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Abstract: The dichroism effects, i.e., asymmetries of the ionization probability with respect to the
inversion of either the atomic orientation (magnetic dichroism, MD) or the circular polarization
degree of the photon beam (circular dichroism, CD), are investigated using the time-dependent
perturbation theory (PT). It is shown that the magnitude of these effects depends not only on the
polarization states of the atom and laser pulse but also on the intensity and duration of the latter.
We find that the CD can also be observed in the ionization of oriented initial bound states, which
is impossible in long-pulse ionization. Predictions of our PT analysis are supported by the results
obtained by numerical solutions of the time-dependent Schrödinger equation (TDSE) describing the
ionization of the excited 2P-states of the hydrogen atom.
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1. Introduction

Ionization is one of the most important processes for determining the interaction of
light with atoms and molecules. In the non-relativistic approximation, the cross-section of
atomic photo-ionization is determined by the matrix element of the electric dipole transition
between the initial bound state and the final continuum state [1]. In the single active electron
approximation, the ionization of an initial atomic S-state (li = 0) via the single-photon
absorption leads to only the P-state of the electron in the continuum. For initial states with
li > 0, single-photon absorption leads to two possible states of the photoelectron: li − 1 and
li + 1. The number of different ionization channels significantly increases when spin-orbital
effects and electronic correlations are taken into account. This gives rise to the question
of the possibility of the experimental determination of radial parameters, describing all
ionization channels. It is well known that such a “complete experiment” requires the
photon beam and initial atomic state to be polarized [2–6]. The process of the ionization of
polarized atoms has been extensively studied, in both the single-photon [4,7–12] and many-
photon regimes [13–18]. Recent experimental progress has made it possible to study the
ionization of atoms and molecules through ultrashort (few-cycle) laser pulses [19–22]. Thus,
it is of interest to analyze photon polarization effects arising in the ionization of polarized
atoms by few-cycle electromagnetic pulses. First of all, we note that the dependence of the
ionization probability on the polarizations of the ionizing pulse and atomic target, as well
as on the direction of the photoelectron emission, is very complicated. Therefore, we limit
our consideration only to the study of the asymmetries of the momentum distributions
(MDs) of photoelectrons, which are referred to as the “dichroism effects”. In the case of
circularly polarized (CP) laser pulses, two kinds of dichroism effects take place [23]:

• Circular dichroism in MD (CDMD), i.e., the difference in the differential ioniza-
tion probability with respect to the rotation directions of the electric field of the
ionizing pulse;

• Magnetic dichroism in MD (MDMD), i.e., the difference in the differential probability
for two opposite directions of the atomic orientation.
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We emphasize that the above effects only take place in the ionization of polarized atoms,
and they are absent in the ionization of unpolarized initial atomic states. For ultrashort (few-
cycle) laser pulses, the ionization probability depends not only on the electron emission
angles but also on its energy, which introduces an additional degree of freedom into the
problem. The goal of the present work is to analyze the dependence of the ionization
probability on both the electron emission angles and the electron momentum p in the case
of the ionization of polarized atoms by few-cycle circularly polarized laser pulses.

In this article, we apply non-stationary perturbation theory (PT) to analyze the MDs
of photoelectrons emitted by polarized atoms subjected to an ultrashort (i.e., few-cycle) CP
electromagnetic pulse. First, in Section 2, we derive the parameterization of the ionization
amplitude, A, in which its dependence on the photoelectron momentum p and the emission
angle ϕ is separated. Next, in Section 3, we present expressions for the triply differential
probability (TDP) of ionization. For the sake of simplicity, we limit our consideration to the
case of purely polarized initial atomic states oriented or aligned along the pulse propagation
direction. In Section 3.2, we discuss the novel CD effect arising in the ionization of aligned
initial atomic states. Such an effect is absent in the case of ionization by monochromatic
(i.e., long) pulses. This effect is of importance since aligned states naturally occur when
atoms are excited by a linearly polarized light. In Section 4, we apply our PT analysis to
interpret the numerical results in the ionization of the polarized 2P-states of the hydrogen
atom. In Section 5, we discuss the derived results and the possibility of the experimental
observation of the predicted dichroism effects. Section 6 contains some concluding remarks.
Atomic units are used throughout the text unless otherwise specified.

