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Abstract: Nondipole terms in the atom–laser interaction arising due to the presence of a magnetic
component in an electromagnetic wave and its inhomogeneity lead to the nonseparability of the center-
of-mass (CM) and electron variables in the neutral atom and, as a consequence, to its acceleration.
We investigate this effect and the accompanying excitation and ionization processes for the hydrogen
atom in strong (1012 – 2× 1014 W/cm2) linearly polarized short-wavelength (5 eV . h̄ω . 27 eV)
electromagnetic pulses of about 8 fs duration. The study was carried out within the framework of a
hybrid quantum-quasiclassical approach in which the coupled time-dependent Schrödinger equation for
an electron and the classical Hamilton equations for the CM of an atom were simultaneously integrated.
Optimal conditions with respect to the frequency and intensity of the electromagnetic wave for the
acceleration of atoms without their noticeable ionization were found in the analyzed region.

Keywords: nondipole effects; atomic acceleration; quantum-quasiclassical approach; strong laser field

1. Introduction

The influence of nondipole effects ∼1/c (here, c = 1/α = 137 is the speed of light
in the atomic system of units (a.u.)) on various atomic processes in strong laser fields
arising due to the presence of a magnetic component in the laser field and its inhomo-
geneity is currently being intensively and widely investigated (see, for example, [1–14],
and the references therein). In particular, their influence on the “stabilization” of atoms at
high laser intensities (the probability of ionization reaching a plateau significantly below
unity) [9] and the generation of high harmonics (even harmonics, which are forbidden
in the dipole approximation, appear in the atomic emission spectrum) [14] are predicted.
However, nondipole effects, leading to nonseparability of the center-of-mass (CM) and
electron variables in an atom interacting with a laser pulse, remain underexplored [15].
We believe this is due to the computational complexity of the problem at hand. Even
in the simplest case, in the problem of a hydrogen atom interacting with laser radiation,
taking into account these terms, which “entangle” the electron and proton variables in the
Hamiltonian of the problem, leads to the need to solve the six-dimensional time-dependent
Schrödinger equation.

Nevertheless, the problem of the hydrogen atom in a strong laser field (1014 W/cm2)
taking into account the motion of the proton (due to the nondipole effect of the nonsep-
arability of the CM in this case) was investigated within the framework of the quantum-
quasiclassical method in Melezhik’s recent work [16]. In this approach, the electron is
treated quantum mechanically and the CM motion classically. Thus, the Schrödinger equa-
tion for the electron and the classical Hamilton equations for the CM variables, which
are nonseparable due to nondipole effects stimulated by strong laser fields, are integrated
simultaneously. In particular, it was shown that, with an increase in photon energy from
1.5 eV to 13.6 eV, the hydrogen atom can be accelerated to a velocity of ∼2 m/s at an inten-
sity of 1014 W/cm2 and a pulse duration of ∼2 fs, which does not contradict the available
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experimental results [1], where it was possible to accelerate helium and neon atoms to a
velocity of ∼50 m/s in femtosecond laser pulses of intensity 8× 1015 W/cm2 with a photon
energy of 1.0–1.5 eV. The problem is attractive due to new possible applications in both
fundamental and applied physics. Therefore, some evaluations of atom acceleration using
strong laser fields have already been performed (see, for example, [15,17–19]).

In this work, we explore the possibility of accelerating a hydrogen atom, and its
excitation and ionization using strong (1012 – 2× 1014 W/cm2) linearly polarized short-
wavelength (5 eV . h̄ω . 27 eV) electromagnetic pulses of about 8 fs duration. The
study of atoms in strong laser fields lasting several tens of fs in this intensity range is
currently the subject of intensive experimental research (see, for example, [7,17,20] and
the refs. therein). The intensity and pulse duration region of about 1014 W/cm2 and a
few fs is also typical for theoretical investigations (see, for example, [8,13,15,21,22]). The
analysis is carried out with a fairly small photon energy step in the region that has a
resonance character near the ionization threshold. This may be required for choosing
optimal conditions when planning experiments. Our investigation was performed in the
framework of the quantum-quasiclassical approach [16], the main elements of which are
described in Section 2. In Section 3, we present the results of the nondipole calculations
of the acceleration, excitation, and ionization of the hydrogen atom using high-intensity
laser fields. In the considered range of laser field parameters (intensity and frequency),
optimal conditions for atomic acceleration were found. It is also shown that the influence of
nondipole effects in the considered range of laser intensities and frequencies on the values
of ionization and excitation of the atom is insignificant. The last section is devoted to a
short conclusion.

