RU− ||F
= |1 + µ| · ‖U −U∗RU‖F + |µ| · ‖U− −U∗RU −U∗RU− + U∗RU−‖F

= |1 + µ| · ‖U −U∗RU‖F + |µ| · ‖(U− −U∗RU−) + U∗(RU− − RU)‖F

≤ |1 + µ| ·min
R∈O
‖U −U?R‖F + |µ| ·min

R∈O
‖U− −U?R‖F

+ |µ| · ‖U?(RU − RU−)‖F

≤ |1 + µ| ·min
R∈O
‖U −U?R‖F + |µ| ·min

R∈O
‖U− −U?R‖F + 2|µ| · σ1(ρ

?)1/2r

(i)
≤
( 3

2 + 2|µ|
)
· σr(ρ?)1/2

103
√

κτ(ρ?)

where (i) is due to the fact that µ ≤ σr(ρ?)1/2

103
√

κτ(ρ?)
· 1

4·σ1(ρ?)1/2·r . We keep µ in the expression,

but we use it for clarity for the rest of the proof.

Corollary A1. Let Z ∈ Cd×r and U? ∈ Cd×r, such that ‖Z−U?R‖F ≤
( 3

2 + 2|µ|
)
· σr(ρ?)1/2

103
√

κτ(ρ?)

for some R ∈ O, and ρ? = U?U?†. Then:

σ1(ρ
?)1/2

(
1−

( 3
2 + 2|µ|

) 1
103

)
≤ σ1(Z) ≤ σ1(ρ

?)1/2
(

1 +
( 3

2 + 2|µ|
) 1

103

)

σr(ρ
?)1/2

(
1−

( 3
2 + 2|µ|

) 1
103

)
≤ σr(Z) ≤ σr(ρ

?)1/2
(

1 +
( 3

2 + 2|µ|
) 1

103

)
.
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Given that µ =
σr(ρ?)1/2

103
√

κτ(ρ?)
· ε

4·σ1(ρ?)1/2·r ≤
1

103 , we get:

0.998 · σ1(ρ
?)1/2 ≤ σ1(Z) ≤ 1.0015 · σ1(ρ

?)1/2

0.998 · σr(ρ
?)1/2 ≤ σr(Z) ≤ 1.0015 · σr(ρ

?)1/2.

Proof. The proof follows similar motions as in Lemma A4.

Corollary A2. Under the same assumptions of Lemma A4 and Corollary A1, and given the
assumptions on µ, we have:

99
100 · ‖ρ?‖2 ≤ ‖ZZ†‖2 ≤ 101

100 · ‖ρ?‖2
99

100 · ‖ρ?‖2 ≤ ‖Z0Z†
0‖2 ≤ 101

100 · ‖ρ?‖2 and
99

101 · ‖Z0Z†
0‖2 ≤ ‖ZZ†‖2 ≤ 101

99 · ‖Z0Z†
0‖2

Proof. The proof is easily derived based on the quantities from Lemma A4 and Corollary A1.

Corollary A3. Let Z ∈ Cd×r and U? ∈ Cd×r, such that ‖Z−U?R‖F ≤
( 3

2 + 2|µ|
)
· σr(ρ?)1/2

103
√

κτ(ρ?)

for some R ∈ O, and ρ? = U?U?†. Define τ(W) = σ1(W)
σr(W)

. Then:

τ(ZZ†) ≤ β2τ(ρ?), (A11)

where β :=
1+
( 3

2+2|µ|
)
· 1
103

1−
( 3

2+2|µ|
)
· 1
103

> 1. for µ ≤ σr(ρ?)1/2

103
√

κτ(ρ?)
· 1

4·σ1(ρ?)1/2·r .

Proof. The proof uses the definition of the condition number τ(·) and the results from
Lemma A4 and and Corollary A1.

Lemma A6. Consider the following three step sizes:

η =
1

4
(
(1 + δ2r)‖Z0Z†

0‖2 + ‖A†
(
A(Z0Z†

0)− y
)
‖2
)

η̂ =
1

4
(
(1 + δ2r)‖ZZ†‖2 + ‖A†(A(ZZ†)− y)QZQ†

Z‖2
)

η? =
1

4
(
(1 + δ2r)‖ρ?>‖2 + ‖A†(A(ρ?)− y)‖2

) .

