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Abstract: We investigate a simple paraxial vector beam, which is a coaxial superposition of two
single-ringed Laguerre–Gaussian (LG) beams, linearly polarized along the horizontal axis, with
topological charges (TC) n and −n, and of two LG beams, linearly polarized along the vertical axis,
with the TCs m and −m. In the initial plane, such a vector beam has zero spin angular momentum
(SAM). Upon propagation in free space, such a propagation-invariant beam has still zero SAM at
several distances from the waist plane (initial plane). However, we show that at all other distances,
the SAM becomes nonzero. The intensity distribution in the cross-section of such a beam has 2m (if
m > n) lobes, the maxima of which reside on a circle of a certain radius. The SAM distribution has
also several lobes, from 2m till 2(m + n), the centers of which reside on a circle with a radius smaller
than that of the maximal-intensity circle. The SAM sign alternates differently: one lobe has a positive
SAM, while two neighbor lobes on the circle have a negative SAM, or two neighbor pairs of lobes
can have a positive and negative SAM. When passing through a plane with zero SAM, positive and
negative SAM lobes are swapped. The maximal SAM value is achieved at a distance smaller than or
equal to the Rayleigh distance.

Keywords: spin Hall effect; propagation-invariant beam; Laguerre–Gaussian beam; vector beam

1. Introduction

As we have demonstrated in [1], in the tight focus of a two-index cylindrical vector
beam, the spin Hall effect arises. Therefore, we can suppose that a similar 3D spin Hall
effect can also arise in a similar paraxial vector beam, for instance, a propagation-invariant
beam obtained as a superposition of Laguerre–Gaussian beams. Previously, the possibility
of the 3D spin Hall effect in vector paraxial beams was discovered in [2,3]. As was shown
in [2], the spin Hall effect arises in a vector Gaussian beam with several polarization
singularities (V-points), i.e., points with indefinite polarization, embedded in the waist
plane and residing evenly on a circle of a certain radius. In [3], a vector beam that has
an infinite number of the polarization singularities residing on a straight line in the cross-
section of the Gaussian beam was studied. It was also shown that upon the propagation of
such a paraxial beam in free space, the 3D spin Hall effect arises. Under the spin Hall effect,
we understand a phenomenon where a vector beam has inhomogeneous linear polarization
in the initial plane (waist plane), but, upon beam propagation, only a finite number of
planes exists where the polarization singularities are reconstructed and polarization is
inhomogeneous linear, but in all the other transverse planes, there are areas with spin of
different sign, i.e., areas where the spin angular momentum (SAM) has a different sign or
the third Stokes parameter changes its sign. Thus, due to the beam diffraction in free space,
initial inhomogeneous linear polarization becomes inhomogeneous elliptic and the areas
with left and right elliptic polarization are separated in the transverse beam section.

Earlier, the spin Hall effect was investigated in microresonators [4], metamaterials [5],
dielectric gratings [6], as well as in free space under tight focusing conditions [7]. In [8],
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the tight focusing of a radially polarized light field was studied. The spin Hall effect
in the focus of a radially polarized optical vortex [9] was studied in [10]. In [11], the
3D SAM distribution was investigated in the tight focus of an optical vortex with linear
polarization. Tight focusing of an azimuthally polarized optical vortex was studied in [12].
In [13], angular momentum (AM) was studied in the tight focus of hybrid cylindrical vector
beams. The orbital motion of microparticles trapped in the tight focus of circularly and
radially polarized optical vortices was considered in [14]. In [15], spin-orbital conversion
was observed in nonparaxial beams with hybrid polarization. Such hybridly polarized
beams in the tight focus were considered in [16]. In [17], the tight focusing of circularly
polarized Bessel beams was studied, whereas tight focusing of the high-order Poincaré
beams was investigated in [18]. Finally, in [19], spin-orbital conversion after a spherical
lens was studied.

In this work, we consider a paraxial vector beam, which is propagation-invariant,
i.e., its intensity distribution upon free-space propagation changes only in scale, both
theoretically and numerically. For such a beam, we derive the longitudinal component
of the SAM vector at an arbitrary distance from the initial plane. It is demonstrated that
such a beam has zero SAM in the initial plane, and, at several distances from the waist, the
SAM becomes zero again. However, at all the other distances from the waist, the SAM is
nonzero. At these distances, the cross-section of the beam has several areas where the SAM
is of a different sign, i.e., photons in these areas have spins of opposite signs, which is a
manifestation of the spin Hall effect. We note that earlier, the spin Hall effect was studied
in uniaxial crystals [20].

