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Abstract: A model of a generalized pulse source, whose complex degree of temporal coherence is
described by a function of the nth power difference of two instants, was constructed. As examples,
we consider the generalized Gaussian and multi-Gaussian Schell-model pulse sources and study their
propagation in dispersive media. It is indicated that such pulse beams present unique self-focusing,
off-axis self-shifting and asymmetric self-splitting characteristics by adjusting the power exponent
and phase parameters. Further, we explicitly discuss how the coherence time, summation factor as
well as the dispersive coefficient significantly affect the self-focusing and self-shifting behaviors of
the pulse beam. The results will benefit some applications involving pulse shaping, optical trapping
and remote sensing.
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1. Introduction

There has been growing interest in the modeling of partially coherent sources with
special correlations since a general representation for bona fide coherent sources was intro-
duced [1]. Compared with the conventional Gaussian-correlated Schell-model sources, the
function forms describing the complex degree of coherence (CDC) of the special correlated
Schell-model source are more diverse, which leads to abundant far-field intensity distribu-
tion profiles. For example, there are uniformly partially coherent beams with a spatially
varying coherence function generating a self-focusing and laterally self-shifting intensity
profile [2] and multi-Gaussian Schell model beams with the correlated function being the
summation of multi-Gaussian functions, producing a circular or rectangular flat-topped
field [3,4]. When the multi-Gaussian function is replaced by a multi-sinc function, multi-
ring or lattice-like patterns will be generated [5]. Additionally, the spectral density of the
Schell-model source with a cosine-Gaussian correlation or Hermite-Gaussian correlation,
also exhibits dark-hollow or self-splitting profiles [6,7]. Apart from the modeling of the
magnitude of the CDC above, the inclusion of phases in the CDC is also an important
method in modulating the propagation features of the optical field. Typical examples
include partially coherent beams with a vortex phase and a twisted phase, which have
been shown to have significant effects in exploring singular optics, beam rotation and
mitigation of turbulence-induced scintillation [8–13]. Recently, a fine Schell-like source
model, of which the complex degree of coherence has an even magnitude and odd phase
distribution, has been proposed [14]. On its basis, a slew of novel source models were
constructed, in which the magnitude and phase structure of the CDC were defined as the
function of the n-th power difference of two source points rather than their direct distance.
Such unique source models provide a method for generating a self-focusing optical field
with a controllable focal length by changing the phase factor [15–20].

Due to the space-time analogy between the spatial coherence properties of partially
coherent beams and the temporal counterparts of partially coherent pulses, the temporal
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coherence-induced effects on the propagation of unconventional Schell-model pulses have
been considered. The models include partially coherent pulses with non-uniform tempo-
ral correlations [21], multi Gaussian temporal correlations [22], fractional multi-Gaussian
temporal correlations [23], cosine-Gaussian temporal degrees of coherence [24,25], multi-
cosine-Gaussian correlations and Laguerre-Gaussian temporal correlations [26,27]. All
these pulse sources exhibit extraordinary propagation characteristics in dispersive media
and have potential applications in pulse shaping, temporal ghost imaging, and inertial
confinement fusion. In addition, the behaviors of twisted space-time partially coherent
beams and spatiotemporal vortex pulses carrying an orbital angular momentum were
explored both experimentally and theoretically [28–33], which provides guidance on appli-
cations related to sculpturing spatiotemporal wave packets and spatiotemporal spin-orbit
angular momentum coupling. Recently, spectral phase-modulated pulses trains and phase-
structured complex temporal degree of coherence pulse sources were introduced [34–36],
which show the nontrivial phase function can be used to control the distribution of the
average arrival time of the pulse train. These inspire us to explore the theoretical model
of the random pulse with the temporal coherence being the function of the n-th power
difference of two instants.

In this manuscript, we introduce the generalized pulse source whose complex degree
of temporal coherence is characterized by power-exponent magnitude and phase structures.
By taking the generalized Gaussian and multi-Gaussian Schell-model pulse sources as
examples, we mainly explore the propagation characteristics of such pulses in dispersive
media. The influences of the source and media parameters on the self-focusing and laterally
self-shifting behaviors of pulses are illustrated.

