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Abstract: As it is a typical dye pollutant in water, methylene blue detection is important to health
and environmental safety. A kind of methylene blue optical fiber sensor was successfully fabricated,
which was highly sensitive, responded linearly, was easy to manufacture and was low cost. The
sensor was composed of a capillary glass tube, single-mode fiber and calcium alginate hydrogel.
The interference spectrum of the optical fiber F–P cavity successfully responded to the methylene
blue solution. The response sensitivity of 2.46 nm/(mg/L) was obtained with the typical sensor
with a 39.18 µm cavity length. The linearity of the experiment curve was 0.99247. Furthermore, the
influence of sodium alginate concentrations on sensitivity was also investigated. The results showed
that the sodium alginate concentration had an optimum value. In addition, the dynamic response
characteristic was tested. A 25 s response time was obtained with testing using a typical sensor,
which showed a fast response time. The sensor has the potential to be applied to online methylene
blue detection.

Keywords: methylene blue; calcium alginate hydrogel; Fabry–Perot; optical fiber sensor

1. Introduction

Dyes are one of the typical emerging pollutants of water from industrial effluents.
As a common dye compound, methylene blue (MB) is widely used in textile industrial
dyes, laboratory dyes, medical system drugs and other fields [1–3]. Methylene blue and its
metabolites in the human and animal body have certain toxicities [4] and mutagenic effects
of cancer [5]. Louis M. Rifici showed that methylene blue was harmful to larval fathead
minnows (Pimephales promelas) when the concentration was 2.1 mg/L [6]. In addition,
methylene blue in water cannot be biodegraded but can be accumulated in organisms
through bioenrichment, which will cause serious water pollution and ultimately threaten
human health and ecological environmental safety [7,8].

The main measurement methods of methylene blue include the surface-enhanced
Raman method (SERS) [9,10], high-performance liquid chromatography (HPLC) [11], im-
munoassay, electrochemical method [12,13], colorimetry [14], ultra-high performance liquid
chromatography–tandem mass spectrometry [15] and spectrophotometry [16]. Many mea-
surement methods have complex processing, low sensitivity and some other problems.
In 2022, Elumalai Ashok Kumar [17] prepared a surface-enhanced Raman spectroscopy
active substrate composed of Au nanoparticles (NP) on Cu2 O microspheres using polyols
and photochemical methods. The analytical enhancement factor for the effective measure-
ment of methylene blue (MB) was 2.55 × 1012, and the measurement limit was as low
as 2.36 × 10−13 M. In 2021, Moustafa Zahran [18] first developed a new electrochemical
amplification sensor using silver Arabic colloidal nanoparticles (AgNPs). The linear ranges
of sensors based on AgNP, methylene blue monomer and poly methylene blue oxidation are
1–20 µg/L, 0.1–10 mg/L and 1–15 mg/L, respectively. In 2020, Takuya Okazaki et al. [19]
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proposed an electrochemical long-period fiber grating (LPFG) sensor with a high methylene
blue response sensitivity and a sensor that responds to a wide concentration range from
0.001 mM to 1 mM.

Compared with the above methods, optical fiber sensing technology in the field of
water pollution measurement has the advantages of a high detection limit, simple produc-
tion process, low cost, anti-electromagnetic interference, real-time online measurement,
high temperature and corrosion resistance, which can be applied to a variety of harsh
environments [20–22]. In recent years, some reports about optical fiber measurement of
water pollutants have been shown [23–26]. In 2013, Ji Luo et al. [27] successfully prepared
a silver nanoparticle-modified evanescent field optic fiber sensor based on the MEMS
microchannel chip. In the methylene blue concentration range from 0 to 0.4 µmol/mL,
the sensor response was linear (R2 = 0.9496). A concentration change of 0.1 µmol/mL
resulted in an absorbance change of 0.402 dB. In 2020, Kenza Azil et al. [28] studied an
unclad optic fiber sensor based on evanescent wave absorption to monitor water pollution
caused by methylene blue, with a wide sensitive range of methylene blue concentrations.
The optical sensing method for methylene blue still needs to be deeply researched because
of its inadequate investigation.

