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Abstract: This article studies highly dispersive optical solitons without of self-phase modulation
effect. The numerical algorithm implemented in this work is Laplace-Adomian decomposition
method. Both bright and dark solitons are addressed. The error measure for the adopted scheme is
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Keywords: optical solitons; nonlinear Schrödinger equation; self-phase modulation; Laplace transforms

1. Introduction

Optical solitons are fundamental molecules that traverse intercontinental distances
with optical fibers. These soliton dynamics have proven to be an engineering marvel for
telecommunication industry. Today, the world is completely paralyzed without Internet
activity. Therefore, it is the wired global connection with underground and undersea cables
that needs to be addressed to boost up performance enhancement. Thus, it is imperative to
address soliton dynamics numerically to supplement the reported analytical results from a
visual standpoint.

One of the latest concepts that have been introduced during 2019 is highly dispersive
(HD) optical solitons [1–5]. It is out of extreme necessity, this concept was conceived. When
chromatic dispersion (CD) is negligibly small, it is imperative to supplement it with higher
order dispersion terms so that the necessary balance between dispersion and self-phase
modulation (SPM) is sustained. Therefore, the additional dispersion effects are from inter-
modal dispersion (IMD), third-order dispersion (3OD), fourth-order dispersion (4OD),
fifth-order dispersion (5OD) and sixth-order dispersion (6OD). It must be noted that soliton
dynamics is studied with monomode fibers while IMD is typically considered in the context
of multi-mode fibers. However, to address the problem from a numerical perspective, these
technical details of telecommunications industry are overlooked.

The next feature of HD solitons that is going to be addressed is the absence of SPM. If
SPM is discarded due to its low count, it should be complemented by additional nonlinear
effects in order to preserve the delicate balance between dispersion and nonlinearity
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required for solitons to persist. This effect comes from self-steepening and nonlinear
dispersion terms. The necessary balance thus persists and consequently HD solitons
without SPM turns out to be a reality! Thus, the governing model that will be addressed
using Laplace-Adomian decomposition method (LADM) is with six linear dispersive effects
and three terms that provide the necessary nonlinear effect along with a linear temporal
evolution. The LADM analysis is written following a brief introduction to the governing
model in this paragraph.

Description of the Governing Model

In the absence of SPM, the dimensionless formulation of the governing nonlinear
Schrödinger’s equation (NLSE) with higher order dispersion terms is expressed as fol-
lows [1,2]:

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx + i[λ(|q|2q)x + µ(|q|2)xq + σ|q|2qx] = 0, (1)

where q(x, t) stands for the complex-valued wave profile, where x and t are respectively
spatial and temporal variables. The first term signifies linear temporal evolution and
i =
√
−1. Moreover a1, a2, a3, a4, a5 and a6 are coefficients of IMD, GVD, 3OD, 4OD, 5OD

and 6OD respectively. Nonlinear terms include the λ coefficient, which represents the
influence of self-steepening, and the µ and σ coefficients, which represent the influence of
nonlinear dispersions.

It must be noted that the concept of highly dispersive optical solitons is a very theo-
retical concept that is not yet implemented in any laboratory let alone any manufactured
materials. The concept is yet to be implemented and optical fibers with such properties
are yet to be manufactured. There are, however, a few issues that naturally arise with
such higher order dispersions. These are the shedding of energy and consequently the
slowdown of the soliton velocity. This is from the heavy-duty radiation that is formed with
such dispersive effects. These effects are therefore ignored and the focus is on the core
soliton regime with bound states that arise from the inverse scattering transform.

2. Highly Dispersive Soliton Solutions for the Governing Model (1.1)

The dark highly dispersive optical soliton solution to (1) were recently obtained in [3]
using the mathematical technique known as Jacobi’s elliptic function expansion and these
in their general form are given by

q(x, t) =
[
A tanh(x− νt) + B tanh3(x− νt)

]
× exp{i(−κx + ωt + θ0)} (2)

where A, B, ν, κ, ω and θ0 are all real parameters whereas the relationship between some of
them is given by

κ =
a5

6a6
, a3 = 4κ(a4 + 10a6κ2), θ0 = −3λ− 2µ, (3)

and the soliton speed is related to the model parameters by the following equality

ν = a1 − 2a2κ − 8a4κ3 − 96a6κ5. (4)

Relatively recently, the bright highly dispersive optical soliton solution to (1) was also
achieved in [3] using the same mathematical technique mentioned above and these in their
general form are given by

q(x, t) =
[
A sech(x− νt) + B sech3(x− νt)

]
× exp{i(−κx + ωt + θ0)} (5)

where A, B, ν, κ, ω and θ0 are all real parameters and they are related to the model by
means of the relations given by the Equations (3) and (4).
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Other research involving highly dispersive solitons using algebraic techniques and
special functions are found in [4,5]. In addition, the authors in [6,7] successfully handle the
same topic with semi-analytical approaches comparable to our own.

