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Abstract: We theoretically study the impact of bismuth-chalcogenide microparticles on the linear
absorption and dispersion properties of a four-level double-V-type quantum system. The quantum
system interacts with two circularly polarized laser fields of the same frequency but with different
phases and electric field amplitudes. Our study indicates that the inclusion of bismuth-chalcogenide
microparticles leads to notable alterations in the absorption and dispersion spectra corresponding to
one of the probe laser fields (while both fields are present). These alterations are much more dramatic
compared to those induced by common plasmonic materials. By manipulating the field amplitudes
as well as the phase difference between the two incident waves, the optical properties of the system
can be efficiently controlled. Our study also highlights several effects, including complete optical
transparency, zero absorption with nonzero dispersion, and gain without inversion.

Keywords: quantum interference; spontaneous emission; polar materials

1. Introduction

Quantum plasmonics is an area of research that involves the intersection of plasmonics
and quantum mechanics [1–4]. Plasmonics is the study of the collective electron oscillations
in metal-like structures, while quantum mechanics is used to manipulate and control
light at the nanoscale. This combination presents new possibilities for high-resolution
imaging, biosensing, and the development of ultra-small optical devices [5]. One of the
main aspects of quantum plasmonics is the use of quantum entanglement, which allows for
the correlation of quantum states of multiple particles, leading to promising applications
in quantum computing, cryptography, and communication. Overall, the integration of
quantum plasmonics and quantum nanophotonics is a promising avenue for technological
advancements in the fields of nanophotonics and quantum technologies [6].

The success of quantum technologies that utilize plasmonic devices is contingent
upon the establishment of an efficient coherent interaction between light and a quantum
emitter (QE). One effective strategy for enhancing this interaction is to integrate the QE
with a plasmonic structure, which can modify the spontaneous emission (SE) rates by
means of the local electromagnetic density of states (LDOS) available to the emitter. This
phenomenon, known as the Purcell effect [7], is widely regarded as a crucial aspect of
quantum plasmonics. To quantify the change in the SE rate of the QE, the Purcell factor
is used to compare the rate in the presence of a photonic or plasmonic environment to
the SE rate of the QE in a vacuum. The Purcell effect has been extensively studied in
the literature and is well-established as a key factor in the successful implementation of
quantum plasmonics [8,9].
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Noble metals, such as silver, gold, and copper, are the most widely-used materials for
plasmon excitations, but their high intrinsic losses have prompted research into alternative
materials. High-index dielectrics and semiconductors, including Si, GaAs, and AlGaAs,
have been suggested as possible alternatives due to their potential for mitigating losses [10].
The use of high-refractive-index materials in plasmonics offers numerous benefits, including
improved light-matter interactions, reduced losses, and compatibility with silicon-based
electronics [11]. As a result, the field of plasmonics with high-refractive-index materials
is rapidly expanding and holds great promise for applications in sensing, photonics, and
quantum computing [12].

Chalcogenides are a group of materials containing elements like sulfur, selenium,
and tellurium that exhibit excellent dielectric properties owing to their robust phonon
resonances in the THz range. These materials have been the focus of significant interest for
their unique electronic and optical properties that make them well-suited for photonics and
optoelectronics [13–15]. Bismuth chalcogenides are a type of material that are highly valued
in the field of nanophotonics and other optical technologies because of their impressive
light confinement properties and high refractive index [16,17]. Chalcogenides have been
extensively studied in recent years for their potential applications in polaritonic excitations
and for enhancing light-matter interactions in quantum technologies [18].

Bismuth chalcogenides are of particular interest for their ability to exhibit strong
coupling between light and matter through polaritonic excitations. Unlike noble-metal
nanostructures, which can have high Purcell factors but suffer from large ohmic losses [19]
that hinder their coupling with quantum emitters, bismuth chalcogenides have lower
losses and higher field enhancement, making them a promising candidate for efficient QE
coupling. These materials generate high partially local density of states (PLDOS) due to
polaritonic excitations [20–22], resulting in significant modifications and control over the
SE rate of nearby QEs [23]. This unique property opens up opportunities for a range of
applications in areas such as photonics, sensing, and quantum information processing.