2. Field Components and Intensity Distribution of the Two-Index Vector
Laguerre–Gaussian Beams

We consider here an initial paraxial vector light field given by

E(r, ϕ, 0) =
[
(r/w0)

m cos(mϕ + α)
(r/w0)

n cos(nϕ + β)

]
exp

(
− r2

w2
0

)
. (1)

In Equation (1), (r, ϕ) are the polar coordinates in the beam section. If α = 0 and
β = –π/2, such a field reduces to a field with a generalized radial polarization of the
order (n, m). If α = π/2 and β = 0, such a field reduces to a field with a generalized
azimuthal polarization.

Upon free space propagation, the field acquires the following field components: Ex(r, ϕ, z) = w0
w
( r

w
)m exp

[
ikz− r2

w2 +
ikr2

2R − i(m + 1)ζ
]

cos(mϕ + α),

Ey(r, ϕ, z) = w0
w
( r

w
)n exp

[
ikz− r2

w2 +
ikr2

2R − i(n + 1)ζ
]

cos(nϕ + β),
(2)

where w, R, and ζ are, respectively, the beam radius, wavefront curvature, and the Gouy
phase at a distance z:

w = w(z) = w0

√
1 +

(
z
z0

)2
,

R = R(z) = z
[
1 +

( z0
z
)2
]
,

ζ = ζ(z) = arctan
(

z
z0

)
,

(3)

and z0 = kw2
0/2 is the Rayleigh distance, k = 2π/λ is the wavenumber, and λ is the wave-

length. We consider a paraxial monochromatic light field, and its longitudinal component
Ez can be neglected. Therefore, transverse components of the SAM vector of such a field are
also negligible since they are proportional to the longitudinal field component Ez. The tight
focusing of a beam, similar to the beam from Equation (2), the longitudinal component of
which can no longer be neglected, was studied earlier in our work [1].
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The intensity distribution in such a light field reads as

I(r, ϕ, z) = |Ex(r, ϕ, z)|2 +
∣∣Ey(r, ϕ, z)

∣∣2
=
(w0

w
)2 exp

(
− 2r2

w2

)[( r
w
)2m cos2(mϕ + α) +

( r
w
)2n cos2(nϕ + β)

]
.

(4)

The total power per unit length of such a field is equal to

W =

∞∫
0

2π∫
0

I(r, ϕ, z)rdrdϕ = π
(w0

2

)2
[(

1 + δ0,m

2m

)
m! +

(
1 + δ0,n

2n

)
n!
]

, (5)

with δ0,m being the Kronecker delta.

3. Spin Angular Momentum Density of the Two-Index Vector Beams

For nonparaxial vector light fields, all three components of the SAM density vector are
significant. For instance, it is the transverse spin density that is responsible for generating
the tight focus “optical wheels” [21] or polarization Möbius stripe [22]. However, for the
paraxial light fields studied in the current work, only the longitudinal component of the
SAM vector is nonzero. The longitudinal components of the spin angular momentum
density (Sz) can be obtained by using the following general formula:

Sz = 2Im
{

E∗x Ey
}

. (6)

For the considered light field (2), it is equal to

Sz = 2Im


w0
w
( r

w
)m exp

[
− r2

w2 − ikr2

2R + i(m + 1)ζ
]

cos(mϕ + α)

×w0
w
( r

w
)n exp

[
− r2

w2 +
ikr2

2R − i(n + 1)ζ
]

cos(nϕ + β)


= 2

(w0
w
)2( r

w
)m+n exp

(
− 2r2

w2

)
cos(mϕ + α) cos(nϕ + β) sin[(m− n)ζ].

(7)

It is seen that the SAM density does not change its distribution on propagation in
space but changes its value and sign. It is also seen from Equation (7) that the full spin
density, i.e., integral of Sz over the whole beam section, is equal to zero at any value z. This
is explainable since the integral of cos(x) over the polar angle ϕ from 0 to 2π is zero. Thus,
the full longitudinal spin is conserved upon the propagation of the beam (2).

