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Abstract: Optical satellite communications (OSC) downlinks can support much higher bandwidths
than radio-frequency channels. However, atmospheric turbulence degrades the optical beam wave-
front, leading to reduced data transfer rates. In this study, we propose using reinforcement learning
(RL) as a lower-cost alternative to standard wavefront sensor-based solutions. We estimate that RL
has the potential to reduce system latency, while lowering system costs by omitting the wavefront
sensor and low-latency wavefront processing electronics. This is achieved by adopting a control
policy learned through interactions with a cost-effective and ultra-fast readout of a low-dimensional
photodetector array, rather than relying on a wavefront phase profiling camera. However, RL-based
wavefront sensorless adaptive optics (AO) for OSC downlinks faces challenges relating to prediction
latency, sample efficiency, and adaptability. To gain a deeper insight into these challenges, we have
developed and shared the first OSC downlink RL environment and evaluated a diverse set of deep
RL algorithms in the environment. Our results indicate that the Proximal Policy Optimization (PPO)
algorithm outperforms the Soft Actor–Critic (SAC) and Deep Deterministic Policy Gradient (DDPG)
algorithms. Moreover, PPO converges to within 86% of the maximum performance achievable by
the predominant Shack–Hartmann wavefront sensor-based AO system. Our findings indicate the
potential of RL in replacing wavefront sensor-based AO while reducing the cost of OSC downlinks.

Keywords: wavefront sensorless adaptive optics; reinforcement learning; optical satellite communications
downlinks; fiber coupling

1. Introduction

Optical beam wavefronts can experience distortion as they propagate through atmo-
spheric turbulence, as illustrated in Figure 1. This distortion can lead to a reduction in
the potential bandwidth of the link [1,2]. Currently, most optical satellite communication
ground stations direct optical beams onto photodetectors or couple them into multi-mode
fiber to improve coupling efficiency [3]. However, this approach comes with limitations, as
it restricts the use of highly efficient phase modulation schemes as well as the use of fiber
amplifiers for long-haul data transmission. Coupling into single-mode fiber can enable
>10 Gbps data rates per wavelength channel, but it requires much higher optical powers
from the satellite to compensation for reduced coupling efficiencies. Larger telescope
apertures provide little benefit since they are more affected by atmospheric turbulence,
leading to diminishing returns on the signal. The issue of atmospheric turbulence has been
successfully mitigated in astronomy using adaptive optics (AO) [4–7]. The traditional AO
system dynamically corrects the wavefronts using a deformable mirror through closed loop
feedback from a wavefront sensor.
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Figure 1. Schematic of the RL environment of wavefront sensorless AO system.

Traditional AO systems are still costly and complex, with a significant portion of
the cost arising from the wavefront sensor, especially when dealing with infrared beams
in optical satellite-to-ground links which exhibit higher read noise and require cooling
unlike silicon cameras [8]. Furthermore, they consume a significant fraction of the incident
beam intensity to adequately illuminate the camera pixels and add latency to the system.
This latency can lead to outdated wavefront measurements in fast moving low earth orbit
(LEO) satellites, resulting in errors at the space and time scales of optical coherence [9].
Recently, research has demonstrated the potential of reinforcement learning (RL) to tackle
complex control problems in various domains of AO [10], such as astronomy [11–13],
wavefront sensor-based systems [14–17], wavefront sensorless AO systems [18–20], and
microscope systems that, unlike atmospheric turbulence, deal with lower-speed turbulence
caused by aqueous solutions and optical aberrations in a microscope applications [21].
The existing implementations of RL on AO systems are not optimized for optical satellite
communication due to their primary focus on optimizing image sharpness rather than
improving the reliability of optical data links. In other words, although image sharpness can
be used for fiber-coupling efficiency, it gathers excessive information that can compromise
loop speed. Ensuring a stable and dependable optical link is prioritized in moving towards
a consistent and uninterrupted high-data transmission with lower latency and cost. A
low pixel count detector mitigates high-latency and expensive read-out circuits, such as
those found in infrared cameras. Additionally, image-sharpness-based implementations
are specifically customized for optimizing wavefront distortion under the long coherence
time conditions found in environments like microscopy and ophthalmology.

In RL, agents’ decisions are based on the information observed from the environment.
However, the observations received by an agent might not contain all the necessary informa-
tion for decision-making, leading to a partially observable environment. Control methods
for partially observable dynamic environments are an outstanding challenge [22]. Exam-
ples of applications that fall under these conditions are free-space communication [23],
laser machining, astronomy [24], retinal imaging, microscopy, real-time video upscaling,
underwater imaging and communication, and even real-time music mixing/production,
where lower observability can lead to reduced latencies and cost in time-sensitive applica-
tions. This research aims to realize fast, reliable, and lower-cost satellite communications
downlinks, one of the most challenging of these applications.

It is estimated that for every 1% increase in light coupling, the system cost is decreased
by 2% compared to the original cost [25–27]. In a traditional AO system, opting for a 40 cm
telescope instead of a 60 cm one leads to substantial savings. This includes a minimum
of USD 50,000 in the mount and telescope system [27], a minimum of USD 30,000 in the
wavefront sensor, and a minimum of USD 20,000 in the dome enclosure. In contrast to
traditional AO, incorporating an RL model into the system would only require a compact
processor such as a field-programmable gate array (FPGA) and a simpler detection unit
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like a quadrant photodetector, which would be significantly more cost-effective and offer
minimal latency.