The present work studies the Purcell effect in a double V-type quantum system.
Such few-level quantum systems are simplified models that capture specific features
while leaving out some of the complexity present in actual atomic systems. Here, we
focus on how the phase difference between two applied laser fields affects the optical
properties, specifically the real and imaginary parts of the electric susceptibility of a 4-level
double V-type quantum emitter near bismuth-chalcogenide microparticles. One V-type
transition in the system is affected by the microparticles while the other interacts with a
free-space vacuum. Our study utilizes a density matrix methodology to calculate the linear
susceptibility and demonstrates that the presence of the microparticles strongly modifies
the absorption and dispersion spectra of the laser fields. Furthermore, we demonstrate
that by manipulating the relative ratio of the electric-field amplitudes as well as the phase
difference between the two probe waves, the optical properties of the system can be
controlled efficiently. The present study also reveals some exotic phenomena such as
optical transparency, zero absorption with non-zero dispersion, and gain without inversion,
and identifies the specific conditions that give rise to these phenomena.

We note that the analysis presented below is based on earlier work where four-level
quantum systems are placed in plasmonic nanostructures [24,25]. We stress that the cases
of plasmonic nanostructures and bismuth-chalcogenide microstructures have significant
differences when influencing the quantum interference of nearby QEs. Plasmonic nanos-
tructures can give significant enhancement of quantum interference due to surface-plasmon
excitations, but this happens in the visible part of the spectrum and not in the THz regime
which is studied here for the case of bismuth-chalcogenide microstructures. Also, for the
plasmonic nanostructures, the enhancement is found for significantly smaller distances,
typically only for few tens of nanometers from the surface of the relevant plasmonic
nanostructure, and certainly not for few micrometers from the surface that we present here.
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2. Theory

The quantum emitter under study is presented schematically in Figure 1. The system
being studied is a four-level structure that contains two nearby upper states, denoted as |2〉
and |3〉, and two lower states |0〉 and |1〉. This configuration is referred to as a double-V-
type system, which helps to distinguish between two distinct three-level V-type transitions
present in the system. We use the states |2〉 and |3〉 to represent two sublevels with Zeeman
splitting. Then, the dipole moment operator is taken as ~µ = µ′(|2〉〈0|ε̂− + |3〉〈0|ε̂+) +
µ(|2〉〈1|ε̂− + |3〉〈1|ε̂+) + H.c., where ε̂± = (ez ± iex)/

√
2, describe the right-rotating (ε̂+)

and left-rotating (ε̂−) unit vectors and µ, µ′ are taken to be real. A similar model has been
used in refs. [24–27].

Figure 1. The quantum emitter studied throughout this work. It is a double-V-type emitter containing
two upper states |2〉 and |3〉 which decay spontaneously to the two lower states |0〉 and |1〉. The
system additionally engages with two weak probe electromagnetic fields, both of which are circularly
polarized and share the same angular frequency, denoted as ωa = ωb. The field denoted by a drives
the transition |0〉 to |2〉 whilst the field denoted by b drives the transition |0〉 to state |3〉.

The system is influenced by two circularly polarized laser fields of continuous wave
nature, with a combined electric field provided by

~E(t) = ε̂+Ea cos(ωat + φa) + ε̂−Eb cos(ωbt + φb). (1)

Here , Ea and Eb are the electric field amplitudes. The parameters ωa and ωb are the angular
frequencies of the laser fields. Also, the phases of the fields are denoted as φa and φb. As
we noted above, the laser field a drives the transition from |0〉 to state |2〉 and the laser
field b drives the transition from |0〉 to |3〉. We take both fields having equal frequencies
ωa = ωb = ω. We employ the dipole and rotating wave approximations and obtain the
Hamiltonian that describes the interaction between the quantum system and the laser fields,
which is expressed as

H = h̄
(
−δ− ω32

2

)
|2〉〈2|+ h̄

(
−δ +

ω32

2

)
|3〉〈3|

−
(

h̄Ωaeiφa

2
|0〉〈2|+ h̄Ωbeiφb

2
|0〉〈3|+ H.c.