2. Theoretical Method

We have studied the dynamics of a hydrogen atom in a strong laser field linearly
polarized along the z-axis and propagating along the y-axis. Assuming a sine-squared
carrier envelope for the laser pulse, the vector potential of the laser field is given by

A(r, t) = ẑ
E0

ω
sin2(

πt
NT

) sin(ωt− k · r), (1)

where E0 is the strength of the field defined by the field intensity I = ε0cE2
0/2 (ε0 is the

vacuum permittivity), ω is the frequency of the laser field, and k = kŷ = ω/cŷ and c are
the wave vector and the speed of light, respectively. Here, N shows the number of optical
cycles in the period T = 2π/ω, which are included in the laser pulse.

By going beyond the dipole approximation and expanding the space dependent A
to the first order of ωy/c, the vector potential A, and the electric E = − dA

dt and magnetic
B = ∇×A fields of the laser pulse take the forms

A(r, t) = ẑ
E0

ω
sin2(

πt
NT

)
[
sin(ωt)− ω

c
y cos(ωt)

]
, (2)

E(r, t) = − ẑE0 sin2(
πt
NT

)
[
cos(ωt) +

ω

c
y sin(ωt)

]
− ẑE0

1
2N

sin(
2πt
NT

)
[
sin(ωt)− ω

c
y cos(ωt)

]
, (3)

B(r, t) = −x̂
E0

c
sin2(

πt
NT

) cos(ωt). (4)

The Lorentz force acting on each constituent particle of the hydrogen atom (with
charge qi = ±e, mass mi, and momentum pi) is of the form Fi = qiE + qi

mi
(pi × B), where

i = 1, 2 denotes the electron and proton, respectively. Passing to the coordinates of CM
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(R = (m1r1 + m2r2)/M, P = p1 + p2) and relative motion (r = r1 − r2, p = m2
M p1 − m1

M p2),
the interaction potential U between the atom and the electromagnetic field follows (except
where otherwise noted, hereafter, we use atomic units e2 = h̄ = µ = 1)

U = − E0

[
sin2(

πt
NT

) cos(ωt) +
1

2N
sin(

2πt
NT

) sin(ωt)
]

z

− E0
ω

c

[
sin2(

πt
NT

) sin(ωt)− 1
2N

sin(
2πt
NT

) cos(ωt)
]
(yz + yZ + Yz)

− E0

c
sin2(

πt
NT

) cos(ωt)
(

ypz − zpy

µ̃
+

Ypz − Zpy

µ
+

yPz − zPy

M

)
,

(5)

where M = m1 + m2, µ = m1m2
M and µ̃ = m1m2

m2−m1
. After neglecting the term proportional

to 1/M and using µ ≈ µ̃ ≈ m1 = 1, the interaction potential can be divided into a term
dependent only on the relative coordinates

U1(r, t) = − E0

[
sin2(

πt
NT

) cos(ωt) +
1

2N
sin(

2πt
NT

) sin(ωt)
]

z

− E0
ω

c

[
sin2(

πt
NT

) sin(ωt)− 1
2N

sin(
2πt
NT

) cos(ωt)
]

yz

− E0

c
sin2(

πt
NT

) cos(ωt)L̂x , (6)

where L̂x = ypz − zpy is the x-component of the angular momentum operator of the
electron relative to proton, and the coupling term

U2(r, R, t) = − E0
ω

c

[
sin2(

πt
NT

) sin(ωt)− 1
2N

sin(
2πt
NT

) cos(ωt)
]

× (yZ + zY)

− E0

c
sin2(

πt
NT

) cos(ωt)
(
Ypz − Zpy

)
. (7)

Thus, the total Hamiltonian of the system turns into

H(r, R, t) =
P2

2M
+ h0(r) + U1(r, t) + U2(r, R, t) , (8)

where h0(r) =
p2

2µ −
1
r shows the Hamiltonian of a unit-charged particle with the reduced

mass µ in the attractive Coulomb field. It is worth noting that, in the dipole approximation,
the spatial dependence of the vector field A is neglected; thus, the magnetic field effect is
excluded and the separation of the CM becomes possible, which eventually results in the
Hamiltonian of the form H(r, t) = h0(r) + r · E(t), where E(t) = E(r = 0, t) (see (3)).