For many measurement methods of methylene blue at present, there are some prob-
lems, such as complex preprocessing, expensive instruments, long measurement time,
nonlinear response and low sensitivity. Therefore, more convenient, fast and sensitive
sensors need to be explored, especially the optical fiber sensor. This paper designed an
optical fiber Fabry–Perot(F–P) sensor structure to measure the concentration of methylene
blue solution, which is composed of a capillary glass tube, single-mode fiber and sensitive
film (calcium alginate). It was easy to fabricate with a simple and low-cost structure. The
methylene blue concentration was measured with the fiber F–P cavity interference spec-
trum. It was demonstrated that the sensor had a good linear response and high response
sensitivity, and its sensitivity influence factors and dynamic response characteristics were
also investigated. The research results are very helpful to realize the online monitoring of
methylene blue water pollution.

2. Materials and Methods
2.1. Sensor Structure and Principle

The optical fiber sensor structure is shown in Figure 1. The sensor is composed of a
capillary glass tube, single-mode fiber and calcium alginate-sensitive film. Figure 1a is the
schematic diagram of the structure, Figure 1b is the schematic diagram of the two-reflection
model, and Figure 1c is the real photo of the sensor. For sensor fabrication, firstly, one
end of the single-mode optical fiber is connected to the Micron Optics SM125 optical fiber
sensor analyzer, and the other end is peeled off with a wire stripper. After cleaning with
alcohol, the end face is cut flat with an optical fiber cutter and then probed into the glass
capillary tube. The position of the end face of the single-mode optical fiber is manually
adjusted and monitored using a microscope. Until the annular end face of the glass capillary
tube is flush with the end face of the single-mode fiber, the other end face of the capillary
tube is sealed and fixed with 502 glue to fix the position. Then, we attach some sodium
alginate to the fiber end to form the F–P cavity structure with the single-mode fiber and the
sensitive film. We carefully adjust the cavity until the SM125 optical fiber sensing analyzer
shows a good interference spectrum. Then, the calcium alginate hydrogel film in calcium
chloride solution is fully solidified after a period until the SM125 interference spectrum is
stable. Finally, we take off the sensor head and put it in the experimental environment for
follow-up experiments.
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Figure 1. Sensor structure figure.

The sensor structure is shown in Figure 1a. The single-mode fiber and the calcium
alginate-sensitive film constitute two cavity mirrors of the F–P cavity, forming the inter-
ference structure. The optical path difference between the two reflected beams can be
expressed as [29]

L = 2ned (1)

As Figure 1a showed, ne is the effective refractive index of the calcium alginate hydro-
gel material, and d represents the distance between the two reflection ends (i.e., the cavity
length of the F–P cavity). The interference intensity formed by the two reflected waves can
be expressed as [30]

I = I0

[
R1 + R2 + 2

√
R1R2cos

(
2πL

λ
+ ϕ0

)]
(2)

where I0 is the incident light intensity, R1 and R2 are the reflectance of each reflector, λ
represents the wavelength of the light source, and φ0 is the phase constant.

The optical path difference change in the F–P cavity caused by the change in the
external environment is [29]

∆L = 2(∆ned + ne∆d) = L
(

∆ne

ne
+

∆d
d

)
(3)

where d is the length of the F–P cavity, and ne is the effective refractive index of the sensitive
element in the F–P cavity. In general, the effective refractive index of calcium alginate
hydrogel material (sensitive element) is about 1.334. The sensor also has an initial cavity
length. When the sensor is immersed into a different methylene blue solution, the effective
refractive index and volume (cavity length) of the calcium alginate hydrogel material
will change because MB is adsorbed by calcium alginate, which will cause the change in
optical path difference of F–P interference and eventually lead to the interference spectrum
drift. The methylene blue concentration can be measured by measuring the interference
spectrum drift.