)
. (2)

Here, δ = ω− ω̃ denotes the detuning from resonance with the average transition energies
of states |2〉 and |3〉 from state |0〉, with ω̃ = (ω3 + ω2)/2 − ω0, ω32 = (ω3 − ω2)/2.
Furthermore, Ωa and Ωb represent the Rabi frequencies corresponding to fields a and b,
respectively. These frequencies are defined as Ωa = µ′Ea/h̄ and Ωb = µ′Eb/h̄. In addition,
h̄ωn where n = 0, 1, 2, 3, corresponds to the energy level of state |n〉. We stress that the
Hamiltonian in Equation (2) only accounts for the interaction between the quantum system
and the external laser fields.

However, the quantum system also interacts with the vacuum and undergoes SE. The
details of the calculations of the inclusion of SE in the system is lengthy and will not be
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presented here. We refer the readers to ref. [25] were the details of the calculations are
provided. Both excited states |2〉 and |3〉 decay spontaneously to state |0〉 with decay rates
2γ′2, 2γ′3, respectively, and to state |1〉 with decay rates 2γ2, 2γ3, respectively. We assume
that transitions from states |2〉 and |3〉 to state |1〉 occur through surface phonon-polariton
resonances of the nearby bismuth-chalcogenide microparticles, while the frequencies of the
transitions to state |0〉 are far away from phonon-polariton resonances and are therefore not
influenced by the microparticles. Therefore, the decay from states |2〉 and |3〉 to state |0〉
occurs due to the interaction of the quantum system with the regular vacuum. The energy
difference between states |2〉 and |3〉 is chosen to be small, such that ω32 is typically a few
Γ0, where Γ0 is the decay rate of states |2〉 and |3〉 to state |1〉 in vacuum, and is assumed to
be equal for both states. We can therefore take that γ2 = γ3 = γ and γ′2 = γ′3 = γ′ [28].

Using the Hamiltonian as described in Equation (2) and including the interaction with
the vacuum modes [25], we formulate the equations for the density matrix components of
the system, in the Markovian approximation,

ρ̇00(t) = 2γ′[ρ22(t) + ρ33(t)]− i
Ωa

2

[
ρ02(t)e−iφa − ρ20(t)eiφa

]
− i

Ωb
2

[
ρ03(t)e−iφb − ρ30(t)eiφb

]
, (3)

ρ̇22(t) = −2(γ + γ′)ρ22(t) + i
Ωa

2

[
ρ02(t)e−iφa − ρ20(t)eiφa

]
− κ[ρ23(t) + ρ32(t)] , (4)

ρ̇33(t) = −2(γ + γ′)ρ33(t) + i
Ωb
2

[
ρ03(t)e−iφb − ρ30(t)eiφb

]
− κ[ρ23(t) + ρ32(t)] , (5)

ρ̇20(t) = (iδ + i
ω32

2
− γ− γ′)ρ20(t) + i

Ωa

2
e−iφa [ρ00(t)− ρ22(t)]

− i
Ωb
2

e−iφb ρ23(t)− κρ30(t) , (6)

ρ̇30(t) = (iδ− i
ω32

2
− γ− γ′)ρ30(t) + i

Ωb
2

e−iφb [ρ00(t)− ρ33(t)]

− i
Ωa

2
e−iφa ρ32(t)− κρ20(t) , (7)

ρ̇23(t) = (iω32 − 2γ− 2γ′)ρ23(t) + i
Ωa

2
e−iφa ρ03(t)− i

Ωb
2

eiφb ρ20(t)

− κ[ρ22(t) + ρ33(t)] , (8)

with ρ00(t) + ρ11(t) + ρ22(t) + ρ33(t) = 1 and ρnm(t) = ρ∗mn(t). Above, we have intro-
duced the coupling coefficient κ between upper states due to SE in a modified anisotropic
vacuum [29]. This coefficient is responsible for quantum interference in SE [30].

The parameters γ and κ are defined as [31–34]

γ =
1
2

(
Γ⊥ + Γ‖

)
, (9)

κ =
1
2

(
Γ⊥ − Γ‖

)
, (10)

where Γ⊥,Γ‖ are SE rates for a dipole oriented perpendicular (⊥) or parallel (‖) to the
surface of a nearby object (in our case microspheres).

