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Abstract: The tight focusing properties of circular partially coherent radially polarized circular Airy
vortex beams (CPCRPCAVBs) are theoretically studied in this paper. After deriving the cross-spectral
density matrix of CPCRPCAVBs in the focal region of a high-NA objective, numerical calculations
were performed to indicate the influence of the topological charge of the vortex phase on intensity
distribution, degree of coherence and degree of polarization of the tightly focused beam. An intensity
profile along the propagation axis shows that a super-length optical needle (~15 λ) can be obtained
with a topological charge of 1, and a super-length dark channel (~15 λ) is observed with a topological
charge of 2 or 3. In the focal plane, the rise in the number of topological charge does not distort the
shapes of the coherence distribution pattern and the polarization distribution pattern, but enlarges
their sizes.

Keywords: tight focusing; radially polarized; circular partially coherent; circular Airy beam; topological
charge; vortex phase

1. Introduction

Over the past decades, partially coherent beams with controllable spatial coherence
have drawn considerable attention due to their extensive applications in optical communi-
cation, material thermal processing, particle trapping and so on [1–10]. Partially coherent
beams with vortex phase have orbital angular momentum and exhibit unique correlation
singularities [11–14]. Recent studies have shown that partially coherent beams with vortex
phase have the advantage of reducing turbulence-induced scintillation [15,16]. Therefore,
research into the generation and propagation properties of partially coherent vortex beams
has attracted more and more attention. Due to the potential value of their auto-focusing
property in optical micro-manipulation and biomedical applications, nonlinear beams such
as circular Airy beams have been widely studied for years [17–21]. Extending the study
from coherent nonlinear beams to partially coherent beams, Tong Li and his collaborators
introduced the partially coherent radially polarized circular Airy beam, which not only
exhibits auto-focusing capability but also creates an optical potential well with adjustable
depth [22]. Santarsiero and his collaborators synthesized a new class of partially coherent
light sources recently, namely a circular partially coherent light source [23]. Ding et al.
demonstrated the self-focusing property of such beams on propagation in oceanic turbu-
lence [24]. For a partially coherent radially polarized circular Airy beam with the spatial
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coherence of circular partial coherence and a vortex phase, it will be of interest to study its
propagation properties.

Using a laser beam tightly focused with a high-numerical-aperture (NA) objective,
sub-wavelength focal spots or focal holes in the focal region can be obtained. Specifically,
by modulating the amplitude, the polarization, the phase or the spatial coherence of the
incident laser beam appropriately, sub-wavelength focal spots of desired shapes in the focal
region can be achieved [25–30]. These designated sub-wavelength focal patterns are widely
used in optical data storage, microscopy, particle beam trapping and material processing.
Therefore, tight focusing of different kinds of laser beams, such as amplitude-modulated
beams, phase-modulated beams, polarization-modulated beams and coherence-modulated
beams, has attracted a great deal of interest for years [30]. As mentioned above, a circular
Airy beam with the spatial coherence of circular partial coherence is an interesting phase-
modulated beam, whose circular partial coherence is a special structure of spatial coherence.
As a radially polarized beam is tightly focused, the smallest focal spot can be obtained [30].
Therefore, with regard to the combination of circular partial coherence modulation, circular
Airy vortex phase modulation, radial polarization modulation and its tight focusing with a
high-NA objective, we will characterize tightly focused circular partially coherent radially
polarized circular Airy vortex beams (CPCRPCAVBs) in the focal region based on the
Richards–Wolf vector diffraction theory.

2. Theoretical Analysis

In the source plane z = 0, the electric field of a radially polarized circular Airy beam
with vortex phase can be expressed as [21]

E(r, ϕ, 0) = C0 Ai
(

r0 − r
w

)
exp

(
a

r0 − r
w

)
exp(imθ)

[
cos(ϕ)ex + sin(ϕ)ey

]
(1)

where C0 is the normalization constant, Ai is the Airy function, w is the scaling parameter,
m is the topological charge of the vortex phase, a is the decaying factor and r0 is the radius
of the first ring of the radially polarized circular Airy beam in the source plane. (r, ϕ) in
Equation (1) are the polar coordinates in the source plane. Referring to the expression
of a partially coherent radially polarized circular Airy beam in reference [21], the electric
cross-spectral density matrix of a CPCRPCAB with an m-order concentric vortex can be
described as