2.2. Sensitive Materials

Hydrogel is a kind of polymer compound that can swell into a three-dimensional
network structure in water and keep a lot of water without dissolution [31]. There are
some special chemical groups in some hydrogels that are sensitive to external environment
changes, such as ion concentration, temperature, pH value and electric field. [32]. When
the external environment changes, the intermolecular forces change, and the molecular
chains stretch or contract, resulting in changes in the gel volume. Such hydrogels are called
smart hydrogels.

Sodium alginate (SA) is a natural water-soluble polyanionic polysaccharide that is
prepared from seaweed [33] by extracting iodine and mannitol. It has excellent adsorption
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properties for methylene blue and can be used as a sensitive material to measure the
concentration of methylene blue [34]. The commonly used preparation methods for sodium
alginate hydrogels include physical cross-linked hydrogels, chemical cross-linked hydrogels
and enzyme cross-linked hydrogels. In this experiment, the physical cross-linking method
is used to cross-link sodium alginate with calcium chloride solution to generate gel. In the
aqueous solution of CaCl2, SA and Ca2+ will quickly cross-link, and Ca2+ will be wrapped
in the middle to form a quad-ligand structure, thus forming an “egg box model” [35].
Meanwhile, Na+ in SA will exchange with these bivalent cations to convert the SA solution
to gel. The alginate group in the prepared calcium alginate hydrogel contains a lot of
carboxyl groups, which can absorb methylene blue. The mass fraction of calcium chloride
solution and sodium alginate solution is 2% in the experiment.

2.3. Experimental System

Figure 2 shows a schematic diagram of the experimental system. The high-precision
optical fiber sensing analyzer (Micron Optics SM125) is connected to the computer for spec-
tral data analysis. As a light source and spectrum measurement device, the Micron Optics
SM125 fiber optic sensing analyzer provides 18 mW output optical power, 2 Hz scanning
frequency, a scanning wavelength range of 1510–1590 nm and wavelength accuracy and
stability of 1 pm. Figure 2c is the test area, which is composed of a fixing frame, optical
fiber sensor and methylene blue solution. In experiments, the optical fiber sensor is fixed
and immersed in the methylene blue solution. Figure 2d is the sensor diagram.
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area; (d) sensor structure.

In experiments, the wavelength of light emitted by the SM125 is from 1510 nm to
1590 nm. The sensor was inserted into MB solutions with different concentrations. Using
the spectrum data of different MB solutions, the relationship between the wavelength drift
of interference and MB concentration was investigated.

3. Results and Discussions
3.1. Methylene Blue Response Experiments

In the methylene blue concentration-response experiments, the interference spectrum
was measured with SM125. The spectrum data can be collected using MOI spectrum
measurement software. The typical spectrum is shown in Figure 3a. The interference
spectrum waveform has obvious peaks and valleys. This shape can be explained by
the Formula (2). For testing the spectrum stability at a fixed concentration, the sensor
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spectrum is monitored for 2000 s with SM125 at the initial conditions. The typical valley
wavelength shift data of dip 1 in Figure 1b were focused to investigate the stability. This
valley wavelength is near 1542 nm. According to the experimental data, the maximum
valley wavelength shift of dip 1 was ±0.18 nm. The response spectrum showed good
stability, as Figure 3b shows. In follow-up experiments, we found that the sensor can keep
a stable spectrum response for a longer time. We once tested one sensor every day for one
week. The spectrum of the sensor was still good after the one-week test.
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Figure 3. Response spectrum and stability measurement results.