The measure (degree) of quantum interference is provided by

p =
Γ⊥ − Γ‖
Γ⊥ + Γ‖

. (11)

Maximum quantum interference in SE is given for p = 1 [30]. This can be accomplished
by positioning the emitter in proximity to a structure that effectively suppresses Γ‖. In
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scenarios where the QE is situated in a vacuum, both Γ⊥ and Γ‖ are equal, and κ is zero,
resulting in the absence of quantum interference within the system.

The spectrum of absorption and dispersion concerning a weak laser field denoted as a
is dictated by the linear electric susceptibility, which is expressed as [35,36]

χ(1)(ω) =
2Nµ′

ε0Eae−iφa
ρ
(1)
20 =

2Nµ′2eiφa

ε0h̄
ρ
(1)
20

Ωa
. (12)

Here, ρ
(1)
20 is determined under steady-state conditions and in the first-order approximation

with respect to Ea (or Ωa). ε0 represents the permittivity of a vacuum, and N stands for the
density of quantum emitters.

We assume that both fields are weak and use time-dependent perturbation theory to
obtain from Equations (2)–(7) after some algebra

ρ
(1)
20 =

i Ωa
2 e−iφa

(
−iδ + i ω32

2 + γ + γ′
)
− iκ Ωb

2 e−iφb(
−iδ + i ω32

2 + γ + γ′
)(
−iδ− i ω32

2 + γ + γ′
)
− κ2 . (13)

We replace the expression for ρ
(1)
20 from Equation (13) into Equation (12), resulting in

χ(1)(δ) =
Nµ2

ε0h̄
δ− ω32

2 + iγ + iγ′ − iκ Eb
Ea

eiφ(
−iδ + i ω32

2 + γ + γ′
)(
−iδ− i ω32

2 + γ + γ′
)
− κ2 , (14)

where φ = φa − φb is the phase difference between the two applied fields. When the quantum
emitter lies in free space, i.e., in the absence of any nearby objects, Equation (14) becomes

χ(1)(δ) =
Nµ2

ε0h̄
δ− ω32

2 + iΓ0 + iγ′

(−iδ + Γ0 + γ′)2 +
ω2

32
4

. (15)

In the presence of photonic environment such as microspheres in our case, Equation (14)

may assume a more compact form by defining A = Nµ2

ε0 h̄ , α̃ = ω32
2 , γ̃ = γ + γ′, x = Eb

Ea
,

α = α(φ, x) = κx sin φ − α̃, β = β(φ, x) = γ̃ − κx cos φ, ε = α̃2 + γ̃2 − κ2 = α̃2 + (Γ‖ +
γ′)(Γ⊥ + γ′) (> 0) and ζ = −2γ̃ (< 0). Evidently, by separating Equation (14) in real and
imaginary parts, we obtain

Re[χ(1)(δ)] = A
(α + δ)(ε− δ2) + βζδ

(ε− δ2)2 + ζ2δ2 , (16)

and

Im[χ(1)(δ)] = A
β(ε− δ2)− ζδ(α + δ)

(ε− δ2)2 + ζ2δ2 . (17)

3. Zero Absorption, Optical Transparency and Inversion without Gain

Under the conditions described in the previous section, the interaction of two laser
fields on a quantum emitter, in a favourable photonic environment, can lead to the en-
hancement of quantum interference. This, in turn, can result in the observation of unusual
phenomena such as zero absorption with dispersion, optical transparency, and inversion
without gain.