2. Theoretical Model

The second-order mutual coherence function (MCF) characterizing the temporal corre-
lation properties of the ensemble of non-stationary pulses has the form [37]

Γ0(t10, t20) =
√

I0(t10)
√

I0(t20)γ0(t10, t20). (1)

In the time domain, in order to be a Hermitian and non-negative definite correlation
function, the MCF needs to have the following superposition representation [1]

Γ0(t10, t20) =
∫

p(ν)H∗0 (t10, ν)H0(t20, ν)dν, (2)

where function p(ν) is a real and non-negative weight function, and H0(t, ν) is an arbitrary
kernel function, chosen as a Fourier-like form

H0(t, ν) = α(t) exp(−2πiν · f (t)). (3)

Here, α(t) denotes the complex amplitude profile. f (t) is a real function. In view of
Equations (2) and (3), the MCF is given by

Γ0(t10, t20) = α∗(t10)α(t20)F [ f (t10)− f (t20)], (4)

where F [ f (t10)− f (t20)] = F [γ(td)] = p(ν).
Then, the MCF is obtained as the form

Γ0(t10, t20) = α∗(t10)α(t20)γ(td). (5)

The function α(t) is set to the Gaussian

α(t) = exp
[
−t2/T2

0

]
, (6)
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with T0 being the pulse width. Equation (4) implies that the intensity profile of the propa-
gating pulse mainly depends on the choice of the function f (t). If f (t) is a linear function of
time, Equation (4) stands for the conventional Schell-model pulse source. In this manuscript,
we set f (t) as a power function of time

f (t) = tn. (7)

Then, the MCF takes the form

Γ0(t10, t20) = exp

[
−

t2
10 + t2

20

T2
0

]
γ(tn

10 − tn
20), (8)

where γ(td) is the complex degree of temporal coherence (CDTC), td = tn
1 − tn

2 . Following
references [14,15,17], γ(td) can be expressed as the self-convolution of a sliding temporal
function g(td)

γ(td) = g(td)⊗ g(td), (9)

where ⊗ stands for convolution.

g(td) = gM(td) exp
(
igp(td)

)
. (10)

The sliding function g(td) needs to be a Hermitian function, so it has an even real part
gM(td) and an odd imaginary part gP(td).

3. Propagation of the Generalized Schell-Model Pulses in Dispersive Media
3.1. Generalized Gaussian Schell-Model Pulse

Let us now set gM(td) as a Gaussian temporal function

gM(td) =

(√
Tn

c
√

π

)−1
exp

[
−t2

d/
(

2T2n
c

)]
, (11)

where TC is the coherence time. The linear phase is set as

gp(td) = antd, (12)

in which a = a0/10−12, and a0 is real constant; therefore, the sliding function takes the
form

g(td) =

(√
Tn

c
√

π

)−1
exp

[
−t2

d/
(

2T2n
c

)
+ iantd

]
. (13)

Inserting from Equation (13) into Equation (9), we obtain the corresponding expression
of CDTC.

γ(t10, t20) = exp

[
−
(
tn
10 − tn

20
)2

4T2n
c

+ ian(tn
10 − tn

20)

]
. (14)

Hence, the MCF is given by the form

Γ0(t10, t20) = exp

(
−

t2
10 + t2

20

T2
0

)
exp

[
−
(
tn
10 − tn

20
)2

4T2n
c

+ ian(tn
10 − tn

20)

]
. (15)

Equation (15) represents a generalized Gaussian Schell-model pulse source.
Figure 1 illustrates the magnitude of the complex degree of temporal coherence of

the pulse source and the corresponding phase for the different power order n. It can be
found that the magnitude of the CDTC features diagonal symmetry when n takes odd
numbers and Cartesian symmetry for even numbers. When n = 2, the cross-like shape is
similar to the profile of the degree of coherence of non-uniformly correlated pulses [21].
With the order n increasing, the magnitude of the temporal correlation of the pulse remains
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the same around the temporal center. In addition, Figure 1(b1–b4) show the corresponding
contour profile of the phase structure. Although the contour of the phase is similar to that
of the magnitude, the phase increases along the contour profile from −π to π, and the
number of phase envelopes depends on the values of n, which is different from that of the
spatiotemporal coherency vortex whose phase increases along a spiral line from −π to
π [33].

Figure 1. (a1–a4) Magnitude of CDTC for different exponent values. (a1) n = 1; (a2) n = 2; (a3) n = 3;
(a4) n = 4. (b1–b4) The corresponding phase of CDTC for a = 2/5π.

The propagation formula of such a pulse from the source plane z = 0 to a plane z > 0
in a dispersive medium can be expressed by the temporal counterpart of the generalized
Huygens–Fresnel integral [37].

Γ(t1, t2, z) = 1
2πβ2z

s
Γ(0)(t10, t20)

× exp
{

i
2β2z

[(
t2
10 − t2

20
)
− 2(t10t1 − t20t2) +

(
t2
1 − t2

2
)]}

dt10dt20
, (16)

where β2 represents the group velocity dispersion coefficient. On inserting from Equation
(15) into Equation (16), the MCF of the pulse beam on propagation in dispersive media can
be obtained

Γ(t1, t2, z) =
1

2πβ2z
exp

[
i

2πβ2z

(
t2
1 − t2

2

)]x
Ftdt10dt20, (17)

where

Ft = exp

[
−

t2
10 + t2

20
4T02 −

(
tn
10 − tn

20
)2

4T2n
c

+ ian(tn
10 − tn

20) +
i

2β2z

(
t2
10 − t2

20 − 2t10t1 + 2t20t2

)]
. (18)