The SAM density in Equation (7) is the absolute value, but for determining the polar-
ization ellipticity, this value should be compared with the intensity. For instance, circular
polarization (C-points) occur in points where Sz = ±I, or Ey = ±iEx. The latter condition
leads to the following equation:( r

w

)n−m
cos(nϕ + β) = ±i exp[i(n−m)ζ] cos(mϕ + α). (8)

It has the solution only if cos[(n−m)ζ] = 0, i.e., C-points can occur only in the
following planes:

z = z0 tan
[

π + 2πp
2(n−m)

]
, (9)

with p being an integer number.
It is seen that if n = m + 1, then the C-points can be only in far field, z→ ∞.
In the planes given by the condition cos[(n−m)ζ] = 0, coordinates of the C-points

can be found by solving the equation( r
w

)n−m
cos(nϕ + β) = ± cos(mϕ + α). (10)
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Since the notable intensity is concentrated near the rings with the radii w(m/2)1/2 and
w(n/2)1/2, then r > w (if n and m exceed 2) and thus the C-points should be located at the
polar angles such that cos(nϕ + β) ≈ 0.

At certain planes, the SAM density turns to zero, i.e., there are planes with linear
polarization:

Sz = 0, sin[(m− n)ζ] = 0, ζ =
πp

m− n
, z = z0 tan

(
πp

m− n

)
, (11)

with p being an arbitrary integer number.
As indicated in Equation (11), if m and n are of the same parity, then there are |m −

n|/2 planes (including the initial plane z = 0) with linear polarization. In the far field, (i.e.,
p = |m − n|/2), polarization is also linear. Thus, between these planes, there are |m −
n|/2 planes with locally maximal SAM density.

If m and n have different parity, then there are |m − n + 1|/2 planes (including the
initial plane z = 0) with linear polarization. Between these planes, there are |m − n + 1|/2
planes with locally maximal SAM density.

Solving an equation ∂Sz/∂r = 0, we obtain that in each transverse plane, maximal SAM
density occurs on a circle with the radius given by

rmax Sz =

√
m + n

2
w. (12)

This radius is between the radii of maximal intensity of the components Ex and Ey,
which are equal, respectively, to

rmax Ix =
√

m/2w, rmax Iy =
√

n/2w. (13)

Below, we consider some partial cases.
If n = 2m, α = 0, β = −π/2 then the SAM density reads as

Sz = −4
(w0

w

)2( r
w

)3m
exp

(
−2r2

w2

)
cos2(mϕ) sin(mϕ) sin(mζ). (14)

The cosine turns to zero at ϕ = ϕ1 = (π/2 + πp)/m, whereas the sine turns to zero at ϕ
= ϕ2 = (πp)/m. At ϕ = ϕ1, the SAM density does not change its sign, whereas at ϕ = ϕ2, it
changes the sign. Thus, the SAM density distribution has a petal shape, where the petals of
one sign are present in pairs.

If n = 3m, β = 3α, then the SAM density is given by

Sz = −2
(w0

w
)2( r

w
)4m exp

(
− 2r2

w2

)
cos(mϕ + α) cos(3mϕ + 3α) sin(2mζ)

=
{

cos 3θ = cos θ
(
4 cos2 θ − 3

)}
= −2

(w0
w
)2( r

w
)4m exp

(
− 2r2

w2

)
cos2(mϕ + α)

[
4 cos2(mϕ + α)− 3

]
sin(2mζ).

(15)

At ϕ = ϕ1 = π/(2m)− α/m + πp/m, Sz = 0, but it does not change sign.
At ϕ = ϕ2 = ±π/(6m)− α/m + πp/m, Sz = 0, and it changes sign.
Thus, the SAM density distribution has a petal shape with zero values at the angles ϕ1

and ϕ2. Since at ϕ = ϕ1, the SAM density does not change its sign, the petals of one sign
are present in pairs, whereas the petals of the opposite sign are present in singles.