W(r1, ϕ1, r2, ϕ2, 0) = C0
2 Ai
(

r0−r1
w

)
Ai
(

r0−r2
w

)
exp

(
a r0−r1

w + a r0−r2
w

)
× exp[im(ϕ1 − ϕ2)] sin c

(
r2

2−r1
2

δ

)[ cos(ϕ1) cos(ϕ2) cos(ϕ1) sin(ϕ2)
sin(ϕ1) cos(ϕ2) sin(ϕ1) sin(ϕ2)

] (2)

In Equation (2), sin c(x) = sin(πx)
πx is the spatial coherence of the CPCRPCAVB, and

the δ is the initial coherent length. For a laser beam tightly focused with a high-NA
objective (NA > 0.7), the paraxial approximation is no longer applicable and so is the
Kirchhoff integral theorem. The vectorial Debye theory should be employed to solve the
cross-spectral density matrix of CPCRPCAVBs in the focal region of the high-NA objective.

The coordinate system is shown in Figure 1. According to the vectorial Debye theory,
the second-order correlation properties of a CPCRPCAVB near the focal region of a high-NA
objective can be characterized by a 3 × 3 electric cross-spectral density matrix W(ρ1, θ1, ρ2,
θ2, z). The elements of the 3 × 3 matrix are given by [31]

W(ρ1, ψ1, ρ2, ψ2, 0) =
(

C0
2

λ2

)∫ α
0

∫ α
0

∫ 2π
0

∫ 2π
0 sin c

(
f 2 sin2 θ2− f 2 sin2 θ1

δ2

)
×P(ϕ1, θ1)P(ϕ2, θ2)Ki(ϕ1, θ1)KT

j (ϕ2, θ2)
√

cos θ1
√

cos θ2s

× exp[−ikz cos θ1 − ikρ1 sin θ1 cos(ψ1 − ϕ1)]inθ1 sin θ2
× exp[ikz cos θ2 + ikρ2 sin θ2 cos(ψ2 − ϕ2)]dϕ1dϕ2dθ1dθ2, (i, j = x, y, z)

(3)
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and (b) is the initial coherence of the incident CPCRPCAVB. The calculation parameters for the in-
sets chosen are λ = 633 nm, w = 5 mm, a = 0.1, r0 = 1 mm and δ = 0.6 w. 

( )

( )[ ]

( )[ ]

2 2 20
1 1 2 2 2 0 0 0 0

2 2 2 2
2 1

2

1 1 2 2 1 1 2 2 1 2

1 1 1 1 1 1 2

2 2 2 2 2 1 2 1 2

T

sin sinsin c

( , ) ( , ) ( , ) ( , ) cos cos s

exp i cos i sin cos in sin

exp i cos i sin c

,

o

,

s

, 0

,

,

i j

f f

P P K K

kz k

C

kz k d d d d i

W
α α π π θ θ

δ

ϕ θ ϕ θ ϕ θ ϕ θ θ θ

θ ρ θ ψ ϕ θ θ

θ ρ θ ψ

ρ ψ ρ

ϕ ϕ ϕ θ θ

ψ
λ

− 
 
 

× − − −

 
=  
 

+

×

× −

   

( ), , ,j x y z=

 (3)

In Equation (3), by replacing r with f sin(θ), the pupil apodization function of the 
CPCRPCAVB at the exit pupil of the high-NA objective can be expressed as 

( ) ( )0 1 0 1sin sinexp xp, er f r f
i m

w
P A a i

w
ϕ θ ϕθ θ− −   

   
   

=  (4)

In Equation (3), 

( )
( )

2cos sin 1 cos

( , ) cos sin cos 1

cos sin

x

y

z

K

θ ϕ θ

ϕ θ ϕ ϕ θ

ϕ θ

+ −

= −

 
 
 
 
 

e

e

e

 (5)
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Figure 1. Tight focusing system. Inset (a) is the intensity distribution of the incident CPCRPCAVB,
and (b) is the initial coherence of the incident CPCRPCAVB. The calculation parameters for the insets
chosen are λ = 633 nm, w = 5 mm, a = 0.1, r0 = 1 mm and δ = 0.6 w.