Given the use of a low-dimensional quadrant photodetector, we have partial observ-
ability of the environment [28–31], which can pose a challenge for RL algorithms to provide
optimal policies, particularly when dealing with the high-dimensional action spaces of
the deformable mirrors [32]. Furthermore, atmospheric turbulence is highly unpredictable
and can vary from low to high turbulence conditions. It is crucial for RL algorithms to be
adaptable and sample-efficient under a diverse range of turbulence conditions to ensure
stable and accurate results.

To address these challenges, we conducted an analysis of RL algorithms within
two distinct environmental scenarios: quasi-static and semi-dynamic environments. In the
quasi-static environment, it is assumed that the turbulence profile is static during training,
corresponding to the condition that the RL model convergence is significantly faster than
the atmospheric coherence time. Such a condition can be relevant in emerging photonic
adaptive optics concepts [33] and in cases where the ground layer turbulence coherence
time is long. On the other hand, in the semi-dynamic environment the turbulence profile
remains static in each episode and randomly changes in the next episode. The choice of a
semi-dynamic environment is motivated by its utility in generating initial neural network
weight configurations before transitioning to a dynamic environment, which is a closed
representation of operational conditions. For this reason, we analyzed RL algorithms in
quasi-static atmospheric turbulence conditions and we compared the RL environment
configurations used in the quasi-static atmosphere with a new configuration in the semi-
dynamic environment, defined by changes in observation space, action space, and reward
function. This comparison was executed using an on-policy RL algorithm and the widely
used Shack–Hartmann wavefront sensor-based AO that measures the displacement of the
focal spots as a distorted wavefront propagates through the lenslet array [34].

This paper reports on the first phase of a three-phase project that includes (a) develop-
ing RL algorithms for wavefront sensorless AO in a simulated atmosphere, (b) characteriz-
ing the RL algorithms through simulations, and (c) deploying the RL model in a real-world
AO system. In this proposed setup, the RL agent learns to directly control the deformable
mirror using the power distribution on the focal plane. Figure 1 illustrates the proposed
RL environment.

In our empirical analysis, we compare Soft Actor–Critic (SAC) [35], Deep Deterministic
Policy Gradient (DDPG) [36], and Proximal Policy Optimization (PPO) [37] deep RL
algorithms to an idealized traditional AO system with a Shack–Hartmann wavefront
sensor. For further details on the deep RL algorithms mentioned, please refer to Section 4.1,
Section 4.2 and Section 4.3, respectively. Our results suggest that RL can enable moderately
efficient coupling into single-mode fiber without a wavefront sensor in quasi-static and
semi-dynamic atmospheric conditions.

To summarize, the contributions of this work are:

• The development of a simulated wavefront sensorless AO-RL environment for training
and testing RL algorithms. This is the first AO-RL environment that is implemented
according to the standards of the OpenAI Gymnasium framework which simplifies
the analysis of RL algorithms. The related source code link can be found in the ‘Data
Availability Statement’ section.

• The first demonstration of the potential for RL in wavefront sensorless AO satellite
data downlinks.

The remainder of the paper is structured as follows. Section 2 includes background
information on AO and related work on RL in the context of AO, while Section 3 details the
RL environment developed as part of this work. The experimental setup and RL algorithms
are described in Section 4, and Section 5 presents the results. In Section 6, we discuss the
limitations of the RL environment and the results. Section 7 includes summarizing remarks
and current and future work.
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2. Background
2.1. Adaptive Optics (AO)

The objective of AO is to eliminate any spatial phase distortions in an optical wave-
front. The AO method was first proposed by Babcock [38] to improve observational
astronomical by correcting wavefronts with a deformable optical element controlled by
a wavefront sensor. New techniques and results have since been consistently published,
primarily focusing on advancements in wavefront sensors, deformable mirrors, and control
algorithms [39–43].

After propagating through the atmosphere to the telescope, light is distorted by subtle
changes in the temperature and pressure (and hence the index of refraction) of the air,
which varies in time and space [44]. The corresponding wavefront profile is measured by
a wavefront sensor, which informs a control command for a deformable mirror to flatten
the wavefront.

2.2. Satellite-to-Ground Optical Communication

To enable satellite-to-ground optical communication, low earth orbit satellites are
being equipped with laser transmitters. Line of sight is required for transmission between
the telescope and a satellite and is only maintained for a few minutes during the satellite
pass, after which the telescope must reposition to track another satellite.

The atmosphere has a characteristic turbulence timescale on the order of ∼1 ms, which
varies significantly with the satellite’s elevation angle and turbulence conditions. This
value can be as short as 0.2 ms and as high as 10 ms. Turbulence is generally the strongest
at the lowest elevations due to the effective thickness of the atmosphere. However, the
ground layer has a longer coherence time when compared to the high-altitude jet stream
where the timescales are much shorter. The optical path from the satellite to the telescope is
also changing due to the continuously changing satellite elevation angle. If an approximate
solution can be found within a few milliseconds, the atmosphere can be considered to
be in a quasi-static state and a static turbulence profile for the purposes of training can
be considered valid. This paper is focused on optical ground stations near sea-level and
therefore we adopt 1 ms as the target coherence timescale, neglecting the rapidly changing
high altitude optical path column and high wind speeds.

3. Wavefront Sensorless AO-RL Environment

The RL environment is implemented according to the standards of the Open AI Gym-
nasium framework [45]. The HCIPy: High Contrast Imaging for Python package [46] serves
as the foundation of the RL environment. HCIPy offers a comprehensive set of libraries
related to AO, including wavefront generation, atmospheric turbulence modeling, propa-
gation simulation, fiber coupling, implementation of deformable mirrors, and wavefront
sensors. A simulated AO-RL environment is a critical first step in the process of developing
RL-based wavefront sensorless satellite communications downlink systems. It enables one
to assess and refine the RL to meet the strict requirements of this domain prior to costly
evaluation in physical simulations and the real world.