3. Application of Laplace Transform Combined with Adomian Decomposition Method

This section discusses the general approach for numerically treating (1) with provided
initial conditions for darks and brights solitons. The method we are going to describe
and use is the well-known Adomian decomposition method combined with the Laplace
transform (LADM), which was originally established in [8,9].

The standard form of the generalized NLSE equation Equation (1) in an operator
form is

Dtq(x, t) + Rq(x, t) + N1q(x, t) + N2q(x, t) + N3q(x, t) = 0 (6)

with initial condition
q(x, 0) = f (x), (7)

where the operators N1q = σ|q|2qx, N2q = λ(|q|2q)x and N3q = µq(|q|2)x symbolize
the nonlinear term, respectively. The operational notation Rq = a1qx − ia2qxx + a3qxxx −
ia4qxxxx + a5qxxxxx− ia6qxxxxxx symbolize the linear differential operator, whereas Dtq = qt
simply denotes time-dependent derivative.

The technique is based on a series of functions to obtain at the solution q of the problem,
which can be written as follows:

q(x, t) =
∞

∑
n=0

qn(x, t) (8)

and the nonlinear term series

Nq(x, t) =
∞

∑
n=0

An(q0, . . . , qn), (9)

Each An is a polynomial called to as an Adomian polynomial. Then the nonlinear
terms N1q, N2q, and N3q, can be split into an series of Adomian polynomials provided by:

N1q = σ|q|2qx =
∞

∑
n=0

Pn(q0, q1, . . . , qn), (10)

N2q = λ(|q|2q)x =
∞

∑
n=0

Qn(q0, q1, . . . , qn), (11)

and

N3q = µq(|q|2)x =
∞

∑
n=0

Rn(q0, q1, . . . , qn). (12)

Pn, Qn, and Rn are Adomian polynomials corresponding to the nonlinear terms N1, N2 and
N3 respectively. These can be calculated by the formulas shown in [10], that is,

Pn =

{
P0 = N1(q0), n = 0
Pn = 1

n ∑n−1
k=0 (k + 1)qk+1

∂
∂q0

Pn−1−k, n = 1, 2, 3, . . . (13)

Qn =

{
Q0 = N2(q0), n = 0
Qn = 1

n ∑n−1
k=0 (k + 1)qk+1

∂
∂q0

Qn−1−k, n = 1, 2, 3, . . . (14)

Rn =

{
R0 = N3(q0), n = 0
Rn = 1

n ∑n−1
k=0 (k + 1)qk+1

∂
∂q0

Rn−1−k, n = 1, 2, 3, . . . (15)
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Applying these formulas to the expressions given by Equations (10), (11) and (12) we
obtain that the first few Adomian polynomials are given by

P0 = σq0q̄0q0x,

P1 = σ(q0q̄0q1x + q0q̄1q0x + q1q̄0q0x),

P2 = σ(q0q̄0q2x + q0q̄1q1x + q0q̄2q0x + q1q̄0q1x + q1q̄1q0x + q2q̄0q0x),

P3 = σ(q0q̄0q3x + q0q̄1q2x + q0q̄2q1x + q0q̄3q0x + q1q̄0q2x + q1q̄1q1x + q1q̄2q0x + q2q̄0q1x

+ q2q̄1q0x + q3q̄0q0x),

P4 = σ(q0q̄0q4x + q0q̄1q3x + q0q̄2q2x + q0q̄3q1x + q0q̄4q0x + q1q̄0q3x + q1q̄1q2x + q1q̄2q1x

+ q1q̄3q0x + q2q̄0q2x + q2q̄1q1x + q2q̄2q0x + q3q̄0q1x + q3q̄1q0x + q4q̄0q0x),

...

Q0 = λq2
0q̄0x,

Q1 = λ(q2
0q̄1x + 2q0q1q̄0x),

Q2 = λ(u2
1q̄0x + q2

0q̄2x + 2q0q1q̄1x + 2q0q2q̄0x),

Q3 = λ(q2
1q̄1x + q2

0q̄3x + 2q0q1q̄2x + 2q0q2q̄1x + 2q0q3q̄0x + 2q1q2q̄0x),

Q4 = λ(q2
2q̄0x + q2

1q̄2x + 2q0q1q̄3x + 2q0q2q̄2x + 2q0q3q̄1x + 2q0q4q̄0x + 2q1q2q̄1x + 2q1q3q̄0x),

...