For deeply investigating the response to methylene blue, we use many methylene blue
solutions with different concentrations in experiments. Eleven methylene blue solutions
with different concentrations are used in experiments, as Table 1 shows. The initial cavity
length of the sensor is about 39.18 µm. For sensitive materials preparations, the sodium
alginate concentration is 2%. When the sensor is inserted into different MB solutions, the
interference spectrum of the sensor will change according to the former discussion. The
spectrum shape can be explained as Formula (2). The spectrum wave will drift left or
right with different MB solution measurements. This is also observed in experiments. For
the convenience of measurement and analysis, the peak or valley wavelength drift of the
interference spectrum is focused for observation. The response is a kind of wavelength
modulation because the spectrum peak or valley wavelength drifts with different concen-
trations of MB solution. The spectral data are recorded and saved with the SM125 and
computer. Each measurement spectrum of different MB solutions is shown in Figure 4.
With the increased methylene blue concentration, the peak wavelength obviously shifts
to the left, as shown in Figure 4. This is caused by the optical path difference change, as
formula (2) shows. To clearly show the wavelength drift, we chose the typical spectrum, the
whole set of waves of dip 1, to gather in Figure 5. For the convenience of display, all curves
of different concentrations are stacked together. We can see that the valley wavelength
is about 1542 nm at 0 mg/L MB solution. When MB concentration increases, the valley
wavelength of dip 1 changes obviously because the interference spectrum changes. For
example, when the MB solution concentration is 10.70 mg/L, the valley wavelength is
about 1515 nm. Compared with the wave of 0 mg/L, the valley wavelength is reduced by
27 nm.

Table 1. Methylene blue concentration list.

Test Number 1 2 3 4 5 6 7 8 9 10 11

Methylene blue
concentration/(mg/L) 0 1.25 2.48 3.7 4.91 6.09 7.27 8.43 9.57 10.7 11.82
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Figure 5. The wavelength shift of dip 1 trough.

The spectrum change is mainly due to the interaction of calcium alginate hydrogel
with methylene blue, which changes the refractive index and cavity length. Therefore, the
optical path difference between the two interference beams in the F–P cavity is changed,
and the peak or valley wavelength is shifted. The obvious spectrum shift also shows an
obvious response characteristic to the methylene blue concentration. The valley wavelength
changes of the three dips (dip 1, dip 2, dip 3) in Figure 4 are monitored in experiments. The
valley wavelength drift value is measured according to spectrum data. All wavelength
drift values of the whole set of waves are listed in Table 2. The table shows each valley
wavelength and its change with MB concentration. To reduce experimental errors, the
average value of the three wavelength drift values is calculated for further analysis, as the
last column in Table 2 shows. According to these spectral data in Table 2, the relationship
curve between methylene blue concentration and average wavelength shift is obtained, as
shown in Figure 6.

In the experiment, the wavelength shift of the interference spectrum was recorded.
Some wave peaks or valleys may drift beyond the measurement range of the instrument.
To avoid affecting the experimental results, special attention should be paid to peak drift
during the experiment, and the spectral information should be recorded in time. As in the
former discussion, we monitored three valley wavelengths, which can be measured in the
measurement range of instruments.

As Figure 6 shows, there is a good linear relationship between the valley wavelength
drift and methylene blue concentration. The linear fitting results show that its sensitivity is
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2.46 nm/(mg/L), and the linear correlation coefficient is 0.99247. The experimental results
show that the sensor has high response sensitivity and good linear response.

Table 2. Valley wavelength shift data.

Methylene Blue
Concentration/(mg/L) dip1/nm dip2/nm dip3/nm dip1-Shift/nm dip2-Shift/nm dip3-Shift/nm Average Wavelength

Drift/nm

0 1589.09 1565.26 1542.15 0 0 0 0
1.25 1586.81 1562.84 1539.51 2.28 2.42 2.64 2.45
2.48 1580.98 1556.83 1533.73 8.11 8.43 8.42 8.32
3.7 1579.13 1555.08 1531.81 9.96 10.18 10.34 10.16

4.91 1575.27 1551.15 1528.24 13.82 14.11 13.91 13.95
6.09 1571.26 1547.61 1524.54 17.83 17.65 17.61 17.70
7.27 1568.43 1544.84 1522.03 20.66 20.42 20.12 20.40
8.43 1566.97 1543.39 1520.71 22.12 21.87 21.44 21.81
9.57 1563.74 1540.61 1517.81 25.35 24.65 24.34 24.78
10.7 1561.79 1538.33 1515.52 27.3 26.93 26.63 26.95
11.82 1560.44 1536.86 1514.08 28.65 28.4 28.07 28.37

Photonics 2023, 10, x FOR PEER REVIEW 7 of 14 
 

 

relationship curve between methylene blue concentration and average wavelength shift 

is obtained, as shown in Figure 6. 