The AO system simulated in this environment couples 1550 nm light into a single-
mode fiber under various turbulence conditions which are characterized by the parameter
D/r0 (as shown in Figure 2). This parameter represents the ratio of the telescope’s diam-
eter (D) to the Fried parameter (r0) and it serves as a measure of the quality of optical
transmission through the atmosphere. A lower Fried parameter leads to more pronounced
wavefront distortions. In this work, we maintain a constant D value of 0.5 m, while the
r0 value is adjusted to evaluate the system’s performance under varying atmospheric
turbulence levels. It is assumed that the atmospheric turbulence is either quasi-static or
semi-dynamic, and the satellite remains in a fixed position throughout the experiments.
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Figure 2. Atmospheric turbulence conditions with respect to D/r0.

A graphical presentation of the RL environment is displayed in Figure 1. The simu-
lation environment updates in discrete time steps for practical purposes and to maintain
consistency with the standard RL framework. At each time step t, the RL agent receives
an observation of the system’s current observation (o) and a reward (r). The observation
encodes the power after the focal plane in the AO system, while the reward is computed by
utilizing the power distribution after the focal plane. Based on the agent’s parameterized
policy, πθ , and the current observation, the agent selects the next action πθ : o → a. The
agent’s actions control the deformable mirror in the AO system. When controlled optimally,
the incoming optical beam becomes concentrated and centered on the single-mode fiber.

3.1. Episodic Environment

In real-world scenarios, this RL problem can be characterized as either a finite or
infinite horizon problem. In the finite horizon case, each episode lasts for the duration of
the satellite’s communication with the receiver. Here, we focus on the episodic form of the
problem. We assess the effectiveness of an RL policy that can map the deformable mirror
from its neutral position (flat mirror) to a shape that focuses the beam on the single-mode
fiber. We conducted a parametric study with respect to the episode’s length, ranging
from 10 to 100 time steps. Our findings indicate that the adoption of an episode length of
20–30 time steps is sufficient to achieve optimal action.

In the generated AO-RL environment, the option of selecting quasi-static, semi-
dynamic, or dynamic environments is made available. As previously mentioned in
Section 2.2, in a quasi-static environment, it is assumed that the atmosphere can be con-
sidered to be in a quasi-static state and a static turbulence profile for training purposes is
considered valid. In a semi-dynamic environment, the configuration of the quasi-static
atmosphere changes in each episode. The utilization of a semi-dynamic environment can be
found to be helpful in the generation of the initial configuration of neural network weights
before transitioning to a dynamic environment. In a dynamic environment, the movement
of the atmosphere is influenced by a velocity vector where the final timestep of episode i is
the same as the initial timestep of episode i + 1.

3.2. Action Space

In the context of AO, the actions of the RL agent involve movements of the actuators
located beneath the deformable mirror, as shown in Figure 3. The number of actuators
determines the degree of freedom of the mirror’s shape. The actuators are responsible
for controlling the continuous reflective surface of the deformable mirror. The range of
movement for each actuator is ±5 µm, providing a high degree of precision in the mirror’s
surface shape and position.

According to Tyson [6], the wavefront is a 2D map of the phase at a plane that is normal
to the line of sight from the origin of the beam to the target. In the field of AO, multiple
methods are utilized to represent this 2D wavefront map, including the power-series
representation [6] and the Zernike series [47–49]. An effective approach to analyzing phase
aberrations involves decomposing the wavefront into a series of polynomials, which form
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a complete set of orthogonal polynomials defined over a circular pupil [47,50]. This series
comprises sums of power series terms with appropriate normalizing factors [49,51].

Figure 3. Illustration of a deformable mirror surface and incident beam.

Our RL environment presents two choices within the action space: the number of
actuators or Zernike polynomials [47]. Given our available setup, the action space can be
configured either directly with 64 actuators or with deformable mirror Zernike polynomials
truncated at the first six modes (second radial orders) in a circular geometry. The decision
to use six-mode Zernike polynomials stemmed from experiments conducted with Shack–
Hartmann wavefront sensor-based AO. These experiments demonstrated that employing
six modes of Zernike polynomials is adequate to achieve a Strehl ratio of more than 50%
under average atmospheric turbulence conditions (where D/r0 < 5).

In the former case, a 64-actuator segmented deformable mirror is simulated in a
quasi-static environment, with eight actuators along each linear dimension. As a result,
the RL agent is tasked with selecting actions from a 64-dimensional action space, where
each actuator can be independently and continuously adjusted within a certain motion
range. This setup allows for precise and smooth control of the deformable mirror. The
actuation has a limit corresponding to the maximum optical phase error that is possible
under the atmospheric conditions used in training. High-dimensional action space can
potentially pose difficulties for RL algorithms in non-static environments due to the curse
of dimensionality. For this reason, within our RL environment, we implemented the
dimensionally reduced action space based on the Zernike series [47], which can be obtained
from the observation space representing the wavefront.

It is assumed that the deformable mirror operates at a sufficiently fast speed to allow
for approximating the atmosphere as quasi-static, given that most deformable mirrors are
capable of correction at speeds of up to 1–2 kHz [52]. Faster deformable mirrors can be
achieved using smaller mirrors. For a 50 cm telescope and this deformable mirror choice,
the system can be expected to achieve reasonable correction for turbulence conditions
of less than r0 = 6.25. We expect r0 conditions to range from 5 cm to 15 cm for satellite
elevation angles above 15◦.