The source and media parameters are chosen to be T0 = 1ps, Tc = 0.7ps, β = 50 ps2km−1.
Figure 2 mainly explores the effects of different values of the power exponent n

on the evolution of the intensity of the pulse on propagation in dispersive media when
neglecting the phase term, i.e., a = 0. When a = 0 and n = 1, Equation (17) corresponds
to conventional Gaussian Schell-model pulses, so the intensity distribution exhibits a
Gaussian shape as shown in Figure 1a. When n > 1, the pulse beams present a self-focusing
phenomenon in the intermediate field. Moreover, as the values of n increase, a self-splitting
pulse appears in the near field.
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Figure 2. Intensity evolution of the generalized Gaussian Schell-model pulse with a trivial phase
(a = 0). (a) n = 1; (b) n = 2; (c) n = 3; (d) n = 4.

From Figure 2 it can be seen that the self-focusing behaviors of such pulse beams are
closely related with the values of the exponent n. Particularly, when n = 2, the self-focusing
effect is evident. In this case, how the self-focusing behaviors are affected by the dispersion
coefficient β2 and the coherence time TC are further studied in Figure 3. As β2 increases,
the self-focusing length reduces and the position of the maximum intensity of the pulse
is closer to pulse source, but the maximum intensity remains the same. On increasing the
coherence time TC, the situation becomes the opposite. The self-focusing length increases,
the maximum intensity declines and the corresponding position is further from the pulse
source.

Figure 3. Intensity distribution for different values of β2 and TC (n = 2, a = 0). (a1–a4) 25 ps2/km,
35 ps2/km; 50 ps2/km; 75 ps2/km; (b1–b4), 0.3ps; 0.5ps; 0.7ps; 0.9ps.

Figure 4 presents the evolutions of pulses with a non-trivial phase. Figure 4a,c show
that the composition of the phase and the exponent n being odd result in the pulse ensem-
ble’s shift along the temporal axis, which is analogous to the behaviors of non-uniformly
correlated partially coherent pulses upon propagation in dispersive media [21]. In partic-
ular, when n = 3, the evolution of the pulse intensity follows a parabola-like trajectory.
Though there is no shift in the maximum intensity with n being even as Figure 4b,d in-
dicate, the maximum intensity increases and the position approaches the pulse source in
comparison with Figure 2b,d.

Figure 5 further illustrates the influences of different values of dispersion coefficient
β2, coherence time TC as well as phase parameter a on the self-shifting of the pulse intensity
along the t-axis. It is shown that the phase parameter has a more significant impact on
the shift than the other two parameters, β2 and TC. With TC being smaller, the intensity
of the pulse attenuates quickly along the z-axis. When a = π/5, the slightly asymmetric
distribution of pulse intensity closer to the pulse source appears. As a increases, the
maximum intensity of the pulse increases and the self-shifting effect is more evident.
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Figure 4. Intensity evolution of the generalized Gaussian Schell-model pulse with a non-trivial phase.
Same as Figure 2 except for a = 2/5π.

Figure 5. (a1–b4) Same as Figure 3 except for n = 3, a = 2/5π. Figure 5 (c1–c4) Intensity distribution
for different values of a. (c1) 1/5π; (c2) 2/5π; (c3) 3/5π; (c4) 4/5π.

In Figure 6, the intensity evolution of the pulse center along the z direction and
the transverse cross-section of the intensity of the pulse versus time t at the distance
z = 1 m are presented for different values of phase parameter a, dispersion coefficient β
and coherent time TC. Figure 6(a1,c1) show that the position of the maximum pulse is closer
to pulse source with increasing a and reducing TC. The original pulse displays asymmetric
splitting along the t-axis and the number of sub-pulses increases as Figure 6(a2,c2) show.
Figure 6(b1) indicates that the intensity of the center pulse is invariant for different values
of the dispersion coefficient, which is consistent with that in Figure 5(a1–a4). At the
propagation distance z = 1 m, for larger values of β2 or a, and smaller values of TC, a further
shift away from the z-axis is generated. At the same time, the pulse intensity declines,
which is caused by the reduction in the focusing length.
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Figure 6. (a1,b1,c1) Changes of maximum of pulse intensity along the z direction for different values
of a0, β2 and TC and (a2,b2,c2) pulse shapes at the propagation distance z = 1 m (n = 3).