In Equation (3), by replacing r with f sin(θ), the pupil apodization function of the
CPCRPCAVB at the exit pupil of the high-NA objective can be expressed as

P(ϕ, θ) = Ai
(

r0 − f sin θ1

w

)
exp

(
a

r0 − f sin θ1

w

)
exp(imϕ) (4)

In Equation (3),

K(ϕ, θ) =

cos θ + sin2 ϕ(1− cos θ)ex
cos ϕ sin ϕ(cos θ − 1)ey

cos ϕ sin θez

 (5)

and the superscript T denotes the transposition of the matrix of, and thus KT(ϕ, θ) is a
1 × 3 matrix. Through the same tedious integration operations, the elements of the 3 × 3
electric cross-spectral density matrix W(ρ1, θ1, ρ2, θ2, z) of the CPCRPCAVB in the focal
region of a high-NA objective can be obtained as follows:

W(ρ1, ψ1, ρ2, ψ2, 0) =
(

4π2C0
2

λ2

)∫ α
0

∫ α
0 exp[ikz(cos θ2 − cos θ1)]

×
√

cos θ1
√

cos θ2 sin θ1 sin θ2 Ai
(

r0− f sin θ1
w

)
Ai
(

r0− f sin θ2
w

)
× exp

(
a r0− f sin θ1

w + a r0− f sin θ2
w

)
sin c

(
f 2 sin2 θ2− f 2 sin2 θ1

δ2

)
×Mij(ρ1, ρ2, ψ1, ψ2, θ1, θ2)dθ1dθ2, (i, j = x, y, z)

(6)

In Equation (6), Mij(ρ1, ρ2, ψ1, ψ2, θ1, θ2) for the elements of W(ρ1, θ1, ρ2, θ2, z) are

Mxx(ρ1, ρ2, ψ1, ψ2, θ1, θ2) = [exp(i(m + 1)ψ1)
1

im+1 Jm+1(kρ1 sin θ1)

+i1−m exp(i(m− 1)ψ1)Jm−1(kρ1 sin θ1)] cos θ1 cos θ2

×[exp(i(1−m)ψ2)
(−1)m−1

im−1 Jm−1(kρ2 sin θ2)

+ (−1)m+1

im+1 exp(−i(m + 1)ψ2)Jm+1(kρ2 sin θ2)]

(7)

Myy(ρ1, ρ2, ψ1, ψ2, θ1, θ2) = [exp(i(m− 1)ψ1)i1−m Jm−1(kρ1 sin θ1)

− 1
i(m+1) exp(i(m + 1)ψ1)Jm+1(kρ1 sin θ1)] cos θ1 cos θ2

×[exp(i(1−m)ψ2)
(−1)m−1

im−1 Jm−1(kρ2 sin θ2)

− (−1)m+1

im+1 exp(−i(m + 1)ψ2)Jm+1(kρ2 sin θ2)]

(8)

Mzz(ρ1, ρ2, ψ1, ψ2, θ1, θ2) = sin θ1 sin θ2 exp[im(ψ1 − ψ2)]

×Jm(kρ1 sin θ1)Jm(kρ2 sin θ2)
(9)
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Mxy(ρ1, ρ2, ψ1, ψ2, θ1, θ2) = [exp(i(m + 1)ψ1)
1

i1+m Jm+1(kρ1 sin θ1)

+ 1
i(m−1) exp(i(m− 1)ψ1)Jm−1(kρ1 sin θ1)] cos θ1 cos θ2

×[exp(i(1−m)ψ2)
(−1)m−1

im−1 Jm−1(kρ2 sin θ2)

− (−1)m+1

im+1 exp(−i(m + 1)ψ2)Jm+1(kρ2 sin θ2)]

(10)

Mxz(ρ1, ρ2, ψ1, ψ2, θ1, θ2) = [exp(i(m + 1)ψ1)
1

i1+m Jm+1(kρ1 sin θ1)

+ 1
i(m−1) exp(i(m− 1)ψ1)Jm−1(kρ1 sin θ1)] cos θ1 sin θ2

× exp(−imψ2)Jm(kρ2 sin θ2)
(−1)m

im Jm(kρ2 sin θ2)

(11)

Myx(ρ1, ρ2, ψ1, ψ2, θ1, θ2) = [exp(i(m + 1)ψ1)
1

i1+m Jm+1(kρ1 sin θ1)

− 1
i(m−1) exp(i(m− 1)ψ1)Jm−1(kρ1 sin θ1)] cos θ1 cos θ2

×[exp(i(1−m)ψ2)
(−1)m−1

im−1 Jm−1(kρ2 sin θ2)