Here, Z0 ∈ Cd×r is the initial point, Z ∈ Cd×r is the current point, ρ? ∈ Cd×d is the optimal
solution, and QZ denotes a basis of the column space of Z. Then, under the assumptions that

minR∈O ‖U − U?R‖F ≤ σr(ρ?)1/2

103
√

κτ(ρ?)
, and minR∈O ‖Z − U?R‖F ≤

( 3
2 + 2|µ|

)
· σr(ρ?)1/2

103
√

κτ(ρ?)
,

and assuming µ =
σr(ρ?)1/2

103
√

κτ(ρ?)
· ε

4·σ1(ρ?)1/2·r , for the user-defined parameter ε ∈ (0, 1), we have:

10
9 η ≥ η̂ ≥ 10

10.5 η, and 100
102 η? ≤ η ≤ 102

100 η?

Proof. The assumptions of the lemma are identical to that of Corollary A2. Thus, we have:
99

100 · ‖U?‖2
2 ≤ ‖Z‖2

2 ≤ 101
100 · ‖U?‖2

2, 99
100 · ‖U?‖2

2 ≤ ‖Z0‖2
2 ≤ 101

100 · ‖U?‖2
2, and 99

101 · ‖Z0‖2
2 ≤

‖Z‖2
2 ≤ 101

99 · ‖Z0‖2
2. We focus on the inequality η̂ ≥ 10

10.5 η. Observe that:
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∥∥∥A†
(
A(ZZ†)− y

)
QZQ†

Z

∥∥∥
2
≤
∥∥∥A†

(
A(ZZ†)− y

)∥∥∥
2

=
∥∥∥A†

(
A(ZZ†)− y

)
−A†

(
A(Z0Z†

0 )− y
)
+A†

(
A(Z0Z†

0 )− y
)∥∥∥

2
(i)
≤ (1 + δ2r)

∥∥∥ZZ† − Z0Z†
0

∥∥∥
F
+
∥∥∥A†

(
A(Z0Z†

0 )− y
)∥∥∥

2

≤ (1 + δ2r)
∥∥∥ZZ† −U?U?†

∥∥∥
F
+ (1 + δ2r)

∥∥∥Z0Z†
0 −U?U?†

∥∥∥
F

+
∥∥∥A†

(
A(Z0Z†

0 )− y
)∥∥∥

2

where (i) is due to smoothness via RIP constants of the objective and the fact ‖ · ‖2 ≤ ‖ · ‖F.
For the first two terms on the right-hand side, where RZ is the minimizing rotation matrix
for Z, we obtain:

‖ZZ† −U?U?†‖F = ‖ZZ† −U?RZZ† + U?RZZ† −U?U?†‖F

= ‖(Z−U?RZ)Z† + U?RZ(Z−U?RZ)
†‖F

≤ ‖Z‖2 · ‖Z−U?RZ‖F + ‖U?‖2 · ‖Z−U?RZ‖F

≤ (‖Z‖2 + ‖U?‖2) · ‖Z−U?RZ‖F

(i)
≤
(√

101
99 +

√
100
99

)
‖Z0‖2 · ‖Z−U?RZ‖F

(ii)
≤
(√

101
99 +

√
100
99

)
‖Z0‖2 · 0.001σr(ρ

?)1/2

≤
(√

101
99 +

√
100
99

)
· 0.001 ·

√
100
99 · ‖Z0‖2

2

where (i) is due to the relation of ‖Z‖2 and ‖U?‖2 derived above, (ii) is due to Lemma A5.
Similarly:

‖Z0Z†
0 −U?U?†‖F ≤

(√
101
99 +

√
100
99

)
· 0.001 ·

√
100
99 · ‖Z0‖2

2

Using these above, we obtain:
∥∥∥A†

(
A(ZZ†)− y

)
QZQ†

Z

∥∥∥
2
≤ 4.1(1+δ2r)

103 ‖Z0Z†
0‖2 +

∥∥∥A†
(
A(Z0Z†

0 )− y
)∥∥∥

2

Thus:

η̂ =
1

4
(
(1 + δ2r)‖ZZ†‖2 + ‖A†(A(ZZ†)− y)QZQ†

Z‖2
)