R0 = µq2
0q̄0,

R1 = µ(2q0q1q̄0 + q2
0q̄1),

R2 = µ(2q0q2q̄0 + q2
1q̄0 + 2q0q1q̄1 + q2

0q̄2),

R3 = µ(2q0q3q̄0 + 2q1q2q̄0 + 2q0q2q̄1 + q2
1q̄1 + 2q0q1q̄2 + q2

0q̄3),

R4 = µ(q̄0q2
2 + 2q0q̄0q4 + 2q̄0q1q3 + 2q0q̄1q3 + 2q1q̄1q2 + 2q0q̄2q2 + q2

1q̄2 + 2q0q̄1q3 + q2
0q̄4),

...

Accordingly, the Adomian polynomials {An}n≥0 into which the nonlinear part Nu =
N1u + N2u + N3u is decomposed turn out to be:

A0 = σq0q̄0q0x + λq2
0q̄0x + µq2

0q̄0,

A1 = σ(q0q̄0q1x + q0q̄1q0x + q1q̄0q0x) + λ(q2
0q̄1x + 2q0q1q̄0x) + µ(2q0q1q̄0 + q2

0q̄1),

A2 = σ(q0q̄0q2x + q0q̄1q1x + q0q̄2q0x + q1q̄0q1x + q1q̄1q0x + q2q̄0q0x) + λ(u2
1q̄0x + q2

0q̄2x

+ 2q0q1q̄1x + 2q0q2q̄0x) + µ(2q0q2q̄0 + q2
1q̄0 + 2q0q1q̄1 + q2

0q̄2),

A3 = σ(q0q̄0q3x + q0q̄1q2x + q0q̄2q1x + q0q̄3q0x + q1q̄0q2x + q1q̄1q1x + q1q̄2q0x + q2q̄0q1x

+ q2q̄1q0x + q3q̄0q0x) + λ(q2
1q̄1x + q2

0q̄3x + 2q0q1q̄2x + 2q0q2q̄1x + 2q0q3q̄0x + 2q1q2q̄0x)

+ µ(2q0q3q̄0 + 2q1q2q̄0 + 2q0q2q̄1 + q2
1q̄1 + 2q0q1q̄2 + q2

0q̄3),

A4 = σ(q0q̄0q4x + q0q̄1q3x + q0q̄2q2x + q0q̄3q1x + q0q̄4q0x + q1q̄0q3x + q1q̄1q2x

+ q1q̄2q1x + q1q̄3q0x + q2q̄0q2x + q2q̄1q1x + q2q̄2q0x + q3q̄0q1x + q3q̄1q0x + q4q̄0q0x)

+ λ(q2
2q̄0x + q2

1q̄2x + 2q0q1q̄3x + 2q0q2q̄2x + 2q0q3q̄1x + 2q0q4q̄0x + 2q1q2q̄1x + 2q1q3q̄0x)

+ µ(q̄0q2
2 + 2q0q̄0q4 + 2q̄0q1q3 + 2q0q̄1q3 + 2q1q̄1q2 + 2q0q̄2q2 + q2

1q̄2 + 2q0q̄1q3 + q2
0q̄4),

(16)

so also for additional Adomian polynomials.
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When the Laplace transform is applied to both sides of Equation (6), we obtain

L {Dtq(x, t) + Rq(x, t) + N1q(x, t) + N2q(x, t) + N3q(x, t)} = 0 (17)

and using initial condition, which will be derived from the profiles for highly dispersive
solitons and considering that N = N1 + N2 + N3, we obtian

L {q(x, t)} = 1
s

f (x)− 1
s
(
L {Rq(x, t)}+L {Nq(x, t)}

)
. (18)

Substituting Equations (8) and (16) into Equation (18), it gives

L
{ ∞

∑
n=0

qn(x, t)
}
=

1
s

f (x)− 1
s

(
L
{

R
( ∞

∑
n=0

qn(x, t)
)}

+L
{ ∞

∑
n=0

An(q0, . . . , qn)
})

. (19)

Applying the characteristic linearity property of the Laplace transform in Equation (19),
we obtain