For the hydrogen atom P = MV � µv, we can apply the quantum-quasiclassical
approach [16,23–26], where the heavy CM is considered to be a classical object and the light
electron relative to the proton is treated quantum mechanically. Hence, our problem is
reduced to the simultaneous integration of the following system of coupled equations:

i
∂

∂t
ψ(r, t) = [h0(r) + U1(r, t) + U2(r, R, t)]ψ(r, t) , (9)

d
dt

P = − ∂

∂R
He f f (R(t), P(t)) , (10)

d
dt

R =
∂

∂P
He f f (R(t), P(t)) , (11)
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with the effective Hamiltonian

He f f (R, P) =
P2

2M
+ 〈ψ(r, t)|U2(r, R, t)|ψ(r, t)〉 , (12)

while the initial wave function is supposed to be the hydrogen atom wave function of
the ground state ψ(r, t = 0) = φ100(r) and the initial conditions for the CM position and
momentum are

R(t = 0) = 0 , P(t = 0) = 0 . (13)

We integrate the time-dependent three-dimensional Schrödinger Equation (9) by
applying the two-dimensional discrete-variable representation method (DVR) [27] and
simultaneously integrate the Hamilton equations of motion (10) and (11) with the Störmer-
Verlet method [28] adapted in [16,25,26] for the quantum-quasiclassical case:

P(tn +
∆t
2
) = P(tn)−

∆t
2

∂

∂R
He f f

(
R(tn), P(tn +

∆t
2
)

)
,

R(tn + ∆t) = R(tn) +
∆t
2
{ ∂

∂P
He f f

(
R(tn), P(tn +

∆t
2
)

)
+

∂

∂P
He f f

(
R(tn + ∆t), P(tn +

∆t
2
)

)
} ,

P(tn + ∆t) = P(tn +
∆t
2
)− ∆t

2
∂

∂R
He f f

(
R(tn + ∆t), P(tn +

∆t
2
)

)
.

(14)

Once the wave packet ψ(r, t) and R(t) and P(t) of the CM are found during the time
interval 0 ≤ t ≤ Tout of the laser pulse action, we can calculate the ionization and excitation
probabilities [29], and analyze the acceleration of the atom.

3. Results and Discussion
3.1. Excitation and Ionization

In Figure 1, we demonstrate the calculated dependence on the laser frequency ω of
the population Pg(ω) of the ground state of the hydrogen atom after its interaction with a
linearly polarized laser pulse of intensity I = 1014 W/cm2. The results of the calculations
of the probabilities of excitation Pex(ω) and ionization Pion(ω) of the atom for the same
laser frequencies, the intensity, and the pulse duration are also presented in the same
figure. Here, the total pulse duration was fixed at Tout = NT = 100π a.u. ≈ 7.6 fs, which
required an increased number of included optical cycles N by increasing the frequency ω.
The populations of the ground state of the atom Pg(ω) were obtained with the standard
procedure of projection at the end of the pulse (t = Tout) of the calculated electron wave
packet ψ(r, ω, t = Tout) onto the ground state φ100(r) of the unperturbed atom:

Pg(ω) =| 〈ψ|φ100〉 |2=|
∫

ψ(r, ω, Tout)φ100(r)dr |2 . (15)

To evaluate the probability of the excitation of an atom by a laser pulse Pex(ω) =

∑∞
n>1 Pn(ω), we applied the following procedure. The calculation of the populations

Pn(ω) of 2 ≤ n ≤ 8 states was carried out in exactly the same way as the population of
the ground state (15). To take into account the populations Pn(ω) of states from n = 9
and above, we used the “interpolation” procedure proposed in our previous work [29].
The probability of the ionization of the atom Pion(ω) was calculated using the formula
Pion(ω) = 1− Pg(ω)− Pex(ω) [29].
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Figure 1. The calculated dependences on ω of the ground-state probability Pg(ω), and the probabili-
ties of atomic excitation Pex(ω) and ionization Pion(ω) for the laser intensity 1014 W/cm2 and 7.6 fs
pulse duration.