Table 2. Valley wavelength shift data. 

Methylene Blue Concentra-

tion/(mg/L) 
dip1/nm dip2/nm dip3/nm 

dip1-

Shift/nm 

dip2-

Shift/nm 

dip3-

Shift/nm 

Average Wavelength 

Drift/nm 

0 1589.09 1565.26 1542.15 0 0 0 0 

1.25 1586.81 1562.84 1539.51 2.28 2.42 2.64 2.45 

2.48 1580.98 1556.83 1533.73 8.11 8.43 8.42 8.32 

3.7 1579.13 1555.08 1531.81 9.96 10.18 10.34 10.16 

4.91 1575.27 1551.15 1528.24 13.82 14.11 13.91 13.95 

6.09 1571.26 1547.61 1524.54 17.83 17.65 17.61 17.70 

7.27 1568.43 1544.84 1522.03 20.66 20.42 20.12 20.40 

8.43 1566.97 1543.39 1520.71 22.12 21.87 21.44 21.81 

9.57 1563.74 1540.61 1517.81 25.35 24.65 24.34 24.78 

10.7 1561.79 1538.33 1515.52 27.3 26.93 26.63 26.95 

11.82 1560.44 1536.86 1514.08 28.65 28.4 28.07 28.37 

In the experiment, the wavelength shift of the interference spectrum was recorded. 

Some wave peaks or valleys may drift beyond the measurement range of the instrument. 

To avoid affecting the experimental results, special attention should be paid to peak drift 

during the experiment, and the spectral information should be recorded in time. As in the 

former discussion, we monitored three valley wavelengths, which can be measured in the 

measurement range of instruments. 

 

Figure 6. Valley wavelength shifts with different methylene blue concentrations. 

As Figure 6 shows, there is a good linear relationship between the valley wavelength 

drift and methylene blue concentration. The linear fitting results show that its sensitivity 

is 2.46 nm/(mg/L), and the linear correlation coefficient is 0.99247. The experimental re-

sults show that the sensor has high response sensitivity and good linear response. 

3.2. Sodium Alginate Concentration Influence Investigation 

As a sensitive material, the sensitive film can be formed by sodium alginate hydrogel. 

The sodium alginate hydrogel can be prepared with different concentrations. To investi-

gate the sodium alginate concentration influence on response characteristics, five sensors 

with different sodium alginate concentrations are fabricated to test their response charac-

teristics. The initial cavity length of each sensor is about 60 μm. The sodium alginate con-

Figure 6. Valley wavelength shifts with different methylene blue concentrations.

3.2. Sodium Alginate Concentration Influence Investigation

As a sensitive material, the sensitive film can be formed by sodium alginate hydrogel.
The sodium alginate hydrogel can be prepared with different concentrations. To investigate
the sodium alginate concentration influence on response characteristics, five sensors with
different sodium alginate concentrations are fabricated to test their response characteristics.
The initial cavity length of each sensor is about 60 µm. The sodium alginate concentrations
are 1.5%, 2%, 2.5%, 3% and 3.5%, respectively. For each sensor, the MB concentration
response spectrum is measured with the same method as in Figure 6. So, we obtain five
wavelength drift curves, as in Figure 6. Then, we gather all curves in one figure, and
Figure 7 is attained. According to Figure 7, the spectrum valley wavelength shift of each
sensor obviously increases with increased methylene blue concentration. The response
sensitivities of the five sensors are 1.90 nm/(mg/L), 0.98 nm/(mg/L), 0.50 nm/(mg/L),
0.55 nm/(mg/L) and 0.43 nm/(mg/L), respectively. The response linearities of the five
sensors are still good. The linear correlation coefficients of the five curves are 0.98388,
0.98801, 0.98658, 0.96186 and 0.97019, respectively.