∞

∑
n=0

L {qn(x, t)} = 1
s

f (x)− 1
s
( ∞

∑
n=0

L {Rqn(x, t)}+
∞

∑
n=0

L {An(q0, . . . , qn)}
)
. (20)

Matching both sides of Equation (19), we obtain the Laplace transform of each of the
components of the solution, that is

L {q0(x, t)} = 1
s

f (x) (21)

for every m ≥ 1, the recursive relations are given by

L {qm(x, t)} = −1
s
(
L {Rqm−1(x, t)}+L {Am−1(q0, . . . , qm−1)}

)
. (22)

Finally, the components q0, q1, q2, . . . , are then determined recursively by using inverse
Laplace transform:{

q0(x, t) = f (x),
qm(x, t) = −L −1( 1

s L {Rqm−1(x, t)}+ 1
s L {Am−1(q0, . . . , qm−1)}

)
, m ≥ 1.

(23)

where q0 is referred to as the zeroth component. An N−components truncated series
solution is thus obtained as

SN =
N

∑
i=0

qi(x, t). (24)

The series solution (24) may be utilized numerically. For further information on the
convergence of the suggested approach, see [11,12].

Numeral examples are given in the next section to demonstrate the suggested method’s
algorithm’s high accuracy, ease of implementation, and efficacy.

4. Test Examples

In this section, some examples are provided to show the efficiency and accuracy of
the suggested method to find soliton solutions of the NLSE given by Equation (1). The
numerical simulation results are carried out by using the Mathematica software.

4.1. Dark Highly Dispersive Optical Soliton

In this subsection, we will simulate highly dispersive dark solitons for a set of values
of the coefficients of Equation (1). As an initial condition, we will adopt the general form of
such solitons as described in Section 2.
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Consider the initial condition derived from Equation (2) in order to develop this type
of solitons:

q(x, 0) =
[
A tanh(x) + B tanh3(x)

]
× exp{i(−κx + θ0)} (25)

We will simulate the three cases using the assumptions listed in Table 1; the generated
results are shown graphically in Figures 1–3. In addition, Tables 2–4 show the absolute
errors for various points in space-time.

Table 1. Equation (1) coefficients for dark highly dispersive optical solitons.

Cases a1 a2 a3 a4 a5 a6 λ µ σ κ ν N

1 1.20 0.45 3.05 1.06 2.22 1.06 0.05 0.62 0.06 0.34 0.09 16
2 0.50 0.64 0.33 0.02 2.10 2.03 0.02 0.01 0.89 0.17 −0.81 16
3 1.55 1.04 0.92 2.22 3.40 −2.15 4.02 0.01 0.90 −0.26 2.15 16

Table 2. Absolute error in space-time for 16th iteration of Case 1.

t
x −3.0 −2.0 −1.0 1.0 2.0 3.0

0.1 5.21× 10−9 3.45× 10−9 2.09× 10−9 2.16× 10−9 3.64× 10−9 5.02× 10−9

0.3 6.01× 10−8 4.32× 10−8 3.34× 10−8 3.32× 10−8 4.14× 10−8 6.88× 10−8

0.5 4.02× 10−7 3.62× 10−7 1.92× 10−7 2.02× 10−7 3.22× 10−7 5.10× 10−7

Table 3. Absolute error in space-time for 16th iteration of Case 2.

t
x −3.0 −2.0 −1.0 1.0 2.0 3.0

0.1 9.01× 10−9 7.12× 10−9 6.33×
10−10 1.02× 10−9 6.09× 10−9 8.62× 10−9

0.3 7.13× 10−8 3.02× 10−8 1.11× 10−8 2.01× 10−8 3.98× 10−8 7.08× 10−8

0.5 2.62× 10−7 2.88× 10−7 1.52× 10−7 1.28× 10−7 3.01× 10−7 2.87× 10−7

Table 4. Absolute error in space-time for 16th iteration of Case 3.

t
x −3.0 −2.0 −1.0 1.0 2.0 3.0

0.1 6.71× 10−9 4.45× 10−9 9.04×
10−10

9.32×
10−10 5.16× 10−9 7.23× 10−9

0.3 5.59× 10−8 5.01× 10−8 2.71× 10−8 3.09× 10−8 4.25× 10−8 8.00× 10−8

0.5 1.36× 10−7 1.08× 10−7 1.01× 10−7 1.33× 10−7 2.21× 10−7 2.07× 10−7
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Figure 1. Case 1: graphic representation: (a) numerically generated dark soliton, (b) 2D density plot.

Figure 2. Case 2: graphic representation: (a) numerically generated dark soliton, (b) 2D density plot.