The first thing that caught our eye in Figure 1 was the resonant peaks in the probabilities
Pex(ω) near the frequencies ω = 0.38, 0.44, 0.47 (a.u.) defined by the resonant conditions

h̄ω =
1

2n2 −
1

2n′2
(16)

corresponding to the transitions

Hn=1 + h̄ω → Hn′ , n′ = 2, 3, 4 . (17)

It should be noted that, in the resonance condition (16), we did not take into account
the perturbation of the excited state n′ due to the dynamic Stark effect, which can give
significant corrections with increasing field intensities, especially for highly excited states.
The origin of the resonant peaks at Pex(ω) due to one-photon transitions (17) is clearly

confirmed by the calculated time dynamics of the populations Pn(ω, t)
t→Tout−−−−→ Pn(ω) of

the low-lying states (up to n = 5) of the hydrogen atom for some frequencies, including
near resonant ones at ω = 0.36 a.u., 0.44 a.u. and 0.48 a.u. (see Figure 2c–e). However,
the position of the peak ω = 0.24 a.u. is not described by the resonance condition (16).
Nevertheless, the calculated time dynamics of populations Pn(t) shown in Figure 2b clearly
demonstrates the dominance of the transition n = 1→ n′ = 4 (17) in the population Pex(ω)
at ω = 0.24 a.u. It is clear that the resonant condition for this transition can be described by
the formula

2h̄ω =
1

2n2 −
1

2n′2
, (18)

with 2h̄ω ≈ 0.47 a.u. for n = 1 and n′ = 4. That is, the peak in Pex(ω) at ω = 0.24 a.u.
formed due to a two-photon transition n = 1 → n′ = 4. Some contribution of the state
n′ = 3 in Pex(ω) at this frequency is also considerable because 2h̄ω = 0.48 a.u. is also close
to the resonant frequency of 0.44 a.u. for the transition to the state n′ = 3. As one can see in
Figure 2a, the excitation at the frequency ω = 0.22 a.u. also has a two-photon character
due to the resonant transition to n′ = 3.

It is also noteworthy that the positions of the peaks in Pex(ω) exactly coincide with the
positions of the minima in the population of the ground state Pg(ω) in the frequency regions,
especially in the regions near ω ∼ (0.22–0.24) a.u. and ω ∼ (0.4–0.48) a.u. where ionization
is suppressed. The marked areas of ionization suppression are near two-photon resonant
excitation of the states n′= 3 , 4 and one-photon excitation of the states n′= 3 , 4 and 5. The
suppression of ionization near the one-photon excitation of the state n′=2 at ω = 0.38 a.u. is
only slightly noticeable. As the frequency increases and approaches the ionization threshold
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ωt = 0.5 a.u., ionization begins to increase sharply, up to a point ωi = 0.52 a.u. above the
threshold, where Pion(ωi) = Pg(ωi). Beyond this point, the probability of ionization
decreases monotonically with increasing frequency. It is also worth noting that, at the
threshold point ωt = 0.5 a.u, the probability of excitation is equal to the probability of
ionization Pex(ωt) = Pion(ωt).

Figure 2. The calculated time dynamics of population probabilities Pn(ω, t) for low-lying states
n = 2–5 and the atomic CM velocity Vy(ω, t) in the direction of the pulse spreading. The calculations
were performed for frequencies (a) ω = 0.22 a.u., (b) ω = 0.24 a.u., (c) ω = 0.36 a.u., (d) ω = 0.44 a.u.,
(e) ω = 0.48 a.u., and (f) ω = 0.80 a.u. of a laser field with a 1014 W/cm2 intensity and 7.6 fs
pulse duration.