3.3. Observation Space

We utilize the power of the wavefront that propagates through the focal plane to
form the observation of the state of the environment. The focal plane is shown on the left
in Figure 4. The white circle within the figure indicates the entrance of the single-mode fiber.

The observable states of the system directly and efficiently relate to the light coupled
into the fiber through a reward function calculation, as explained in Section 3.4. We choose
to rely on this, rather than using the full Markovian states, which would require access
to information about the satellite’s angle and atmospheric conditions. In other words,
observations rely on the information directly measured about the state of the environment
after the wavefront has been propagated through the focal plane and discretized into a sub-
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aperture array of n × n pixels, whereas a Markovian state requires complete information
about the system to fully describe it, which would introduce high levels of uncertainty since
some of the quantities are not directly measurable or measured. The trade-off is the loss of
full observability due to the compression of the state for cost and latency. Nonetheless,
RL has tools to handle partial observability [53] and our agents can learn an effective
policy utilizing the photodetector represented in Figure 4 (right), with each red square
representing a pixel of the photodetector.

Figure 4. Focal plane profile, (left) continuous, (right) discretized.

In our RL environment, we can choose the dimension of the observation space, which
is n2. One might increase the value of n to increase the dimension of the observation space
in order to decrease the partial observability.

We discretize the focal plane into a sub-aperture array consisting of 2 × 2 pixels
under quasi-static atmospheric conditions. This setup can be implemented using a fast
and relatively cost-effective quadrant photodetector, as illustrated on the right in Figure 4.
The use of a low-pixel count detector mitigates the need for slower and more expensive
read-out circuits used in infrared cameras, allowing for more light per pixel and reducing
noise, which, in turn, improves the speed of the RL algorithm training. However, a 2 × 2
sub-aperture array may not suffice for non-static atmospheric conditions due to low-partial
observability and, in such cases, the dimension of the observation space can be increased
by increasing the value of n.

3.4. Reward Function

There are two available choices for the reward function in the RL environment: the
Strehl ratio and the combination of single-mode fiber total power with the Structural
Similarity Index (SSIM).

In the former, the reward function is calculated using the Strehl ratio of the optical
system, defined as the ratio of the normalized peak intensity of the point spread function to
the peak intensity of the ideal point spread function without aberrations. A high Strehl ratio
implies a high degree of wavefront correction, where a focused beam of light resembles an
Airy disk and is approximately proportional to the amount of light that can be coupled into
a fiber [54]. It is considered an approximation because, for optimal coupling into an optical
fiber, a focused beam should resemble a Gaussian profile. As proposed by Mahajan [55],
the Strehl ratio r1 of systems with a circular pupil is expressed in terms of the variance of
the phase aberration across the pupil

r1 = e−σ2
Φ (1)

where σ2
Φ represents the variance of the phase aberration.

Although the Strehl ratio is commonly used in AO, its computation is not ideal for the
applications in this work since it requires a point spread function and a camera, whereas our
system explicitly avoids reliance on a camera (specifically an InGaAs camera), in favor of a
cheaper, compact, and faster solution. The calculation of the Strehl ratio requires sufficiently
long exposures for speckle variation and there are alternative methods that utilize fewer
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array sizes. Additionally, the Strehl ratio is not an ideal metric for coupling into a single-
mode fiber, as the correlation between the single-mode fiber-coupling efficiency and the
Strehl ratio is reduced at high Strehl ratios, restricting its applicability as reward function to
lower values. At higher Strehl ratios, it is limited by the mode mismatch between a focused
flat top beam and the Gaussian mode in a single-mode fiber [54,56]. Therefore, a different
reward function has been added to the RL environment. This additional reward combines
the total power of single-mode fiber and the Structural Similarity Index (SSIM). Although
the total power of a single-mode fiber is a crucial indicator of its ability to concentrate
power, due to its very small diameter, it is not particularly useful for exploration as it
misses a significant portion of observations. Therefore, relying solely on the total power of
a single-mode fiber as a reward function is inadequate. To address this, we combine it with
SSIM as a criterion to measure the similarity between two arrays on a photodetector, like the
Strehl ratio. The first array serves as a reference, which represents the power distribution
when there is no wavefront distortion, and the second array represents the current power
distribution. In other words, single-mode fiber total power measures the performance of
the exit of the single-mode fiber, while SSIM measures the performance of the entrance of
the single-mode fiber. This reward, named r2, is formally defined by

r2 = βPSMF + (1 − β)
(2µcurrµre f + c1)(2σcurr,re f + c2)

(µ2
curr + µ2

re f + c1)(σ2
curr + σ2

re f + c2)
(2)

where β is a constant that controls the weighting between single-mode fiber total power
(PSMF) and SSIM. The SSIM equation involves the variables (µre f , σre f ), which are the mean
and variance of the power distribution of the reference array when there is no distortion,
and (µcurr, σcurr) as the mean and variance of the current power distribution. c1 and
c2 are two constants to stabilize the division when the denominator is small, avoiding
numerical singularities.