≥ 1

4
(
(1 + δ2r)

101
99 ‖Z0Z0‖2+

)
+ 4.1(1+δ2r)

103 ‖Z0Z†
0‖2 +

∥∥A†
(
A(Z0Z†

0)− y
)∥∥

2

≥ 1

4
(

10.5
10 · (1 + δ2r)‖Z0Z†

0‖2 + ‖A†
(
A(Z0Z†

0)− y
)
‖2

)

≥ 10
10.5 η

Similarly, one gets η̂ ≤ 10
9 η.
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For the relation between η and η?, we will prove here the lower bound; similar motions
lead to the upper bound also. By definition, and using the relations in Corollary A2, we get:

η =
1

4
(
(1 + δ2r)‖Z0Z†

0‖2 + ‖A†
(
A(Z0Z†

0)− y
)
‖2
)

≥ 1

4
(
(1 + δ2r)

101
100‖ρ?>‖2 + ‖A†

(
A(Z0Z†

0)− y
)
‖2

)

For the gradient term, we observe:
∥∥∥A†

(
A(Z0Z†

0)− y
)∥∥∥

2
≤
∥∥∥A†

(
A(Z0Z†

0)− y
)
−A†(A(ρ?)− y)

∥∥∥
2
+
∥∥∥A†(A(ρ?)− y)

∥∥∥
2

(i)
=
∥∥∥A†

(
A(Z0Z†

0)− y
)
−A†(A(ρ?)− y)

∥∥∥
2

(ii)
≤ (1 + δ2r)

∥∥∥Z0Z†
0 −U?U?†

∥∥∥
F

(iii)
≤ (1 + δ2r)(‖Z0‖2 + ‖U?‖2) · ‖Z−U?RZ‖F

(iv)
≤ (1 + δ2r)

(√
101
100 + 1

)
‖U?‖2 · 0.001 · ‖U?‖2

2

≤ 0.002 · (1 + δ2r)‖ρ?‖2

where (i) is due to
∥∥A†(A(ρ?)− y)

∥∥
2 = 0, (ii) is due to the restricted smoothness assump-

tion and the RIP, (iii) is due to the bounds above on
∥∥Z0Z†

0 −U?U?†
∥∥

F, (iv) is due to the
bounds on ‖Z0‖2, w.r.t. ‖U?‖2, as well as the bound on ‖Z−U?R‖F.

Thus, in the inequality above, we get:

η ≥ 1

4
(
(1 + δ2r)

101
100‖ρ?>‖2 + ‖A†

(
A(Z0Z†

0)− y
)
‖2

)

≥ 1

4
(
(1 + δ2r)

101
100‖ρ?>‖2 + 0.001 · (1 + δ2r)‖ρ?‖2 + ‖A†(A(ρ?)− y)‖2

)

≥ 1

4
(
(1 + δ2r)

102
100‖ρ?>‖2 + ‖A†(A(ρ?)− y)‖2

) ≥ 100
102 η?

Similarly, one can show that 102
100 η? ≥ η.

Lemma A7. Let U ∈ Cd×r, U− ∈ Cd×r, and U? ∈ Cd×r, such that minR∈O ‖U −U?R‖F ≤
σr(ρ?)1/2

103
√

κτ(ρ?)
and minR∈O ‖U− −U?R‖F ≤ σr(ρ?)1/2

103
√

κτ(ρ?)
, where ρ? = U?U?†, and κ := 1+δ2r

1−δ2r
> 1, for

δ2r ≤ 1
10 , and τ(ρ?) := σ1(ρ

?)
σr(ρ?)

> 1. By Lemma A5, the above imply also that: ‖Z−U?RZ‖F ≤(
3
2 + 2|µ|

)
· σr(ρ?)1/2

103
√

κτ(ρ?)
. Then, under RIP assumptions of the mapping A, we have:

〈
A†(A(ZZ†)− y), (Z−U?RZ)(Z−U?RZ)

†
〉

≥ −
(

θσr(ρ
?) · ‖Z−U?RZ‖2

F + 10.1
100 β2 · η̂ · (1+2|µ|)2

(
1−(1+2|µ|) 1

200

)2 · ‖A†(A(ZZ†)− y) · Z‖2
F

)

where

θ =
(1−δ2r)

(
1+(1+2|µ|) 1

200

)2

103 + (1 + δ2r)
(

2 + (1 + 2|µ|) · 1
200

)
(1 + 2|µ|) · 1

200 ,
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and η̂ = 1
4((1+δr)‖ZZ†‖2+‖A†(A(ZZ†)−y)QZQ†

Z‖2)
.