Initially, we discuss a scenario where there is no absorption (Im[χ(1)(δ)] = 0), yet
dispersion is present (Re[χ(1)(δ)] 6= 0). This results in an elevation of the refractive index
without any concurrent absorption, as observed in [37,38]. This is observed under the
condition of detunings

δ± =
γ̃(α̃− κx sin φ)±

√
γ̃2(α̃− κx sin φ)2 + ε(κ2x2 cos2 φ− γ̃2)

γ̃ + κx cos φ
. (18)
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If the value inside the square root is zero or positive, then this results in

γ̃2(α̃− κx sin φ)2 ≥ ε(γ̃2 − κ2x2 cos2 φ). (19)

At δ = 0, or when ω equals ω̃ (a frequency at which the system exhibits pronounced
reduction in absorption when subjected to a linearly polarized laser field, as reported
in [39]), Equation (18) results in x2κ2 cos2 φ = γ̃2 or, for a positive value of cos φ,

Eb
Ea

=
Γ⊥ + Γ‖ + 2γ′

(Γ⊥ − Γ‖) cos φ
, (20)

provided that Γ⊥ 6= Γ‖. In this case,

Re[χ(1)(δ = 0)] = A
α

ε
=

Nµ′2

2ε0h̄
−ω32 + (Γ⊥ + Γ‖ + 2γ′) tan φ

ω2
32
4 + (Γ‖ + γ′)(Γ⊥ + γ′)

. (21)

After that, we describe the requirements for achieving complete optical transparency,
i.e., [χ(1)(δ) = 0]. By using Equations (16) and (17), we can determine that this happens
when β = 0 and δ = −α or

Eb
Ea

cos φ =
Γ⊥ + Γ‖ + 2γ′

Γ⊥ − Γ‖
, (22)

and

δ =
ω32

2
−

Γ⊥ − Γ‖
2

Eb
Ea

sin φ. (23)

This indicates that laser a can achieve complete optical transparency within the system,
provided that Γ⊥ is different from Γ‖. It is important to emphasize that this transparency is
precise and not an approximation, and it remains unaffected by the vacuum decay rate γ′.
This differs from the previous work where a single linearly polarized laser field was used
to interact with the system [39].

In addition, when φ satisfying Equation (22), Equation (23) signifies complete optical
transparency at

δ =
ω32

2
− 1

2

√
(Γ⊥ − Γ‖)2

E2
b

E2
a
− (Γ⊥ + Γ‖ + 2γ′)2. (24)

If the value inside the square root is zero or positive (represented concisely as κ2x2 ≥ γ̃2),
then the system can always achieve total optical transparency.

At δ = 0, complete optical transparency is achieved for

tan φ =
ω32

Γ⊥ + Γ‖ + 2γ′
, (25)

and

Eb
Ea

=

√
ω2

32 + (Γ⊥ + Γ‖ + 2γ′)2

Γ⊥ − Γ‖
. (26)

When ω32 = 0, it follows that φ = nπ where n is an integer (0, 1, 2, etc.), and Equation (26)
transforms into

Eb
Ea

=
Γ⊥ + Γ‖ + 2γ′

Γ⊥ − Γ‖
. (27)

Assuming that γ′ is zero and Γ⊥ is much larger than Γ‖, the above expression gives Ea ≈ Eb.
Furthermore, it is possible to attain amplification within the system without the need

for inversion because the overwhelming majority of the population remains in state |0〉.
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This amplification (gain) can be obtained within the system if the value of Im[χ(1)(ω̃)]
is negative and Equation (19) gives the necessary conditions for achieving gain without
inversion. The range of δ values that provide gain without inversion lies between δ− and
δ+ [Equation (18)], when κx cos φ + γ̃ or

(Γ⊥ − Γ‖)
Eb
Ea

cos φ + Γ⊥ + Γ‖ + 2γ′ > 0. (28)

In the situations we are considering, the condition cos φ ≥ 0 is always met. When the
expression κx cos φ + γ̃ becomes negative, it becomes possible to achieve a gain that falls
outside the interval defined by [δ−, δ+].

4. Results and Discussion

To begin with, we consider that the QE stands alone in vacuum. The corresponding
susceptibility can be seen in Figure 2. We observe that both the real and imaginary parts
have the typical form of a Lorentzian-type susceptibility. Since the QE is in vacuum, there
is no quantum interference in the system and therefore κ = 0 in Equation (14). This means
that there no phase-dependent phenomena in this case as the susceptibility does not depend
on φ.