4. Methodology and Algorithms Training

In Section 3.1, we discussed our three distinct environment options: quasi-static,
semi-dynamic, and dynamic environments. For the quasi-static environment, we used a
configuration with a 2 × 2 observation space and a 64-actuator action space, along with a
Strehl ratio reward function (1). In preparation for the dynamic environment analysis, we
utilize a semi-dynamic environment with a configuration of 5 × 5 observation space and
a first six modes (second radial orders) of Zernike polynomials action space, with a new
reward function (2). In this section, we present the hyperparameter optimization of the RL
algorithms in the quasi-static environment, using the former configuration.

In a quasi-static environment, we quantify the performance of RL algorithms by calcu-
lating the mean and the standard deviation of the reward function across 20 independent
trials. Each RL algorithm has its hyperparameters tuned to the environment and the
best-performing setup is compared to an idealized AO system with a Shack–Hartmann
wavefront sensor.

We have implemented and compared three families of RL algorithms: Soft Actor–
Critic (SAC), Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimiza-
tion (PPO). These three families cover on-policy and off-policy learning, stochastic and
deterministic policies, and the use of entropy-based methods. These variations are essential
when considering their applicability in the context of wavefront sensorless AO, as each
approach has its strengths and weaknesses. In particular, the off-policy algorithms, SAC
and DDPG, generally have better sample efficiency compared to on-policy algorithms.
Alternatively, the on-policy algorithm, PPO, is often known for its stability and ease of
training. Given sufficient time, on-policy algorithms can provide high-performance re-
sults. Moreover, the entropy regularization in SAC enables rich exploration, which can
be beneficial when dealing with high-dimensional action spaces. Each algorithm is dis-
cussed in more detail in the following subsections. We present a comprehensive list of the
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hyperparameters selected for each algorithm after tuning for a quasi-static environment
in Table 1.

Table 1. Hyperparameters and corresponding values in quasi-static environment.

Hyperparameter SAC DDPG PPO

Buffer size 128 256 -
Actor—lr 5 × 10−4 5 × 10−5 1 × 10−2

Critic—lr 1 × 10−2 1 × 10−2 5 × 10−6

Actor—hidden dim. 150 250 150
Critic—hidden dim. 80 65 50

Clipping ϵ - - 0.35
Temp. αt-lr 1 × 10−1 - -

Temp. αt-min limit 0.4 - -
No episodes per iteration 1 2 2
No updates per iteration 20 20 20

Polyak (ρ) 0.99 0.99 -
Discount (γ) 0.95 0.95 0.95

Reward scaling No Mean–std No
learned αt Semi - -

4.1. Soft Actor–Critic (SAC)

SAC is an off-policy actor–critic algorithm based on a maximum entropy RL frame-
work. It is particularly useful in complex and stochastic environments, such as wavefront
sensorless AO systems. SAC uses a deep neural network to approximate the actor and
critics. The actor component of the algorithm is tasked with maximizing the expected
return while promoting exploration through random actions rather than becoming trapped
in suboptimal policies. On the other hand, the critic component is responsible for esti-
mating the Q-function of a given state–action pair. The Q-function provides feedback for
improving the policy by adjusting the actions that the agent takes in each state to maximize
the expected sum of future rewards [35].

SAC has shown promising results in various domains. However, one major drawback
is its sensitivity to the choice of temperature αt and intuitively selected target entropy
parameters. These parameters play a crucial role in the algorithm’s performance and their
selection can significantly affect the outcome. To address this, Reference [57] proposed a
method of automatic gradient-based temperature tuning by matching the expected entropy
log π∗

t (at|st; αt) to a target entropy value H̄ at time t:

α∗t = arg min
αt

Eat∼π∗
t

[
−αt log π∗

t (at|st; αt)− αtH̄
]
, (3)

where the temperature αt controls the stochasticity of the optimal policy, and at and st are
the action and the state at time t, respectively.

In our preliminary assessment, we evaluate the SAC using three different temperature
settings: fixed, learned, and semi-learned temperatures. Under the fixed temperature
condition, we achieved the best reward by setting the constant value αt = 0.4. This resulted
in a mean reward of 52.63% with a standard deviation of 14.64% at the end of the training
process. For the learned temperature condition, we optimized it using a learning rate
αt-lr = 10−1 within the learning rates ranging from 10−6 to 5 × 10−1. The semi-learned
temperature condition was also optimized using the same learning rate, along with a
minimum value of αt = 0.4, resulting in improved performance compared to the entire
range of learning rates and minimum αt values between 0 and 1. Figure 5 illustrates our
results, showing that the fixed and semi-learned temperature settings show faster learning
rates compared to the purely learned setting, and that semi-learned converges to the best
policy. As a result, we have chosen to use the semi-learned temperature configuration in all
subsequent experiments.
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Figure 5. Comparison of the selection of the temperature (αt) in SAC applied on 20 randomly selected
quasi-static atmospheric turbulences of D/r0 = 5. Note that the shaded regions extend to negative
values of the Strehl ratio because the standard deviation may be larger than the mean, represented by
the solid curves.

4.2. Deep Deterministic Policy Gradient (DDPG)

DDPG utilizes a deep neural network to approximate the value function and policy,
allowing it to handle high-dimensional observation spaces. This approach, as previously
demonstrated by [36], can be effective in tackling complex environments. While DDPG has
the advantage of ease of implementation, it can be sensitive to the choice of hyperparameters
and can be prone to instability due to the choice of the reward function [58].

In our preliminary assessment, we compared the effect of reward normalization with
the mean–standard deviation (mean–std norm) and the min–max norm method versus
no normalization on the learned policy. The normalization process scales the rewards
across episodes. This has been shown to help the model identify actions that lead to higher
rewards, thus accelerating the algorithm’s convergence. In addition, as the model reaches
convergence, the variance of the rewards tends to decrease, making it more challenging
for the model to adjust itself. By normalizing the rewards, the model can more effectively
recognize these rewards and continue to make adjustments.