Proof. First, denote ∆ := Z−U?RZ. Then:
〈
A†(A(ZZ†)− y), (Z−U?RZ)(Z−U?RZ)

†
〉

(i)
=
〈
A†(A(ZZ†)− y) ·Q∆Q†

∆, ∆Z∆†
Z

〉

≥ −
∣∣∣Tr
(
A†(A(ZZ†)− y) ·Q∆Q†

∆ · ∆Z∆†
Z

)∣∣∣ (A12)

(ii)
≥ −‖A†(A(ZZ†)− y) ·Q∆Q†

∆‖2 · Tr(∆Z∆†
Z)

(iii)
≥ −

(
‖A†(A(ZZ†)− y) ·QZQ†

Z‖2 + ‖A†(A(ZZ†)− y) ·QU? Q†
U?‖2

)
‖Z−U?RZ‖2

F

Note that (i) follows from the fact ∆Z = ∆ZQ∆Q†
∆, for a matrix Q that spans the

row space of ∆Z, and (ii) follows from |Tr(AB)| ≤ ‖A‖2Tr(B), for PSD matrix B (Von
Neumann’s trace inequality [107]). For the transformation in (iii), we use that fact that the
row space of ∆Z, SPAN(∆Z), is a subset of SPAN(Z ∪U?), as ∆Z is a linear combination of
U and U?.

To bound the first term in equation (A12), we observe:

‖A†(A(ZZ†)− y) ·QZQ†
Z‖2 · ‖Z−U?RZ‖2

F

(i)
= η̂ · 4

(
(1 + δ2r)‖ZZ†‖2

+ ‖A†(A(ZZ†)− y) ·QZQ†
Z‖2

)
· ‖A†(A(ZZ†)− y) ·QZQ†

Z‖2 · ‖Z−U?RZ‖2
F

= 4η̂(1 + δ2r)‖ZZ†‖2‖A†(A(ZZ†)− y) ·QZQ†
Z‖2 · ‖Z−U?RZ‖2

F︸ ︷︷ ︸
:=A

+ 4η̂‖A†(A(ZZ†)− y) ·QZQ†
Z‖2

2 · ‖Z−U?RZ‖2
F

where (i) is due to the definition of η̂.

To bound term A, we observe that ‖A†(A(ZZ†) − y) · QZQ†
Z‖2 ≤ (1−δ2r)σr(ZZ†)

103 or

‖A†(A(ZZ†)− y) ·QZQ†
Z‖2 ≥ (1−δ2r)σr(ZZ†)

103 . This results into bounding A as follows:

4η̂(1 + δ2r)‖ZZ†‖2‖A†(A(ZZ†)− y) ·QZQ†
Z‖2 · ‖Z−U?RZ‖2

F

≤ max
{

4·η̂·(1+δ2r)‖ZZ†‖2·(1−δ2r)σr(ZZ†)
103 · ‖Z−U?RZ‖2

F,

η̂ · 4 · 103κτ(ZZ†)‖A†(A(ZZ†)− y) ·QZQ†
Z‖2

2 · ‖Z−U?RZ‖2
F

}

≤ 4·η̂·(1−δ2
2r)‖ZZ†‖2·σr(ZZ†)

103 · ‖Z−U?RZ‖2
F

+ η̂ · 4 · 103κτ(ZZ†)‖A†(A(ZZ†)− y) ·QZQ†
Z‖2

2 · ‖Z−U?RZ‖2
F.