+ (−1)m+1

im+1 exp(−i(m + 1)ψ2)Jm+1(kρ2 sin θ2)]

(12)

Myz(ρ1, ρ2, ψ1, ψ2, θ1, θ2) = [exp(i(m + 1)ψ1)
1

i1+m Jm+1(kρ1 sin θ1)

− 1
i(m−1) exp(i(m− 1)ψ1)Jm−1(kρ1 sin θ1)]

× cos θ1 sin θ2 exp(−imψ2)
(−1)m

im Jm(kρ2 sin θ2)

(13)

Mzx(ρ1, ρ2, ψ1, ψ2, θ1, θ2) = [exp(−i(1−m)ψ2)Jm−1(kρ2 sin θ2)

+ exp(−i(m + 1)ψ2)Jm+1(kρ2 sin θ2)]

× sin θ1 cos θ2 exp(imψ1)Jm(kρ1 sin θ1)(−1)m
(14)

Mzy(ρ1, ρ2, ψ1, ψ2, θ1, θ2) = [exp(i(1−m)ψ2)Jm−1(kρ2 sin θ2)

− exp(−i(m + 1)ψ2)Jm+1(kρ2 sin θ2)]

× sin θ1 cos θ2 exp(imψ1)Jm(kρ1 sin θ1)(−1)m
(15)

In Equations (7)–(15), Jn are the n-order Bessel functions of the first kind. Setting ρ1 = ρ2
and ψ1 = ψ2, the intensity of the x-polarization component, y-polarization component, z-
polarization component and total intensity distribution of the CPCRPCAVB in the focal
region can be expressed as:

Ix(ρ1, ρ1, ψ1, ψ1, z) = Wxx(ρ1, ρ1, ψ1, ψ1, z) (16)

Iy(ρ1, ρ1, ψ1, ψ1, z) = Wyy(ρ1, ρ1, ψ1, ψ1, z) (17)

Iz(ρ1, ρ1, ψ1, ψ1, z) = Wzz(ρ1, ρ1, ψ1, ψ1, z) (18)

Itotal(ρ1, ρ1, ψ1, ψ1, z) = Ix(ρ1, ρ1, ψ1, ψ1, z) + Iy(ρ1, ρ1, ψ1, ψ1, z) + Iz(ρ1, ρ1, ψ1, ψ1, z) (19)

In addition, with the 3 × 3 matrix of

W(ρ1, ρ2, ψ1, ψ2, z) =

Wxx(ρ1, ρ2, ψ1, ψ2, z) Wxy(ρ1, ρ2, ψ1, ψ2, z) Wxz(ρ1, ρ2, ψ1, ψ2, z)
Wyx(ρ1, ρ2, ψ1, ψ2, z) Wyy(ρ1, ρ2, ψ1, ψ2, z) Wyz(ρ1, ρ2, ψ1, ψ2, z)
Wzx(ρ1, ρ2, ψ1, ψ2, z) Wzy(ρ1, ρ2, ψ1, ψ2, z) Wzz(ρ1, ρ2, ψ1, ψ2, z)

 (20)

the degree of coherence of the CPCRPCAVB in the focal region can also be obtained. The
complex correlation coefficient at two points, (ρ1, ψ1, z) and (ρ2, ψ2, z), in the focal region is
expressed as

µij(ρ1, ρ2, ψ1, ψ2, z) = Wij(ρ1, ρ2, ψ1, ψ2, z)/
√

Wii(ρ1, ψ1, z)Wjj(ρ2, ψ2, z) (21)
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Similarly, with the electric cross-spectral density matrix W(ρ1, θ1, ρ2, θ2, z), the degree
of polarization of the tightly focused CPCRPCAVB in the focal region can be given by [32]

P(ρ, ψ, z) =

√√√√3
2

{
Ix(ρ, ψ, z)2 + Iy(ρ, ψ, z)2 + Iz(ρ, ψ, z)2[
Ix(ρ, ψ, z) + Iy(ρ, ψ, z) + Iz(ρ, ψ, z)

]2 − 1
3

}
(22)

The degree of polarization as shown in Equation (22) can be used to describe the
depolarization of the tightly focused CPCRPCAB in the focal plane. The coefficient of
the degree of polarization is limited to the interval of 0 ≤ P(ρ, ψ, z) ≤ 1, in which the
upper limit represents a completely polarized beam, the lower limit represents a completely
unpolarized beam and a value between them indicates a partially polarized beam.