Figure 6 demonstrates that omitting reward scaling in this domain leads to slow
convergence to a lower reward. Min–max norm and mean–std norm learn at similar rates;
however, mean–std norm converges to a higher reward. Thus, mean–std normalization is
employed for the subsequent experiments in our DDPG approach.

Figure 6. Comparison of the selection of the normalization technique in DDPG applied on
20 randomly selected quasi-static atmospheric turbulences with D/r0 = 5.



Photonics 2023, 10, 1371 11 of 19

4.3. Proximal Policy Optimization (PPO)

PPO is an on-policy, policy gradient algorithm. It alternates between sampling data
through interactions with the environment and optimizing a surrogate objective function
via stochastic gradient ascent [37]. PPO utilizes a deep neural network to approximate
the policy and value function. PPO employs a “clipped surrogate objective” to penalize
significant policy updates. The policy update, expressed as the probability ratio rt(ϕ)
between the old policy and the current policy at time t, is encoded in objective function

LCLIP(ϕ) = Êt[min(rt(ϕ)Ât, clip(rt(ϕ), 1 − ϵ, 1 + ϵ)Ât)] (4)

where ϕ is the vector of policy parameters. This technique limits eventual drastic changes
in the policy during updates, and its effectiveness depends on the hyperparameter ϵ,
which controls the size of policy updates to prevent model collapse. Setting ϵ too small
may result in slow convergence while setting it too large increases the risk of model
collapse. The objective function limits the default policy gradient rt(ϕ)Ât to the range of
[1 − ϵ, 1 + ϵ]Ât, where Ât is the advantage estimator.

Our preliminary analysis, as shown in Figure 7, demonstrates that PPO is robust to
ϵ ∈ [0.05, 0.4] in this environment. Settings within this range show very subtle differences
in variance, convergence rate, and convergence level. Generally, smaller ϵ values result in
slightly slower convergence, whereas larger values converge faster but to marginally lower
levels. Based on this analysis, all subsequent experiments have ϵ = 0.35.

Figure 7. Comparison of the selection of clipping parameter ϵ in PPO applied on 20 randomly selected
quasi-static atmospheric turbulence of D/r0 = 5.

5. Results

The experiments were conducted using a computing system equipped with an Intel
Core i7 processor and 16GB of RAM, running on a 64-bit Windows operating system.
To facilitate the computation, several software libraries and frameworks were employed,
including the Gymnasium environment version 0.29.1, the HCIPy framework version 0.5.1,
and the Pytorch framework version 2.1.0, all of which were implemented in Python 3.9.6.

5.1. Comparison of RL Algorithms in Quasi-Static Environment

We used the light coupling performance obtained from Shack–Hartmann wavefront
sensor data as the reference for comparison with the refined RL algorithms outlined in
Section 4. This comparison was conducted under the quasi-static turbulence condition of
D/r0 = 5. The results are presented in Figure 8. Employing the Shack–Hartmann wavefront
sensor with 12 lenslets across the aperture diameter for a total of 112 lenslets as a benchmark
enabled us to comprehensively evaluate the effectiveness of the proposed RL algorithms in
improving light coupling performance in the presence of atmospheric turbulence.

The SAC and DDPG algorithms rely on the randomness introduced by their replay
buffers. To ensure that the results of these algorithms can be replicated, a fixed seed is used
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as the initial parameter. To avoid the possibility of reusing the same set of random values
in every iteration, the fixed seed value is incremented by 1 after each iteration.

The results shown in Figure 8 indicate that the PPO algorithm outperforms the SAC
and DDPG algorithms in this experiment. Specifically, when we consider the randomly
selected quasi-static atmospheric turbulence with a ratio of D/r0 = 5, the PPO algorithm
achieved a maximum reward of 67%, which is close to the maximum reward obtained by the
Shack–Hartmann sensor, approximately 73%. Although SAC and DDPG still demonstrated
acceptable performance with a maximum reward of 53% in the early training episodes, the
PPO algorithm consistently demonstrated superior results. The improved performance
of PPO over SAC and DDPG can be attributed to its ability to sample from the action
distribution, which helps it avoid suboptimal local minima in high-dimensional observation
spaces. In contrast, in SAC and DDPG, the actions that look nearly optimal can have an
equal likelihood of being tried as those that appear highly suboptimal.

Figure 8. Comparison of algorithms applied on 20 randomly selected quasi-static atmospheric
turbulences of D/r0 = 5. Note that the shaded regions extend to negative values of the Strehl ratio
because the standard deviation may be larger than the mean, represented by the solid curves.

5.1.1. Performance with Varying Turbulence Severity

In this section, we employ the PPO algorithm to evaluate its performance under low
and high quasi-static turbulent conditions. The corresponding results are displayed in
Figure 9.

Figure 9. Average reward of 20 randomly selected quasi-static atmospheres of different D/r0 ratios
with 64 actuators and 4 observers on PPO algorithm and Shack–Hartmann wavefront sensor.
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As anticipated and illustrated in Figure 9, a decrease in the Fried parameter value
results in a decline in the model’s capacity to achieve a higher reward. If the agent’s
performance cannot significantly improve beyond the uncorrected 2 to 10% Strehl ratio
(depending on D/r0 value), it can be considered impractical.