Figure 2. The graph depicting the absorption spectrum, represented by the solid curve of Im(χ(1)),
and the dispersion spectrum, shown as the dashed curve of Re(χ(1)), is presented in normalized
units (Nµ′2/(h̄ε0Γ0)), as described in Equation (14). The data correspond to the case where the QE is
placed in vacuum. We assume that ω32 = 1.5Γ0, γ′ = 0.3Γ0, Eb/Ea = 1.5.

In Figure 3 we show the computational setup employed in order to highlight the exotic
optical phenomena explained in the previous section. Namely, we assume that the double-
V-type quantum emitter of Figure 1 is placed in the middle of a dimer of Bi2Te3 microspheres
with 2 µm radius. By D we denote the distance between the two microspheres. Recent
electromagnetic simulations [22] have shown that the double microsphere system can lead
to a strong dependence of the SE rate on the orientation of a given atomic dipole relative
to the surfaces of the microspheres (the anisotropic Purcell effect), which leads to high
values for the quantum interference factor close to the maximum theoretical value of unity,
at frequencies near the surface phonon-polariton frequencies of bismuth-chalcogenide
microspheres. The high degree of quantum interference remains for a wide range of
frequencies, namely from 8 to 16 THz and for various distances between the spheres [22].
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Figure 3. Computational setup: the double-V-type quantum emitter of Figure 1 is placed in the
middle of a dimer of 2 µm Bi2Te3 microspheres.

The electromagnetic simulations are based on the finite element method [22] wherein
the SE rate is calculated by means of the total power radiated (time-averaged Poynting
vector) by the QE either in vacuum or in the presence of the Bi2Te3 microspheres according
to the setup of Figure 3. The dielectric function of Bi2Te3 is provided as a sum of three
Lorentzian-type terms [17],

ε(ω) = ∑
j=α,β, f

ω2
pj

ω2
0j −ω2 − iγjω

(29)

where the subscripts indicate the contributions from α and β phonons, and bulk free-charge
carriers f [17,40]. The dielectric function assumes very high values that are a result of the
influence of phonon-polariton modes [16]. These modes introduce the necessary anisotropy
in the spontaneous emission (SE) rates, varying for the two distinct dipole orientations and
leading to the increased QI values.

Figure 4 shows absorption and dispersion spectra for different phases φ when the QE
is placed in the middle of a Bi2Te3 microsphere dimer and for Eb

Ea
= 1.5. Changing the phase

φ strongly influences the shape of the absorption and dispersion spectra. Gain without
inversion (Im(χ(1)) < 0) is obtained in all cases, with zero absorption (Im(χ(1)) = 0) and
nonzero dispersion (Re(χ(1)) 6= 0). The detuning values where there is no absorption and
the frequency range where gain occurs without inversion, vary as φ changes. This variation
is attributed to how δ± depends on the angle φ, as described in Equation (18).

In Figure 5, we display the absorption and dispersion spectra using the identical
parameters as those employed in Figure 4, but this time for a larger gap between the
microspheres, specifically for a gap size of D = 4000 µm, and a different QE frequency
ω̄ = 14.1 THz. These parameters provide a degree of QI p = 0.995 which is even closer to
the theoretical optimal value of unity than the value of Figure 4. We observe that similarly
to Figure 4, in Figure 5 we also observe the same effects of zero absorption with nonzero
dispersion and gain without inversion albeit with significantly different lineshapes for
the corresponding real and imaginary parts of the susceptibility. This is due to the fact
that in Figure 5, the separation (gap) between the Bi2Te3 microspheres is double the value
used in Figure 4 and, naturally, the corresponding SE rates Γ⊥ and Γ‖ are much smaller
than their counterparts of Figure 4. Nevertheless, the phase-related phenomena (zero
absorption with nonzero dispersion and gain without inversion) are present which signifies
that a precise tuning of the QE frequency or the accurate positioning of the microspheres to
specific values are not prerequisite for their observation. This is important for a possible
experimental demonstration of the numerical findings of the present work.
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Figure 4. The graph depicting the absorption spectrum, represented by the solid curve of Im(χ(1)),
and the dispersion spectrum, shown as the dashed curve of Re(χ(1)), is presented in normalized
units (Nµ′2/(h̄ε0Γ0)), as described in Equation (14). The data correspond to the computational
configuration illustrated in Figure 3. We assume that ω32 = 1.5Γ0, γ′ = 0.3Γ0, Eb/Ea = 1.5. We
have also chosen ω̄ = 12.43 THz and the gap between the two microspheres to be 2000 µm so that
Γ⊥ = 88.51Γ0 and Γ‖ = 0.851Γ0 which provide a degree of QI p = 0.981. In (a) φ = 0, in (b) φ = π/2,
in (c) φ = π, and in (d) φ = 3π/2.