According to the former discussion, five sensors have different sensitivities caused
by different sodium alginate concentrations. Figure 8 is the relationship curve between
the sensitivity and sodium alginate concentration. With increased sodium alginate con-
centration, the sensitivity curve first increased and then decreased. The concentration
of about 2% is a turning point. It seems that the sodium alginate concentration has an
optimum value for response sensitivity. This influence is caused by the swelling effect
of the sensitive film. When the concentration of SA solution is too low, the strength of
SA hydrogel microspheres is weak. The hydrogel film is difficult to form. The sensitive
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film has a poor swelling effect and swelling ratio. When the SA concentration is gradually
increased, a stable hydrogel film can be attained. The strength of SA hydrogel microspheres
is strong enough to provide good swelling effects. But, the swelling effect cannot always
remain strong when the SA solution concentration is higher. In the SA hydrogel preparation
process, the gelation process of SA is an instantaneous ion exchange process between Na+

and Ca2+. The high concentration of SA makes the intermolecular distance smaller. Then,
some SA molecules inside the gel microspheres are formed before completely exchanging
during the ion exchange process. Finally, the swelling ratio is reduced. A low swelling ratio
will influence the MB molecule adsorption.
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As far as we know, during the adsorption of MB in calcium alginate hydrogel, —OH
and —COOH in the alginate group participate in the adsorption of MB. If the swelling ratio
is high, the internal void is also large. This is more conducive to making the alginate group
of the hydrogel coordinate with the methylene blue ion to the maximum extent.

So, for MB absorption, the SA solution has an optimum concentration to obtain an
optimum swelling ratio of the hydrogel. According to our experimental results, about
2% is an optimum value, which is also consistent with the swelling experiment results
of reference [36]. The curve-changing trends in Figure 8 can be explained, as in the
former discussion.
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3.3. Dynamic Response

The characteristic of dynamic response was also investigated. The Micron Optics
SM125 measurement software of the computer is set to automatic acquisition mode at the
acquisition frequency of 2 Hz. Then, SM125 continuously measures the spectrum data
during the whole experiment. Firstly, we stood the sensor for five minutes to ensure the
spectral stability and collected the interference spectrum data. Then, we inserted the sensor
into a methylene blue solution with some concentration. The sensor was immersed in the
solution for about ten minutes to record the stable spectrum. Then, we took out the sensor
and immersed it in the next methylene blue solution with a different concentration. All
spectral data were automatically recorded with SM125. Then, the next measurement of
another concentration is repeated as before. In experiments, the concentration values are
still the concentrations in Table 1. The initial cavity length of a typical sensor is 39.18 µm.
The sodium alginate concentration is still 2%.

Spectral data are processed and analyzed. The relationship between the peak wave-
length shift and time is focused on spectral data processing. The dynamic response experi-
mental curve is finally obtained, as Figure 9 shows. When the concentration of methylene
blue in the environment changes, the peak wavelength shifts significantly. The curve
presents a stepped shape because the peak wavelength shift of the spectrum increases with
higher methylene blue concentrations.
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To obtain more details of the dynamic response, we enlarged some curve details of
Figure 9, as shown in Figure 10. According to this curve, the response time of the sensor
is measured in the range from 10 to 90 percent of the wavelength drift range. When the
methylene blue concentration increases from 1.25 mg/L to 2.48 mg/L, the response time is
25 s. The short response time implies that the sensor has a fast dynamic response.

3.4. Comparison with other Methylene Blue Sensors

To more deeply discuss the sensor characteristic, we compared our work with some
reported methylene blue sensors. Table 3 shows the comparison between our work and
some other reported methylene blue sensors. The sensors of references [19,37–39] 44 use
electrochemical methods, which have complicated fabrication and measurement processes.
The sensor of reference [27] has a wider measurement range, but it has lower response
sensitivity and linearity. Compared with reference [40], our sensor has higher sensitivity
and a shorter response time. The methylene blue concentration measurement range of
references [28,41,42] is smaller than our work, and they use complex manufacturing pro-
cesses or high-cost microstructure fibers. The sensor of our work has a simple structure
and easy fabrication method. The sensitive material of our work is easy to prepare and
very cheap. The sensor of reference [43] has a wider response range, but the linear response
is not good. It uses complex microfabricated technology and a U-band waveguide. The
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sensors of references [38,39,44] have longer response times and complex fabrications. The
sensitive materials have complex preparation processes or high costs.
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Table 3. Comparison with other methylene blue sensors.