5.1.2. Power Distribution Comparison

The impact of using a PPO algorithm within an RL environment and using a Shack–
Hartmann wavefront sensor on the power distribution of a wavefront under quasi-static
turbulence condition of D/r0 = 5 have been analyzed and illustrated in Figure 10. On the
left side of Figure 10, the power distribution at the focal plane at the beginning of each
episode when the wavefront is reflected through a flat deformable mirror. On the right
side of the figure, we plot the results after: (upper right) the implementation of random
actions through the PPO algorithm in the initial episodes, (middle right) the utilization
of the Shack–Hartmann wavefront sensor, and (lower right) the application of the PPO
algorithm following a sequence of episodes.

The utilization of the Shack–Hartmann wavefront sensor, as illustrated in Figure 10
(middle right), has resulted in a significant concentration of power at the center of the
focal plane, with a Strehl ratio of approximately 70%. Similarly, the application of the
PPO algorithm, as illustrated in Figure 10 (lower right), has also produced a significant
concentration of power at the center of the focal plane, however, with a slightly lower Strehl
ratio of approximately 60%.

Figure 10. Power distribution on a focal plane (left) before proposed AO, (upper right) after the
implementation of random actions through the PPO algorithm in the initial episodes, (middle right)
after the utilization of the Shack–Hartmann wavefront sensor, (lower right) after the application of
the PPO algorithm following a sequence of episodes.

5.2. PPO Algorithm in Semi-Dynamic Environment

The experimental setup assigned for a quasi-static environment consists of a 64-actuator
action space, a 2 × 2 pixel observation space, and a Strehl ratio reward function. To extend
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and validate our algorithmic framework for dynamic environments that better approximate
real-world scenarios, such as the Earth’s turbulent atmosphere, it is necessary to refine the
RL environment to address specific challenges posed by non-static conditions.

Before transitioning to the dynamic environment, it is essential to adjust the initial
weights of the agents to facilitate more effective and efficient learning. To accomplish this,
we have employed a semi-dynamic environment, as explained in Section 3.1. This semi-
dynamic environment employs the reward function r2 in (2), replacing the Strehl ratio in (1)
based on the discussion in Section 3.4.

In the conducted experiment, each iteration involves 100 episodes of a randomly
selected quasi-static environment, with each episode consisting of 20 time steps. The results
of our experiment on a semi-dynamic environment using a quasi-static configuration with
the PPO algorithm are presented in Figure 11 (red). This shows that the configuration used
for a quasi-static environment is insufficient for learning a policy within a semi-dynamic
environment, reaching a mean value of 20% coupling efficiency. Based on this poor per-
formance, we hypothesize that partial observability and the curse of dimensionality can
be significant factors. Specifically, the observation space is limited to a low dimension of
2 × 2 pixels, which may result in inadequate information gathered from the environment,
leading to partial observability. Additionally, the utilization of a high-dimensional action
space can cause an exponential rise in computational effort and lead to the curse of di-
mensionality [60]. To address these challenges within our existing setup, we reduced the
action space dimension by employing the first six modes (second radial orders) of Zernike
polynomials and increased the observation-space dimension to a 5 × 5 pixel photodetector
(config 2). Furthermore, considering the time dependency, we applied the frame stacking
technique [59] using a sequence of three frames, obtaining the results in Figure 11 (blue).
Hyperparameter optimization has been performed for this experiment.

Figure 11. Comparison between two configurations in atmospheric turbulence of D/r0 = 3.33 in
semi-dynamic environment. Config. 1: observation space of 2 × 2 pixels, action space of 64 actuators.
Config. 2: observation space of 5 × 5 pixels, action space of first 6 modes (2nd radial orders) of
Zernike polynomials. The reward function is Equation (2).

By increasing the dimension of the observation space to a 5 × 5 pixel photodetector and
reducing the action space to a first six modes (second radial orders) of Zernike polynomials,
we can achieve a total power after single-mode fiber-coupling efficiency of 36%. In the
semi-dynamic environment, it is noticeable that the Shack–Hartmann reaches a mean
coupling efficiency of 48%. Part of the discrepancy could be attributed to the fact that the
Shack–Hartmann wavefront sensor with 12 lenslets across the aperture diameter employs a
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128 × 128 pixels camera for adjustment, in contrast to our use of a 5 × 5 pixel photodetector
for calculating the reward value.

6. Discussion

In this study, we encountered a challenging scenario involving a high 64-dimensional
continuous action space and a low-dimensional 2 × 2 observation space in quasi-static
atmospheric turbulence. This situation could potentially hinder the effectiveness of RL al-
gorithms. However, the successful performance of our RL algorithms in a quasi-static
environment has demonstrated that their effectiveness does not solely depend on the
limited dimensions of the photodetector and the deformable mirror. Instead, it arises from
a combination of factors, including the robustness of the reward function, the quality of
the employed photodetector, and the correlation within the action space. In other words,
the Strehl ratio reward function used in a quasi-static environment offers a significant
advantage due to its ability to provide high-quality rewards, which are calculated prior
to the wavefront propagating through the photodetector, which had a higher pixel count
(128 × 128 as opposed to 2 × 2) and resolution. Consequently, by employing a proficient
function approximator and a robust reward function, the agent can effectively generalize
over related actions. Given the large number of degrees of freedom in the mirror, there
are numerous possible paths to focus the light and the agent only needs to cover one of
these paths.