Combining the above inequalities, we obtain:
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‖A†(A(ZZ†)− y) ·QZQ†
Z‖2 · ‖Z−U?RZ‖2

F

(i)
≤ (1−δ2r)σr(ZZ†)

103 · ‖Z−U?RZ‖2
F

+ (103κτ(ZZ†) + 1) · 4 · η̂‖A†(A(ZZ†)− y) ·QZQ†
Z‖2

2 · ‖Z−U?RZ‖2
F

(ii)
≤ (1−δ2r)σr(ZZ†)

103 · ‖Z−U?RZ‖2
F

+ (103β2κτ(ρ?) + 1) · 4 · η̂‖A†(A(ZZ†)− y) ·QZQ†
Z‖2

2 ·
( 3

2+2|µ|
)2

κτ(ρ?)
1

106 σr(ρ
?)

(iii)
≤ (1−δ2r)σr(ZZ†)

103 · ‖Z−U?RZ‖2
F

+ 4 · 1001β2 · η̂ · ‖A†(A(ZZ†)− y) ·QZQ†
Z‖2

2 ·
( 3

2+2|µ|
)2

106
(

1−
( 3

2+2|µ|
) 1

103

)2 σr(ZZ†)

(iv)
≤ (1−δ2r)σr(ZZ†)

103 · ‖Z−U?RZ‖2
F

+ 4 · 1001β2 · η̂ ·
( 3

2+2|µ|
)2

106
(

1−
( 3

2+2|µ|
) 1

103

)2 · ‖A†(A(ZZ†)− y) · Z‖2
F

(v)
≤

(1−δ2r)
(

1+( 3
2+2|µ|) 1

103

)2
σr(ρ?)

103 · ‖Z−U?RZ‖2
F

+ 1
200 β2 · η̂ ·

( 3
2+2|µ|

)2

(
1−
( 3

2+2|µ|
) 1

103

)2 · ‖A†(A(ZZ†)− y) · Z‖2
F

where (i) follows from η̂ ≤ 1
4(1+δ2r)‖ZZ†‖2

, (ii) is due to Corollary A3, bounding ‖Z −
U?RZ‖F ≤ ρσr(ρ?)1/2, where ρ :=

( 3
2 + 2|µ|

) 1
103
√

κτ(ρ?)
by Lemma A5, (iii) is due to

(103β2κτ(ρ?) + 1) ≤ 1001β2κτ(ρ?), and by Corollary A1, (iv) is due to the fact

σr(ZZ†)‖A†(A(ZZ†)− y) ·QZQ†
Z‖2

2 ≤ ‖A†(A(ZZ†)− y)Z‖2
F,

and (v) is due to Corollary A1.
Next, we bound the second term in equation (A12):

‖A†(A(ZZ†)− y) ·QU?Q†
U?‖2 · ‖Z−U?RZ‖2

F

(i)
≤ ‖A†(A(ZZ†)− y)−A†(A(ρ?)− y)‖2 · ‖Z−U?RZ‖2

F

(ii)
≤ (1 + δ2r) · ‖ZZ† −U?U?†‖F · ‖Z−U?RZ‖2

F

(iii)
≤ (1 + δ2r)(2 + ρ) · ρ · σ1(U?) · σr(U?) · ‖Z−U?RZ‖2

F

(iv)
≤ (1 + δ2r)(2 + ρ)

( 3
2 + 2|µ|

)
· 1

103 σr(ρ
?) · ‖Z−U?RZ‖2

F

≤ (1 + δ2r)
(

2 +
( 3

2 + 2|µ|
)
· 1

103

)( 3
2 + 2|µ|

)
· 1

103 σr(ρ
?) · ‖Z−U?RZ‖2

F,

where (i) follows from ‖A†(A(ZZ†) − y) · QU?Q†
U?‖2 ≤ ‖A†(A(ZZ†) − y)‖2 and

A†(A(ρ?) − y) = 0, (ii) is due to smoothness of f and the RIP constants, (iii) follows
from [25] (Lemma 18), for ρ =

( 3
2 + 2|µ|

)
· 1

103
√

κτ(ρ?)
, (iv) follows from substituting ρ

above, and observing that τ(ρ?) = σ1(U?)2/σr(U?)2 > 1 and κ = (1 + δ2r)/(1− δ2r) > 1.
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Combining the above we get:
〈
A†(A(ZZ†)− y), (Z−U?RZ)(Z−U?RZ)

†
〉

≥ −
(

θσr(ρ
?) · ‖Z−U?RZ‖2

F + 1
200 β2 · η̂ ·

( 3
2+2|µ|

)2

(
1−
( 3

2+2|µ|
) 1

103

)2 · ‖A†(A(ZZ†)− y) · Z‖2
F

)
(A13)

where θ =
(1−δ2r)

(
1+
( 3

2+2|µ|
) 1

103

)2

103 + (1 + δ2r)
(

2 +
( 3

2 + 2|µ|
)
· 1

103

)( 3
2 + 2|µ|

)
· 1

103 .