Figure 5. The same as Figure 4 but for a microsphere gap of 4000 µm and frequency ω̄ = 14.1 THz
which provide Γ⊥ = 17.95Γ0 and Γ‖ = 0.083Γ0 yielding a degree of QI p = 0.995.
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Next, in Figure 6 we choose the phase φ such that it satisfies the conditions for total
optical transparency, namely Equations (25) and (26). Under these conditions, we obtain
vanishing real and imaginary parts of the susceptibility at exactly zero detuning, as it is
evident from Figure 6. Figure 7 is similar to Figure 6 but for a 4 µm distance between the
microspheres. We observe that the occurrence of a high degree of QI for this microsphere
gap, too, ensures that by meeting the conditions (25) and (26) for the phase φ, one can
actually achieve total transparency for the QE in study. We note that, in addition to the
occurrence of complete optical transparency, Figures 6 and 7 exhibit zero absorption with
nonzero dispersion at different frequencies and gain without inversion.

Figure 6. The same as Figure 4 but for φ satisfying Equations (25) and (26).

Figure 7. The same as Figure 6 but for a 4 µm gap between the microspheres.

As we conclude this section, we present some possibilities for experimentally realizing
the double-V-type quantum system studied in this work. The system can be realized in
different atomic systems, where transitions between |2〉 and |1〉 or |0〉, and between |3〉
and |1〉 or |0〉, have orthogonal matrix elements. One such possible realization involves
using two J = 0 states for the lower states |0〉 and |1〉, and M = ±1 sublevels of a J = 1
state for the excited states |2〉 and |3〉. By applying a static magnetic field, the energy
difference h̄ω32 between states |3〉 and |2〉 can be adjusted. Typical quantum emitters for
obtaining these effects in the THz regime rely on intersubband transitions of quantum
wells and on intersublevel transitions of quantum dots [41]. Apart from that, electrons
in highly-excited atomic Rydberg states orbit at THz frequencies whilst small molecules
rotate at THz frequencies.

We note that the enhanced phase-dependent effects reported here can find application
in various technological fields. Namely, the ability to efficiently control the absorption and
dispersion properties of a quantum system using laser fields could lead to the development
of highly efficient optical switches and modulators. By manipulating the electric field
amplitudes and phase difference of the laser fields, it might be possible to control the
transmission of light through a medium, enabling fast and precise modulation of optical
signals. Moreover, the concept of zero absorption with nonzero dispersion suggests the pos-
sibility of generating slow and fast light effects. Slow light can be used for delaying optical
signals, which could have applications in optical data buffering and storage. Fast light, on
the other hand, could be used to accelerate optical signals and enhance signal processing
capabilities. Lastly, the manipulation of quantum states through the control of absorption
and dispersion properties could have implications for quantum information processing.
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5. Conclusions

We have studied how a four-level quantum system, with two V-type transitions,
interacts with two circularly polarized laser fields of the same frequency but different
phases and electric field amplitudes, in the presence of nearby bismuth-chalcogenide
microparticles. One transition is influenced by the presence of the surface phonon-polariton
excitations of the microspheres while the other interacts with free-space vacuum. By
using density matrix methodology, we found that the presence of bismuth-chalcogenide
microspheres modifies the absorption and dispersion spectra of one laser field in the
presence of the other. We also discovered that by adjusting the phase difference and electric
field amplitudes of the two laser fields, we can control the optical properties of the system
and achieve exotic phenomena such as optical transparency, zero absorption with non-zero
dispersion, and gain without inversion.
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