While increasing the dimension of the observation space and reducing the dimension
of the action space was not necessary in quasi-static atmospheric turbulence, it became
crucial in semi-dynamic atmospheric turbulence. For this reason, the observation-space
dimension was changed to 5 × 5 and the action-space dimension was reduced to a first six
modes (second radial orders) of Zernike polynomials. The reward function was changed
from the Strehl ratio to Equation (2)) since the Strehl ratio cannot be accurately calculated
using a 5 × 5 detection array, and to better correspond to coupling efficiency into a single-
mode fiber. The new reward function is designed to perform calculations utilizing only a
5 × 5 pixel observation space.

The results of a quasi-static environment indicate that, while it is possible for the PPO,
SAC, and DDPG RL models to determine an accurate set of deformable mirror actions,
the results generally underperform the output of the Shack–Hartmann wavefront sensor.
PPO outperforms the SAC and DDPG models, converging on a Strehl ratio of over 60%
after hundreds of training episodes. One of the main limitations of these results is the
applicability to a dynamic atmosphere with limited deformable mirror speeds. The 3 dB
bandwidth of the fastest mechanical deformable mirrors is limited to <10 kHz, which
implies that less than 10 action-measurement loop iterations are required for the quasi-
static turbulence condition to hold. For most deformable mirrors, this requirement cannot
be met. However, some faster deformable mirrors possess sufficient speed, and photonic
chip-based phase corrector arrays are capable of speeds well in excess of 20 kHz [33] and
can make use of a model requiring tens of action steps to converge.

Despite this limitation, we expect such simplifications to be reasonable as an RL-based
system may still outperform a Shack–Hartmann wavefront sensor with its corresponding
photon count requirements which are not considered in our comparisons. For existing and
planned optical ground stations, AO may not be considered at all due to the cost, com-
plexity, calibration, wavefront steps, aliasing, and latencies involved in Shack–Hartmann
wavefront sensing. Therefore, any improvement to the wavefront beyond an uncorrected
case is still of value. Furthermore, the application of models trained on quasi-static and
semi-dynamic turbulence profiles may be of value to RL environments with dynamically
changing turbulence profiles for improvement to signal re-acquisition times.

The choice to use 2 × 2 or 5 × 5 photodetectors as a source of feedback arises from their
simplicity, cost-effectiveness, and high degree of correlation with improved single-mode
fiber coupling. Our experiments using PPO showed rapid improvement in the reward,
indicating that PPO can be an effective algorithm for wavefront correction under certain
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conditions in quasi-static atmospheric turbulence. As demonstrated in Figure 9, although
PPO performs better than the Shack–Hartmann wavefront sensor under high turbulence
conditions, our results also revealed its performance may be limited due to the presence of a
high-dimensional continuous action space and a low-dimensional continuous observation
space. This can pose a significant challenge for the algorithm to explore the optimal
control policy. These results emphasize the need for further research in developing the
RL algorithms for partially observable environments to improve the wavefront correction
performance in AO applications, particularly in high dynamic turbulence conditions.

7. Conclusions

We presented a cost-effective RL-based approach for wavefront sensorless AO in
optical satellite communication downlinks. To gain a comprehensive understanding of
the performance of the RL algorithms, we developed and shared the first optical satellite
communications downlink RL environment. By using this RL environment, we imple-
mented off-policy algorithms like SAC and DDPG, along with an on-policy algorithm,
PPO, to optimize the coupling of 1550 nm light into a single-mode fiber under varying
turbulence conditions.

In a quasi-static environment, our results showed that the PPO algorithm is partic-
ularly effective in achieving a high average correction with a low number of training
iterations. Under atmospheric turbulence conditions with D/r0 = 2 and 5, we observe
that the PPO algorithm achieves performance close to 90% of Shack–Hartmann wavefront
sensor-based AO with 12 lenslets across the aperture diameter. In more turbulent condi-
tions, such as D/r0 = 10, PPO outperforms the Shack–Hartmann wavefront sensor-based
AO by approximately 10% Strehl ratio. This was accomplished while working with a
low-dimensional observation space and a high-dimensional action space. This approach
eliminates the need for wavefront sensor measurements, thereby reducing the cost and
latency of optical satellite communications downlinks.

Towards the development of a real-world dynamic environment, we implemented
a semi-dynamic environment, which can be helpful for initializing agents’ weights for
dynamic scenarios. The results of our experiment on a semi-dynamic environment using
a quasi-static configuration with the PPO algorithm showed that the latter is insufficient
for learning a policy within a semi-dynamic environment, reaching a mean value of 20%
coupling efficiency. From this, we hypothesize that partial observability and the curse of
dimensionality can have significant influence. To address these challenges while main-
taining cost-effectiveness, we increased the observation-space dimension and reduced
the action-space dimension by employing the Zernike series. This resulted in an average
coupling efficiency of 36% compared to the Shack–Hartmann wavefront sensor-based
AO, which reaches an average efficiency of 48%. Additionally, we observed that this con-
figuration exhibits a faster response in the semi-dynamic environment compared to the
previous configuration with lower dimensional observation space and higher dimensional
action space.

Future work aims at developing robust RL models for wavefront sensorless AO in
fully dynamic environments. Cost savings of 30% to 40% are expected through the use of
smaller telescope systems and without the need for Shack–Hartmann wavefront sensors.
This can be achieved by developing the framework of a deep RL model and training it to
adapt to dynamically changing wavefront distortions across different satellite trajectories
and deformable mirror actuator geometries. Our immediate focus involves investigating
the performance of deep RL algorithms under various dynamic turbulence conditions
within a simulated environment. Once this challenge is addressed, our next step involves
training our model using the available setup, omitting wavefront sensors and cameras, but
using low-pixel count photodetectors instead.
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