Lemma A8. Under identical assumptions with Lemma A7, the following inequality holds:
〈
A†(A(ZZ†)− y), ZZ† −U?U?†

〉
≥ 1.1172η

∥∥∥A†(A(ZZ†)− y)Z
∥∥∥

2

F
+ 1−δ2r

2 ‖U?U?† − ZZ†‖2
F

Proof. By smoothness assumption of the objective, based on the RIP assumption, we have:

1
2‖A(ZZ†)− y‖2

2 ≥ 1
2‖A(U+U†

+)− y‖2
2

−
〈
A†(A(ZZ†)− y), U+U†

+ − ZZ†
〉
− 1+δ2r

2 ‖U+U†
+ − ZZ†‖2

F ⇒
1
2‖A(ZZ†)− y‖2

2 ≥ 1
2‖A(U?U?†)− y‖2

2

−
〈
A†(A(ZZ†)− y), U+U†

+ − ZZ†
〉
− 1+δ2r

2 ‖U+U†
+ − ZZ†‖2

F

due to the optimality ‖A(U?U?†)− y‖2
2 = 0 ≤ ‖A(VV†)− y‖2

2, for any V ∈ Cd×r. Also,
by the restricted strong convexity with RIP, we get:

1
2‖A(U?U?†)− y‖2

2 ≥ 1
2‖A(ZZ†)− y‖2

2

+
〈
A†(A(ZZ†)− y), U?U?† − ZZ†

〉
+ 1−δ2r

2 ‖U?U?† − ZZ†‖2
F

Adding the two inequalities, we obtain:
〈
A†(A(ZZ†)− y), ZZ† −U?U?†

〉
≥
〈
A†(A(ZZ†)− y), ZZ† −U+U†

+

〉

− 1+δ2r
2 ‖U+U†

+ − ZZ†‖2
F + 1−δ2r

2 ‖U?U?† − ZZ†‖2
F

To proceed we observe:

U+U†
+ =

(
Z− ηA†

(
A(ZZ†)− y

)
Z
)
·
(

Z− ηA†
(
A(ZZ†)− y

)
Z
)†

= ZZ† − ηZZ† · A†
(
A(ZZ†)− y

)
− ηA†

(
A(ZZ†)− y

)
· ZZ†

+ η2A†
(
A(ZZ†)− y

)
· ZZ† · A†

(
A(ZZ†)− y

)

(i)
= ZZ† −

(
I − η

2 QZQ†
ZA†

(
A(ZZ†)− y

))
· ηZZ† · A†

(
A(ZZ†)− y

)

− ηA†
(
A(ZZ†)− y

)
· ZZ† ·

(
I − η

2 QZQ†
ZA†

(
A(ZZ†)− y

))

where (i) is due to the factA†(A(ZZ†)− y
)
· ZZ† · A†(A(ZZ†)− y

)
= A†(A(ZZ†)− y

)
·

QZQ†
Z · ZZ† · QZQ†

Z · A†(A(ZZ†)− y
)
, for QZ a basis matrix whose columns span the

column space of Z; also, I is the identity matrix whose dimension is apparent from the
context. Thus:

η
2 QZQ†

ZA†
(
A(ZZ†)− y

)
� 10.5

10
η̂
2 QZQ†

ZA†
(
A(ZZ†)− y

)
,
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and, hence,

I − η
2 QZQ†

ZA†
(
A(ZZ†)− y

)
� I − 10.5

10
η̂
2 QZQ†

ZA†
(
A(ZZ†)− y

)
.

Define Ψ = I − η
2 QZQ†

ZA†(A(ZZ†)− y
)
. Then, using the definition of η̂, we know

that η̂ ≤ 1
4‖QZQ†

ZA†(A(ZZ†)−y)‖2
, and thus:

Ψ � 0, σ1(Ψ) ≤ 1 + 21
160 , and σn(Ψ) ≥ 1− 21

160 .