In Figure 2, we present the calculated time dynamics of the population probabilities
of low-lying states for various laser pulse frequencies. The frequencies ω = 0.36 a.u.,
ω = 0.44 a.u., and ω = 0.48 a.u. in Figure 2c–e correspond to one-photon excitation
of atomic levels n = 2, 3, 4, and 5 (see also Figure 1), while Figure 2a,b is related to
ω = 0.22 a.u. and ω = 0.24 a.u. and illustrates the time dynamics of the population
through a two-photon transition. Moreover, in the cases ω = 0.22 a.u., 0.24 a.u., 0.44 a.u.,
and 0.48 a.u., the processes of excitation of an atom have the two-step character through an
intermediate metastable state: the process begins with a transition to the first excited state
of the atom n = 2, which depopulates rapidly through the transition to higher states due
to the resonant interaction of the atom with the laser pulse. This two-step mechanism is
most clearly visible in the cases ω = 0.22 a.u. and 0.24 a.u. The resonant population of the
lowest excited state n = 2, which is observed at the frequency ω = 0.36 a.u. (Figure 2c),
is a one-step process and occurs directly without any transitions to an intermediate state.
Figure 2f, ω = 0.8 a.u., illustrates a nonresonant case of atomic excitation and relates to
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the excitation of the atom above the ionization threshold. It can be seen that, in the latter
case, all populated low-lying levels of the atom, with the exception of n = 2, are metastable.
They are depopulated at the end of the laser pulse, after which only a small part of atoms
remaines in the excited n = 2 state.

3.2. Acceleration of Neutral Atoms

Figure 2 also shows the results of calculating the time dynamics of the acceleration of
a neutral hydrogen atom by a laser pulse of various frequencies. Here, we present the CM
velocities of an atom in the direction of propagation of the laser pulse Vy(ω, t) calculated as
a function of time. It should be noted that, in all cases considered, with the exception of
ω = 0.8 a.u., the acceleration of the atom CM repeated the time dynamics of the population
of the most populated level. In the case of the above-threshold ionization with ω = 0.8 a.u.,
the velocity of the CM monotonically increased with time, reaching a maximum at the end
of the pulse (t = Tout =100π a.u.), while the populations of all low-lying atomic levels
grew to the point of maximum intensity of the laser pulse (at the point t = Tout/2) and
began to depopulate after its passage. At the end of the laser pulse, only a small proportion
of the atoms in the n = 2 state remained in the excited state.

The correlation between the time dynamics of the CM velocity of the atom Vy(ω, t)
and the population probability Pn(t) of the most populated level demonstrated in Figure 2
confirms that the mechanism of acceleration of an atom by a laser pulse is the acceleration
of a spatially inhomogeneous electron cloud in excited states due to ponderomotive forces
for a frequency below the ionization threshold. In the region of laser frequencies exceeding
the ionization threshold (see case ω = 0.8 a.u.), we observed the acceleration of the atom’s
CM even after passing the critical point t > Tout/2, when the atom was depopulated. The
growth in this region Vy(ω = 0.8, t) occurred due to ionized electrons, the value of which
is significant here (see Figure 1).

In fact, as presented in Figure 3, the calculated dependencies on the laser frequency
of the total probability of excitation and ionization of the atom Pex(ω) + Pion(ω) and the
momentum Py(ω) = MVy(ω) of its accelerated CM demonstrate their strong correlation
with each other. This is a clear demonstration of what is the root cause of the acceleration of
the CM of an atom due to a laser field. This is the generation of a nonzero dipole moment
between the proton and electron cloud that, under the action of an electromagnetic pulse,
has transferred either to the excited state of the atom or to its continuum. Thus, we see that,
in the case of the noticeable ionization of an atom, in addition to the acceleration of the
neutral atom itself as a whole, the acceleration of the electron falling into the continuous
spectrum also contributes to the acceleration of the atom CM. Naturally, for practical
purposes of accelerating neutral atoms, one should use frequency regions of laser radiation
in which ionization is suppressed compared to the excitation of the atom. In this regard, the
frequencies near the two-photon resonances (n = 3, 4) ω ∼ (0.22–0.24)a.u and one-photon
resonances (n = 3–5) ω ∼ (0.42–0.48) a.u. (see Figure 1) are promising.