Reference Type Fabrication Sensitive
Materials

Concentration
Range (mg/L) Sensitivity Linearity Response

Time (s)

[19] Electrochemical Long Period
Fiber Grating Indium Tin Oxide 0.32–319.85 \

Not good
(linear/logarithmic

processing)
60

[27] Evanescent
Field MEMS Silver Nanoparticle 0–127.94 0.0126

dB/(mg/L) 0.9496 \

[28] Evanescent
Field

Cladless optical
fiber \ 6–10 8.75

a.u/(mg/L) \ \

[37] Electrochemical
Lossy mode

Resonance (LMR)
Fiber

Indium Tin Oxide 8.08–31.99 2.66
(nm/V)/(mg/L)

0.9714
(slope

processing)
\

[38] Electrochemical Quartz crystal
microbalance

MgFe2 O4
NPs/MgFe2

O4@CaAlg NCs
100–800 \ \ 300

[39] Electrochemical

Quartz crystal
microbalance with

dissipation
monitoring

Molecularly
Imprinted
Polymers

0.025–0.15 1880.9
(ng/cm2)/(µg/L) 0.9907 4000

[40] Fluorescence
spectrum \ Carbon Quantum

Dots (CQDs) 3.20–31.99 0.0594/(mg/L) 0.994 60

[41] Evanescent
Field

HF etching
/Less-mode optic

fiber
\ 0.11–0.79 \ \ \

[42] Evanescent
Field

Optical Fiber
Tapers \ 0.0016–0.31 \ Not good \

[43] Evanescent
Field

Microfabricated
polymer chip with
integrated U-bend

waveguides

\ 3.20–6397 \ Not good \

[44]
Surface

plasmon
resonance

\ NiCo-Layered
Double Hydroxide 0.005–10 \ Not good 268

Our work Common Fiber Calcium Alginate
Hydrogel 1.25–11.82 2.46

nm/(mg/L) 0.9824 25
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Compared with these sensors, our sensor has high sensitivity, good response linearity,
fast response time, easy fabrication and low cost. It provides a new convenient pathway to
develop optical fiber methylene blue sensors. It has the potential to be applied to online
methylene blue detection.

4. Conclusions

In this paper, an optical fiber F–P cavity was constructed with a capillary glass tube,
single-mode fiber and calcium alginate hydrogel film. We successfully prepared the calcium
alginate hydrogel and fabricated the sensor. We built the experiment system to measure
the sensor spectrum response to the methylene blue solution with different concentrations.
A high response sensitivity to methylene blue concentration was verified in the range
from 1.25 mg/L to 11.82 mg/L. The sensitivity of a typical sensor with a 39.18 µm cavity
length was 2.46 nm/(mg/L). The linearity of the experiment curve was 0.99247. The
results implied that the sensor had high response sensitivity and good linear response
characteristics. Furthermore, the sodium alginate concentration influence on sensitivity
was investigated. The results show that the sodium alginate concentration of 2% is the
optimum value to improve response sensitivity. Then, the dynamic response characteristics
of the sensor were investigated. A total of 25 s of response time implied that the sensor has
a fast dynamic response.

The research results show that this kind of optic fiber sensor in this paper has many
advantages in methylene blue measurement, such as high sensitivity, good linearity, simple
fabrication, low cost and fast response time. It can realize the direct response to methylene
blue solutions of different concentrations. We believe that our study results will provide
a new convenient pathway to design a methylene blue sensor. It has the development
potential of in situ online monitoring of methylene blue pollution in water.
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