3. Results and Discussion

In order to indicate the tight focusing properties of the CPCRPCAVBs more explicitly,
some numerical calculations were carried out based on the above equation. General-
purpose mathematical computation software can be used for the numerical calculations,
which can also be accomplished by custom programs written in Python or C language.
In addition, the numerical calculations mentioned in this paper are not computationally
intensive and can be done using common PCs. Firstly, intensity distributions of the x-
polarization component, y-polarization component, z-polarization component and total
intensity of the CPCRPCAVB with different topological charges in the focal plane are shown
in Figure 2. The wavelength of the CPCRPCAVB is taken as λ = 633 nm, which is used
extensively in the studies of laser beam propagation. The scaling parameter w and the
parameter r0, which determines the radius of the first ring of the CPCRPCAVB in the initial
plane, were taken as 5 mm and 1 mm, respectively. The decaying factor a is a dimensionless
parameter, which was taken as 0.1 in the numerical calculation. The initial coherence length
δ was taken as 0.6 w, and its corresponding initial coherence distribution of CPCRPCAVB
is shown in inset (b) of Figure 1. Obviously, this value of the initial coherence length is very
representative. The coherence distribution exhibits perfect coherence along any annulus
that is concentric to the source center. In contrast, for two points at different distances from
the center, the coherence is partial or has even vanished. It can be seen that when the topo-
logical charge, m, is equal to 1, the intensity distribution of the x-polarization component
exhibits a central principal maximum. Along the direction of the x-axis, there are intensity
minimums at both sides of the principal maximum. As the number of topological charge (m)
rises to 2 or 3, the shape of the central principal maximum expands and a hollow appears
in its center. The intensity of the y-polarization component exhibits a similar distribution
to that of the x-polarization component, with the difference being that the direction of the
pattern is turned by 90 degrees. The intensity distributions of the z-polarization with m = 1,
m = 2 and m = 3 in the focal plane are illustrated in Figure 2g, h and i, respectively. They
exhibit a Newtonian ring distribution with an intensity minimum or dark hollow in the
center. With the increase in the topological charge, the hollow region gradually expands its
size. The total intensity distributions of the CPCRPCAVB with m = 1, m = 2 and m = 3 in
the focal plane are illustrated in Figure 2j, k and l, respectively. For the figure of
mboxemphm = 1, the appearance of total intensity in the focus is like a Gaussian distribu-
tion, and the radial polarization and vortex phase do not introduce singularity in the focal
plane. As the topological charge rises to m = 2 or m = 3, a hollow spot appears in the center
of the intensity distribution. Comparing Figure 2k,l, it can be found that the size of the
hollow spot increases with the increase in topological charge.
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Figure 2. Intensity distributions of the CPCRPCAVB in the focal plane. (a–c) intensity distributions
of the x-polarization component for different topological charge; (d–f) intensity distributions of
the y-polarization component for different topological charge; (g–i) intensity distributions of the
z-polarization component for different topological charge; (j–l) intensity distributions of the total
intensity for different topological charge. The parameters for calculation chosen are λ = 633 nm,
w = 5 mm, NA = 0.9, f = 1 cm, C0 = 1, a = 0.1, r0 = 1 mm and δ = 0.6 w.

The total intensity distributions of the tightly focused CPCRPCAVB in the ρ-z plane
(i.e., propagation plane) near the focus are illustrated in Figure 3. One can find that when the
topological charge of m is equal to 1, the intensity distribution of the CPCRPCAVB exhibits
a needle-like shape along the optical axis, and the length of the homogeneous intensity
along the optical axis is measured to be about 15λ. As the topological charge rises to m = 2
and m = 3, the needle pattern is divided into two halves by a dark channel on the optical
axis, which is a non-diffracting focal hole surrounded by the regions of higher intensity in
the radial direction, and the increase in topological charge leads to an enlargement in the
radial dimension of the dark channel. This means that the radial dimension of the dark
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channel can be controlled by adjusting the topological charge of the incident CPCRPCAVB.
In a word, a super-length optical needle or dark channel can be obtained by adjusting the
topological charge of a CPCRPCAVB tightly focused with a high-NA objective. Compared
with other methods, the method proposed in this paper is relatively convenient in terms
of obtaining the super-length optical needle and dark channel with a radial dimension of
sub-wavelength scale, simply tightly focusing the CPCRPCAVB with a high-NA objective
without any other auxiliary optical components. The optical needle and dark channel with
a radial dimension of sub-wavelength scale may find potential applications in optical data
storage, photolithography, super-resolution microscopy and particle trapping.
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Figure 3. Total intensity distributions of the CPCRPCAVB in the ρ-z plane near the focus. (a) topolog-
ical charge is m = 1, (b) topological charge is m = 2, (c) topological charge is m = 3. The parameters
for calculation chosen are λ = 633 nm, w = 5 mm, NA = 0.9, f = 1 cm, C0 = 1, a = 0.1, r0 = 1 mm and
δ = 0.6 w.