Figure 3. Case 3: graphic representation: (a) numerically generated dark soliton, (b) 2D density plot.
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4.2. Bright Highly Dispersive Optical Soliton

In this subsection, we will simulate highly dispersive bright solitons for a set of values
of the coefficients of Equation (1). As an initial condition, we will adopt the general form of
such solitons as described in Section 2.

Consider now the initial condition derived from Equation (5) in order to develop this
type of solitons:

q(x, 0) =
[
A sech(x) + B sech3(x)

]
× exp{i(−κx + θ0)} (26)

We will simulate the three cases using the assumptions listed in Table 5; the generated
results are shown graphically in Figures 4–6. In addition, Tables 6–8 show the absolute
errors for various points in space-time.

Table 5. Equation (1) coefficients for bright highly dispersive optical solitons.

Cases a1 a2 a3 a4 a5 a6 λ µ σ κ ν N

4 0.55 0.15 2.22 3.76 1.05 3.00 0.01 0.90 1.22 0.05 0.53 16
5 0.20 0.94 2.09 1.98 4.20 −1.15 3.02 1.04 2.06 −0.60 17.87 16
6 −2.55 2.00 1.76 2.87 1.22 1.45 0.02 2.36 0.64 0.14 3.18 16

Table 6. Absolute error in space-time for 16th iteration of Case 4.

t
x −3.0 −2.0 −1.0 1.0 2.0 3.0

0.1 6.43× 10−9 4.15× 10−9 2.58× 10−9 2.09× 10−9 3.99× 10−9 5.89× 10−9

0.3 8.11× 10−8 5.76× 10−8 2.88× 10−8 2.62× 10−8 4.88× 10−8 7.79× 10−8

0.5 6.22× 10−7 5.02× 10−7 3.93× 10−7 3.34× 10−7 4.85× 10−7 6.94× 10−7

Table 7. Absolute error in space-time for 16th iteration of Case 5.

t
x −3.0 −2.0 −1.0 1.0 2.0 3.0

0.1 8.89× 10−9 6.27× 10−9 3.98× 10−9 3.01× 10−9 6.08× 10−9 8.09× 10−9

0.3 9.53× 10−8 4.29× 10−8 4.88× 10−9 1.07× 10−8 4.13× 10−8 8.44× 10−8

0.5 9.71× 10−7 5.42× 10−7 1.93× 10−7 6.34× 10−8 3.65× 10−7 8.04× 10−7

Table 8. Absolute error in space-time for 16th iteration of Case 6.

t
x −3.0 −2.0 −1.0 1.0 2.0 3.0

0.1 7.97× 10−9 6.01× 10−9 4.03× 10−9 3.98× 10−9 6.24× 10−9 8.00× 10−9

0.3 8.37× 10−8 6.19× 10−8 5.18× 10−8 5.99× 10−8 6.43× 10−8 8.40× 10−8

0.5 9.11× 10−7 7.32× 10−7 3.58× 10−7 3.81× 10−7 6.95× 10−7 8.89× 10−7
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Figure 4. Case 4: graphic representation: (a) numerically generated bright soliton, (b) 2D density plot.

Figure 5. Case 5: graphic representation: (a) numerically generated bright soliton, (b) 2D density plot.

Figure 6. Case 6: graphic representation: (a) numerically generated bright soliton, (b) 2D density plot.

An advantage of the model is the guarantee of the sustained balance between CD
and SPM although it comes with a cost and those detrimental factors are ignored and, as
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mentioned earlier, the primary focus of the paper is on the core soliton regime with bound
states. The novelty of the physical characteristics is the visualization of these solitons from
a numerical perspective. The current model, namely the HD—NLSE not been studied on an
oscilloscope, since is a very new model. Therefore the validity of the governing model for
the HD solitons is guaranteed thus far with LADM. The visual effects from an oscilloscope
are currently awaited.

5. Conclusions

This paper studied bright and dark HD solitons that are governed by NLSE with no
SPM. The nonlinearity effects stem from self-steepening and nonlinear dispersions. The
integration algorithm was provided by LADM that has portrayed a stunning numerical
perspective to HD solitons. The absolute error measure for this numerical study is impres-
sively small. The results are thus going to be of great value to telecommunications industry
particularly in the context of fiber-optic dynamics.

This research will be expanded in the future to include birefringent fibers as well as
dispersion-flattened fibers that would give an expanded view in the context of differen-
tial group delay with HD solitons in absence of SPM. Such investigation is now being
conducted, and its findings will be communicated.
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