For other choices of the indices n and m, the distribution of lobes with the spin of
different signs is different. Some possible distributions of areas with left and right elliptic
polarization in the section of the beam (2) are obtained by numerical simulation and are
shown in the next section.
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4. Numerical Simulation

Figure 1 illustrates the intensity and SAM density distributions of the light field (2)
when m = 2, n = 3, α = 0, and β = −π/2. In this case, the cosines in Equation (7) turn to
zero for different polar angles and thus the SAM density should contain 2(m + n) = 10 zero
lines. Figure 1 confirms this. The distributions were obtained by theoretical Formula (2)
and compared with the Fresnel transform

E(r, ϕ, z) =
−ik
2πz

∞∫
0

2π∫
0

E
(
r′, ϕ′, 0

)
exp

{
ik
2z

[
r′2 + r2 − 2rr′ cos

(
ϕ′ − ϕ

)]}
r′dr′dϕ′, (16)

implemented numerically as the convolution using fast Fourier transform. The obtained
images were visually indistinguishable. The polarization ellipses were obtained by M.V.
Berry’s formulae [23]:

A = 1
|
√

E·E|Re
{

E
√

E∗ · E∗
}

,

B = 1
|
√

E·E| Im
{

E
√

E∗ · E∗
}

,
(17)

where A and B are the semiaxes vectors of the polarization ellipse.

Figure 1. Intensity (a) and SAM density (b) distributions of the light field (2) at a distance z = 2z0

for the following computation parameters: wavelength λ = 0.532 µm, waist radius of the Gaussian
envelope w0 = 1 mm, beam orders m = 2 and n = 3, and initial phases α = 0, β = −π/2. Scale mark in
each figure denotes 1 mm. Black and yellow color (a) denote zero and maximal intensity. Blue and
red color (b) denote positive and negative SAM density. Pink and cyan ellipses (b) denote right- and
left-handed elliptic polarization. White lines (b) denote lines with zero SAM density. Dashed circles
(a) illustrate the circles with maximal SAM density (green circle) and with maximal intensity of the
components Ex and Ey (white circles) obtained using Equations (12) and (13).

Now, we consider the degenerate cases when the zeros of the cosines in Equation (7)
coincide.

Figure 2 illustrates the intensity and SAM density distributions of the light field (2) in
several transverse planes when n = 2m, α = 0, and β = –π/2.

Figure 2 confirms that the SAM density distribution has a petal shape and that the
petals of one sign are present in pairs (blue and red pairs in Figure 2f–h).

We note that the energies of the Ex and Ey field components are different and equal,
respectively, to Wx =

(
πw2

0/2
)
(m!/2m) and Wy =

(
πw2

0/2
)
(n!/2n). Therefore, regard-

ing the intensity distributions, only one field component is notable whereas the other is
insignificant. Indeed, since in this case n = 2m and m = 7, the energies ratio is
Wx/Wy = 7·10−6. Nevertheless, these components interact and the weak component affects
the SAM density distribution. It is seen in Figure 2d that the ring of the maximal intensity of
the Ex-component is outside the area of notable intensity (inner white ring in Figure 2d,h),
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but the Ex-component affects the radius of the maximal-SAM ring (green middle ring in
Figure 2d,h).

Figure 2. Intensity (a–d) and SAM density (e–h) distributions of the light field (2) in several transverse
planes for the following computation parameters: wavelength λ = 0.532 µm, waist radius of the
Gaussian envelope w0 = 1 mm, beams orders m = 7 and n = 14, initial phases α = 0, β = −π/2, and
propagation distances z = 0 (a,e), z = z0/2 (b,f), z = z0 (b,f), and z = 2z0 (b,f). The scale mark in each
figure denotes 1 mm. Dashed circles (d,h) illustrate the circles with maximal SAM density (green
circle) and with the maximal intensity of the components Ex and Ey (white circles) obtained using
Equations (12) and (13). Numbers near the color bar under each figure denote minimal and maximal
values.

According to Equation (11), zero SAM density should be in the following planes:
z = 0, z = z0 tan(π/7) ≈ 0.48z0, z = z0 tan(2π/7) ≈ 1.25z0, and z = z0 tan(3π/7) ≈ 4.38z0.
That is why the petal colors in Figure 2f and Figure 2g (z = z0/2 and z = z0) are the same,
whereas in Figure 2h (z = 2z0) they are inverted.

Figure 3 shows the intensity and SAM density distributions of the light field (2) in
several transverse planes when n = 3m and α = β = 0.

Figure 3 confirms that the SAM density consists of petals, and the petals of one sign
are present in pairs, whereas the petals of the opposite sign are present in singles.