3.2. Generalized Multi-Gaussian Schell-Model Pulse

As an extension of the source model above, we now express the CDTC as a linear
superposition of multiple self-convolutions of a sliding temporal function g(td)

γ(td) =
1

C0

M

∑
m=1

(−1)m−1
√

m

(
M
m

)
[gm(td)⊗ gm(td)], (19)

where C0 is the normalization factor

C0 =
M

∑
m=1

(−1)m−1
√

m

(
M
m

)
. (20)
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The sliding function takes the form

gm(td) =

(√
Tn

c
√

mπ

)−1
exp

[
−t2

d/
(

2mT2n
c

)
+ iantd

]
. (21)

Thus, the CDTC can be expressed as

γ(t10, t20) =
1

C0

M

∑
m=1

(−1)m−1
√

m

(
M
m

)
exp

[
−
(
tn
10 − tn

20
)2

4mT2n
c

+ ian(tn
10 − tn

20)

]
. (22)

Then, the MCF of the generalized multi-Gaussian Schell model pulse source can be
obtained

Γ0(t10, t20) =
1

C0
exp

(
− t2

10+t2
20

4T2
0

)
×

M
∑

m=1

(−1)m−1
√

m

(
M
m

)
exp

[
− (tn

10−tn
20)

2

4mT2n
c

+ ian(tn
10 − tn

20
)] . (23)

Inserting from Equation (23) into Equation (16), the average intensity of the pulse at
the propagation distance z takes the integral form and can be evaluated numerally.

I(t, z) =
1

2πβ2zC0

x
F(t10, t20, t, z)dt10dt20, (24)

where

F(t10, t20, t, z) = exp
[
− t2

10+t2
20

4T0
2 + i

2β2z
(
t2
10 − t2

20 − 2t(t10 − t20)
)]

×
M
∑

m=1

(−1)m−1
√

m

(
M
m

)
exp

[
− (tn

10−tn
20)

2

4mT2n
c

+ ian(tn
10 − tn

20
)] (25)

Figures 7 and 8 mainly explore the transverse cross-section of the intensity of the
generalized multi-Gaussian pulse at the special propagation distance z = 1.5 m for different
source and media parameters. When M = 20 and n = 1, flat-topped pulse profiles are
formed and shift laterally along the temporal axis as Figure 7a indicates. But when n > 1,
the flat-topped profile is reshaped due to the self-focusing effect. Figures 7b and 7c show,
respectively, that the pulse maxima are different for different values of M. In Figure 8(a1),
when M = 20, n = 1 and a = 0, the generated flat-topped pattern is in good agreement with
that of the multi Gaussian Schell-model pulse [22]. With increasing a, the flat-topped profile
laterally shifts but the shape remains the same. However, for different values of β2 and
TC, not only does the pulse profile shift, but also its shape changes. Figure 8(b1–b3) reveal
that for smaller values of β2 or larger TC, the maximum intensity of the pulse increases.
Clearly, the intensity patterns of a generalized multi-Gaussian Schell-model pulse beam
can be modified by controlling the source parameters M, a, n and dispersive coefficient β2.

Figure 7. Intensity distributions of the generalized multi-Gaussian Schell-model pulse for different
values of M and n at the propagation distance z = 1.5 m, (a) M = 20; (b) n = 2; (c) n = 3.
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Figure 8. Intensity distributions of the generalized multi-Gaussian Schell-model pulse for different
values of a, β2 and TC (M = 20), (a1–a3) n = 1; (b1–b3) n = 2.

4. Conclusions

In this manuscript, a generalized pulse source, as a temporal counterpart of a complex
Schell-model source with power-exponent magnitude and phase structures, was introduced.
The temporal complex degree of coherence of such a pulse source is a function of the nth
power difference of time instants. We mainly considered generalized Gaussian and multi-
Gaussian Schell-model pulse sources and explored their intensity evolutions in dispersive
media. It was demonstrated that the self-focusing effect of the pulse beam is mainly
dependent on the power exponent n (n > 1). When n is odd and the phase parameter
a is nonzero, lateral self-shifting along the t-axis occurs. And for larger values of a, the
self-shifting effect is more obvious and the asymmetric self-splitting of the original pulse
appears in the near field. Both the coherent time and the dispersive coefficient also have
a significant impact on the self-focusing and self-shifting behaviors. In particular, the
self-focusing length of the pulse and the position of the pulse maximum can be adjusted by
changing the values of the coherent time and the dispersive coefficient. Moreover, for a
generalized multi-Gaussian Schell-model pulse, a flat-topped profile is generated when
n = 1. The flat profile shifts along the t-axis, but the flat width of the pulse center remains
invariant with an increasing a. In the case where n > 1, due to the self-focusing effect, the
flat-topped pattern is reshaped.

The results presented above show that the power-exponent amplitude and phase
structures of the CDTC of the generalized pulse source lead to a self-focusing effect and
the self-shifting of the maximum intensity of the pulse, which offers a unique method for
manipulating the propagation features of pulsed fields and will benefit applications in
pulse shaping, optical trapping and manipulation and remote sensing.
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