In Table 1 and Figure 4, we present the calculated velocities Vy(ω, I) of the atom
CM as a function of the radiation intensity I for resonant ω = 0.24 a.u., 0.48 a.u., and
nonresonant ω = 0.8 a.u. frequencies. It is worth noting the linear dependence of the
calculated values Vy(ω, I) on I for all given frequencies on the double-logarithmic scale in
Figure 4. Moreover, the slopes of the calculated curves, with the exception of the frequency
ω = 0.24 a.u., were almost the same on the double-logarithmic scale, which corresponds to
the linear dependence of the the CM velocity on the intensity: Vy(ω, I) ∝ I (see also Table 1).
However, the angle of inclination of the curve ω = 0.24 a.u. increased, which, in this case,
precisely gives the quadratic dependence of the velocity of the atomic CM in the considered
range of intensities: Vy(ω = 0.24, I) ∝ I2. The physical interpretation of the discovered
effect is the following: The cases of acceleration of the CM of the atom considered here,
except for ω = 0.24 a.u., correspond to the one-photon mechanism discussed above. In the
one-photon case, the effect of accelerating the CM to velocity Vy(ω, I) is proportional to the
photon number density in the laser pulse (i.e., intensity I), which is clearly demonstrated
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in Figure 4. In the case of ω = 0.24 a.u., the process has a two-photon origin, in which
the acceleration of the CM to a velocity Vy(ω = 0.24, I) is proportional to the square of
the photon number density in the laser pulse, which leads to a quadratic dependence
Vy(ω = 0.24, I) ∝ I2, as observed in Figure 4.

Figure 3. The calculated dependence on the laser frequency of the total probability for atomic
excitation and ionization Pex(ω) + Pion(ω) together with the momentum Py(ω) = MVy(ω) of the
atomic CM at the end of the pulse duration t = Tout = 7.6 fs. The calculations were performed for a
laser intensity of 1014 W/cm2. The vertical black dashed line indicates the ionization threshold of the
atom at ωt = 0.5 a.u.

It should be noted that the straight line Vy = 1.96× 10−12 I satisfactorily describes all
the calculated points Vy(ω = 0.8, I) in the entire range of I variation for the nonresonant
one-photon case ω = 0.8 a.u. in Figure 4. In the resonant one-photon case ω = 0.48 a.u., we
observed a noticeable deviation of the calculated points Vy(ω = 0.48, I) from the straight
line Vy = 7.53× 10−12 I for laser intensities I & 0.7× 1014 W/cm2. In the case of two-photon
resonance ω = 0.24a.u., a noticeable deviation of the calculated values Vy(ω = 0.24, I)
from the parabola Vy = 2.05× 10−26 I2 was observed only for I & 1× 1014 W/cm2. This
deviation from the linear ∝ I and quadratic ∝ I2 dependencies with increasing laser
intensity in resonant cases may be a consequence of the manifestation of the dynamic
Stark effect with increasing intensity, leading to a change in resonance conditions. This
hypothesis is supported by the fact that, in the nonresonant case, there was practically no
deviation of the calculated velocities from the linear dependence in the entire considered
intensity range. A complete depopulation of the ground state into excited states and a
continuum with increasing laser intensity can also prevent the acceleration of the atom.

Figure 4. The calculated CM velocity in the y-direction as a function of intensity I for ω = 0.24 a.u.
(empty red diamonds), 0.48 a.u. (full black circles), 0.8 a.u. (full blue squares), and a 7.6 fs pulse
duration.
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Table 1. The calculated CM velocity for different laser intensities I and frequencies ω = 0.80 a.u.,
0.48 a.u., 0.24 a.u., and a 7.6 fs pulse duration.

Vy (cm/s)
I (×1012 W/cm2) ω = 0.80 a.u. ω = 0.48 a.u. ω = 0.24 a.u.