According to Equation (11), zero SAM density should be in the following planes:
z = 0, z = z0 tan(π/6) ≈ 0.58z0, and z = z0 tan(π/3) ≈ 1.73z0. These distances explain why
the petals in Figure 3g (z = z0) are inverted compared to petals in Figure 3f (z = z0/2), and
the petals in Figure 3h (z = 2z0) are inverted compared to petals in Figure 3g (z = z0).

Figure 4 depicts the dependence of the maximal SAM density in each transverse plane
on the propagation distance for the light field from Figure 3.

If the index n is high, but the index m is low, the intensity distribution of the component
Ey significantly overwhelms that of the component Ex. Thus, for two close values m, the
intensity distributions should look the same, but the SAM density distributions should be
different. Figure 5 shows the intensity and SAM density distributions of the light field (2)
in the plane z = 2z0 when n = 14, m = 6 (Figure 5a,b), m = 7 (Figure 5c,d), and α = β = 0.
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Figure 3. Intensity (a–d) and SAM density (e–h) distributions of the light field (2) in several transverse
planes for the following computation parameters: wavelength λ = 0.532 µm, waist radius of the
Gaussian envelope w0 = 1 mm, beams orders m = 3 and n = 9, initial phases α = β = 0, and propagation
distances z = 0 (a,e), z = z0/2 (b,f), z = z0 (b,f), and z = 2z0 (b,f). Scale mark in each figure denotes
1 mm. Numbers near the color bar under each figure denote minimal and maximal values.

Figure 4. Dependence of the maximal SAM density of the light field (2), with the same parameters as
in Figure 3, on the propagation distance z/z0. Green dots correspond to the maximal SAM densities
from Figure 3.

It is seen that, indeed, despite identical intensity distributions, SAM density distribu-
tions are qualitatively different. Thus, such beams can be used for hidden data transmission.
If the incoming optical beam is identified by its intensity distribution, then it is not seen
how it changes the third Stokes parameter, used for encoding the hidden data.
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Figure 5. Intensity (a,c) and SAM density (b,d) distributions of the light field (2) for the follow-
ing computation parameters: wavelength λ = 0.532 µm, waist radius of the Gaussian envelope
w0 = 1 mm, beams orders m = 6 and n = 14 (a,b), m = 7 and n = 14 (c,d), initial phases α = 0, β = −π/2,
and propagation distance z = 2z0. Scale mark in each figure denotes 1 mm. Numbers near the color
bar under each figure denote minimal and maximal values.

5. Discussion

There are a lot of works reporting on the spin Hall effect in various devices, like
microresonators [4], metamaterials [5], or dielectric gratings [6]. The current work is our
third work (after [2,3]) investigating the spin Hall effect in free space and without tight
focusing conditions. In contrast to [2,3], there is no need to generate multiple spatially
separated polarization singularities. Instead, one singularity in the beam center should
be generated, but it should have a different order in the horizontal and vertical field
components. We have not conducted an experiment yet, since generating such beams
requires, after splitting the incoming light field into orthogonally polarized fields, either
combining two different-order fork gratings on a spatial light modulator, or encoding
two amplitude-phase distributions into phase-only elements using a technique like those
described in [24,25]. However, the studied beams are easy to identify by using polarization
analyzers and then by simply counting the lobes with right and left elliptic polarization.

6. Conclusions

In this work, we have demonstrated theoretically and by numerical simulation that
when a vector propagation-invariant beam with two different indices propagates in free
space, there are several planes, transverse to the optical axis, including the initial plane,
where the spin density is zero. In the whole space between these planes, the spin Hall
effect arises, i.e., there are several areas in the beam section, the count of which depends
on the beam indices, where the spin is of different signs. Thus, the polarization state
changes over the beam section from left circular and elliptic polarization to right circular
and elliptic polarization, and, what is interesting, the intensity distribution in the beam
section is not changed upon propagation, whereas the polarization state in each point is
changed. This is because different transverse components of the electric field strength
vectors Ex and Ey have different Gouy phases, and at different distances from the beam
waist, the difference between the Gouy phases makes a different contribution to the spin
angular momentum distribution. The beams studied here can be used for hidden data
transmission in wireless telecommunication systems, if the data are transmitted by changing
the polarization state without modifying the intensity distribution [26–28]. In addition,
the investigated beams can be used as optical traps for several microparticles [29] or as
pumping beams for pumping disc lasers based on whispering gallery modes, or for other
perspective lasers [30].
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