The correlation between any two parallel electric field components near the focus
can be characterized by

∣∣µii(ρ1, ρ2, θ1, θ2, z), (i = x, y, z)
∣∣, where ρ and θ are the radius

and angle in the polar coordinate system. For simplicity, setting the position of the first
point (ρ1, θ1) in the geometrical focus of the high-NA objective (i.e., ρ1 = 0, θ1 = 0), the
distributions of coherence for both parallel electric field components in the focal plane
are calculated and shown in Figure 4. Figure 4a–c are the distributions of µxx for m = 1,
m = 2 and m = 3, which all exhibit human-face-like patterns. The “nose” in the middle
of each pattern is an intermediate principal maximum, and the “eyes” by the “nose” are
two principal minimums symmetrically distributed along the x-axis on either side of the
principal maximum. The distribution of µyy is similar to that of µxx, except that its principal
maximum and minimums are distributed along the y-axis. As shown in Figure 4g–i, the
distributions of µzz are center-symmetric, exhibiting a wave-like circular oscillation from
the central main pole outward. Comparing the distributions of µxx, µyy and µzz with
different topological charges, it can be found that the rise in topological charge of the
vortex phase does not change the basic structure of the coherence distribution pattern, but
increases its size.
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Figure 4. Distributions of coherence of the CPCRPCAVB with different topological charges in the
focal plane. (a–c) coherence distributions of µxx for different topological charge; (d–f) coherence
distributions of µyy for different topological charge; (g–i) coherence distributions of µzz for different
topological charge. The parameters for calculation chosen are λ = 633 nm, w = 5 mm, NA = 0.9,
f = 1 cm, C0 = 1, a = 0.1, r0 = 1 mm and δ = 0.6 w.

In order to learn about the polarization properties of the tightly focused CPCRPCAVB
in the focal plane, the degree of polarization of the CPCRPCAVB with different topological
charges is calculated, and the results are plotted in Figure 5. It can be seen that the
polarization degree of the tightly focused CPCRPCAVB is not equal to 1 in most areas of
the focal plane. The patterns take on an appearance of oscillation from the center outward
along the radius. There is a cross shape surrounded by a circular ring in the center of each
figure. Moreover, in the region outside the ring, the degree of polarization in the areas of
the azimuth of the 0-degree and 90-degree directions is significantly higher than that of
the azimuth of the 45-degree and 135-degree directions. By comparing the polarization
distributions with different topological charges, it can be found that the patterns of the
cross and the circular ring gradually expand outward along the radial direction with the
increase in topological charge.
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4. Conclusions

In conclusion, we have studied the tight focusing properties of circular partially
coherent radially polarized circular Airy vortex beams (CPCRPCAVBs) in this paper. This
study focuses on the effect of topological charge on their tight focusing properties, including
intensity distribution, spatial coherence and degree of polarization. The results show
that a super-length optical needle or a super-length dark channel can be obtained as
the CPCRPCAVB is tightly focused. The super-length dark channel is a non-diffracting
focal hole surrounded by regions of higher intensity in radial direction. By adjusting the
topological charge of the vortex phase, the radial dimension of the dark channel can be
controlled easily. It is simple and convenient to use this method to obtain a super-length
optical needle and a super-length dark channel, and it may find application in optical data
storage, photolithography, super-resolution microscopy and particle trapping. In the focal
region, the rise in the number of topological charge does not distort the basic structures of
the coherence distribution pattern and the polarization distribution pattern, but enlarges
their sizes.
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