1 1.97 7.90 0.024
10 19.6 75.7 2.06
50 95.2 317 46.4

100 184 517 163
200 344 722 488

3.3. Influence of Nondipole Effects on Excitation and Ionization Processes

We also analyzed the influence on the excitation and ionization processes of the
nondipole effects. Table 2 illustrates the deviation of Pg(ω) and Pex(ω) calculated for
the dipole and nondipole approaches. We see that the influence of nondipole effects in
the considered range of frequencies on the excitation and ionization of the atom was
insignificant. The relative deviation did not exceed the value 0.5× 10−3.

Table 2. The probabilities of the population of the ground state Pg and total excitation Pex calculated
for the dipole and nondipole approaches for a few laser frequencies with intensity 1014 W/cm2 and a
7.6 fs pulse duration.

Pg Pex
ω Dipole Nondipole |∆P| 1 Dipole Nondipole |∆P| 1

0.30 0.896815 0.896805 1.05 × 10−5 6.3410 × 10−5 6.3414 × 10−5 6.59 × 10−5

0.40 0.987600 0.987599 1.34 × 10−6 2.3058 × 10−3 2.3052 × 10−3 2.51 × 10−4

0.48 0.382308 0.382294 3.54 × 10−5 5.8582 × 10−1 5.8568 × 10−1 2.37 × 10−4

0.52 0.488483 0.488465 3.74 × 10−5 1.9974 × 10−2 1.9984 × 10−2 4.84 × 10−4

0.80 0.867150 0.867131 2.20 × 10−5 4.6748 × 10−7 4.6756 × 10−7 1.64 × 10−4

1.00 0.941058 0.941045 1.39 × 10−5 4.8210 × 10−7 4.8218 × 10−7 1.68 × 10−4

1 |∆P| =
∣∣∣ PDipole−PNondipole

PDipole

∣∣∣.
4. Conclusions

We investigated the acceleration of a hydrogen atom in strong (1012 – 2× 1014 W/cm2)
linearly polarized short-wavelength (5 eV . h̄ω . 27 eV) electromagnetic pulses of about
8 fs duration. The study was carried out within the framework of the hybrid quantum-
quasiclassical approach, in which the coupled time-dependent Schrödinger equation for
an electron and the classical Hamilton equations for the atom CM were simultaneously
integrated. It was found that the origin of atomic acceleration is the transition of a part of the
electron cloud, under the action of electromagnetic wave, from the ground to excited states.

The optimal conditions with respect to the frequency and intensity of the electro-
magnetic pulse for the acceleration of atoms without their noticeable ionization were
found in the analyzed region. We showed that the regions with the most potential in this
regard are the regions of one-photon resonances n = 3–5 (ω = (0.4− 0.48) a.u.) and two-
photon resonances n = 3, 4 (ω = (0.22− 0.24) a.u.). We demonstrated that, for an intensity
of I = 2× 1014 W/cm2, the hydrogen atom is maximally accelerated at ω = 0.48 a.u. to a
velocity of Vy ' 700 cm/s. At a frequency of ω = 0.24 a.u., the acceleration is noticeably
less than this value and reaches 500 cm/s; however, due to the two-photon mechanism
of excitation of the atom at this frequency, a further increase in intensity should lead to
a more significant acceleration than at ω = 0.48 a.u. due to the established dependence
for the two-photon resonance Vy ∝ I2. In this regard, it is also interesting to consider
the three-photon excitation mechanism due to the supposed dependence V ∝ I3 for the
acceleration of atoms in this case. However, it is clear that this effect starts to be significant
at rather high laser intensities. Nevertheless, it looks promising to investigate the region of
three-photon resonances for higher intensities due to the cubic dependence on the intensity
of the CM velocity here; however, this demands special consideration.
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It appears to us that, among the current tasks of further research into the possibility of
accelerating atoms using electromagnetic radiation, the inclusion of the spatial inhomo-
geneity of a laser beam in the computational scheme and its generalization to helium and
neon atoms are feasible next steps, where experimental data are more attainable [1,15,17].
It is also worth considering in our approach the influence of laser radiation polarization on
the acceleration of an atom and the possibility of obtaining twisted atoms in this case.
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