Going back to the main recursion and using the above expression for U+U†
+, we have:

〈
A†(A(ZZ†)− y), ZZ† −U?U?†

〉
− 1−δ2r

2 ‖U?U?† − ZZ†‖2
F

≥
〈
A†(A(ZZ†)− y), ZZ† −U+U†

+

〉
− 1+δ2r

2 ‖U+U†
+ − ZZ†‖2

F

(i)
≥ 2η

〈
A†(A(ZZ†)− y),A†(A(ZZ†)− y) · ZZ† ·Ψ

〉

− 1+δ2r
2 ‖2ηA†(A(ZZ†)− y) · ZZ† ·Ψ‖2

F

(ii)
≥ 2

(
1− 21

160

)
η
∥∥∥A†(A(ZZ†)− y)Z

∥∥∥
2

F

− 2(1 + δ2r)η
2
∥∥∥A†(A(ZZ†)− y)Z

∥∥∥
2

F
· ‖Z‖2

2 · ‖Ψ‖2
2

(iii)
≥ 2

(
1− 21

160

)
η
∥∥∥A†(A(ZZ†)− y)Z

∥∥∥
2

F

− 2(1 + δ2r)η
2
∥∥∥A†(A(ZZ†)− y)Z

∥∥∥
2

F
· ‖Z‖2

2 ·
(

1 + 21
160

)2

= 2
(

1− 21
160

)
η
∥∥∥A†(A(ZZ†)− y)Z

∥∥∥
2

F
·
(

1− 2(1 + δ2r)η · ‖Z‖2
2 ·
(

1 + 21
160

)2
· 1

2(1− 21
160 )

)

(iv)
≥ 2

(
1− 21

160

)
η
∥∥∥A†(A(ZZ†)− y)Z

∥∥∥
2

F
·
(

1− 2(1 + δ2r)
10.5
10 η̂ · ‖Z‖2

2 ·
(

1 + 21
160

)2
· 1

2(1− 21
160 )

)

(v)
≥ 2

(
1− 21

160

)
η
∥∥∥A†(A(ZZ†)− y)Z

∥∥∥
2

F
·

1− 10.5

10

(
1+ 21

160

)2

4(1− 21
160 )




= 1.0656η
∥∥∥A†(A(ZZ†)− y)Z

∥∥∥
2

F

where (i) is due to the symmetry of the objective; (ii) is due to Cauchy-Schwarz inequality
and the fact:

〈
A†(A(ZZ†)− y), A†(A(ZZ†)− y) · ZZ† ·Ψ

〉

=
〈
A†(A(ZZ†)− y),A†(A(ZZ†)− y) · ZZ†

〉

− η
2

〈
A†(A(ZZ†)− y),A†(A(ZZ†)− y) · ZZ† · A†(A(ZZ†)− y)

〉

(i)
≥
〈
A†(A(ZZ†)− y),A†(A(ZZ†)− y) · ZZ†

〉

− 10.5
10

η̂
2

〈
A†(A(ZZ†)− y),A†(A(ZZ†)− y) · ZZ† · A†(A(ZZ†)− y)

〉

≥
(

1− 10.5
10

η̂
2 ‖QZQ†

ZA†(A(ZZ†)− y)‖2
2

)
·
∥∥∥A†(A(ZZ†)− y)Z

∥∥∥
2

F

≥
(

1− 21
160

)∥∥∥A†(A(ZZ†)− y)Z
∥∥∥

2

F
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where (i) is due to η ≤ 10.5
10 η̂, and the last inequality comes from the definition of the η̂ and

its upper bound; (iii) is due to the upper bound on ‖Ψ‖2 above; (iv) is due to η ≤ 10.5
10 η̂;

(v) is due to η̂ ≤ 1
4(1+δ2r)‖ZZ†‖2

. The above lead to the desiderata:

〈
A†(A(ZZ†)− y), ZZ† −U?U?†

〉
≥ 1.0656η

∥∥∥A†(A(ZZ†)− y)Z
∥∥∥

2

F
+ 1−δ2r

2 ‖U?U?† − ZZ†‖2
F
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