2. Parameterization of the Ionization Amplitude

In the electric dipole approximation, the time-dependent Schrödinger equation de-
scribing the light–atom interaction has the form:

(H0 −Vd)Ψ = i
∂Ψ
∂t

, (1)

where H0 is the unperturbed atomic Hamiltonian, Ψ is the atomic wave function, and the
interaction operator, Vd, is defined by

Vd = (F · d), (2)

where d is the operator of the total electric dipole momentum of atomic electrons. For
few-cycle pulses, the electric field-strength vector can be written as

F(t) = Re
(

e F0(t)e−i(ωt+φ)
)

. (3)

Here, ω is the pulse carrier frequency, F0(t) is the smooth pulse envelope function, φ
is the carrier-envelope phase (CEP), and e is the complex vector of the pulse polarization.
For CP pulses, the polarization vector can be written in the following form [24]

e =
1√
2
(ex + iξey), ξ = ±1, (4)

where ex, ey are unit vectors of the Cartesian basis whose z-axis is directed along the pulse
propagation. For right-hand CP (RCP) pulses, one has ξ = 1, whereas for left-hand CP
(LCP) pulses, one has ξ = −1. The polarization vector is normalized by the condition
(e∗ · e) = 1. Note also that for purely CP pulses, (e · e) = 0.

In the first-order non-stationary PT, the ionization amplitude is defined by [25]:

A(1)
limi

= i
∫ ∞

−∞
〈νp|d · F(t)|limi〉 ei(E−Ei)t dt. (5)
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Here, |limi〉 is the initial state, with energy Ei, angular momentum li, and its projection
mi. |νp〉 is the final state that satisfies the incoming wave boundary conditions, comprising
the bound state |ν〉 of the residual ion with energy Eν and the continuum state |p〉 of the
electron, with momentum p and energy E = p2/2. Although the integration limits in (5)
should correspond to the pulse duration, it is convenient to extend those limits to infinity.
The integral (5) can be calculated as follows∫ ∞

−∞
F(t) ei(E−Ei)t dt =

e
2

e−iφ
∫ ∞

−∞
F0(t) ei(E−Ei−ω)tdt +

e∗

2
eiφ
∫ ∞

−∞
F0(t) ei(E−Ei+ω)tdt. (6)

By introducing the Fourier transform F̂±0 as

F̂±0 (ε) =
∫ ∞

−∞
F0(t) ei(ε∓ω)tdt, (7)

the above Equation (6) can be re-written as

∫ ∞

−∞
F(t) ei(E−Eb)t dt =

e−iφ

2
F̂+

0 (E− Ei)e +
eiφ

2
F̂−0 (E− Ei)e∗. (8)

In the case of the ionization process, the second term on the right-hand side of this
identity can be neglected because |E− Ei −ω| � E− Ei + ω and |F̂0(ε)| has a maximum
at ε ≈ ω. (Note that Ei < 0 for the initial bound state). Thus, the ionization ampli-
tude (5) becomes

A(1)
limi

=
e−iφ

2
F̂+

0 (E− Ei) 〈νp|e · d|limi〉. (9)

Here, it can be seen that the dependence of the first-order PT amplitude on the pulse
envelope is factorized. However, this is not so for higher PT orders (see Equation (12) below).
By using the partial (i.e., multipole) expansion for the final state, the angular dependence
of the dipole matrix element in (9) can be separated out using the standard methods of the
quantum angular momentum technique [16,26,27]. This leads to the following expression
for the ionization amplitude in the first PT order:

A(1)
limi

= e−iφ ∑
l=li±1

A(1)
lli
{e⊗Yl(p̂)}limi

, (10)

where A(1)
lli

represents the dynamic amplitude parameters, involving radial dipole matrix
elements multiplied by the Fourier transform of the pulse envelope, F+

0 (E− Ei) 〈νl|d|li〉.
The parameters A(1)

lli
are independent of the pulse polarization and the emission angle

of the photoelectron, and the expression in curly brackets in (10) is the irreducible tensor
product [26]:

{e⊗Yl(p̂)}limi
= ∑

µ=0,±1
Climi

1µ lmeµYlm(p̂), m = mi − µ, (11)

where eµ is the µ-th spherical component of the photon polarization vector and Climi
1µ lm is

the Clebsch–Gordan coefficient. The parity conservation low in the dipole approximation
demands the condition (−1)li+l+1 = 1 to be fulfilled. In the coordinate frame, whose z-axis
is directed along the photon beam propagation, the non-zero spherical components of the
polarization vector e are e−1 = 1 for an RCP pulse (ξ = +1) and e1 = −1 for an LCP pulse
(ξ = −1).
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In the second-order PT, the ionization amplitude is defined by [25]:

A(2)
limi

= −∑
q 6=i

∫ ∞

−∞
〈νp|d · F(t)|q〉 eiω f qt

×
∫ t

−∞
〈q|d · F(t′)|limi〉 eiωqit′ dt′dt. (12)

Here, |q〉 is an intermediate state with energy Eq; ω f q ≡ E + Eν − Eq; ωqi ≡ Eq − Ei;
and F(t) is the electric field (3). Details of the calculations of the time integrals are provided
in [28]. As a result, the ionization amplitude (12) is given by an integral over the energy Eq
taken from the matrix element involving the product of two pulse envelope functions (7)
with the function (e · d)GEq(e · d′), where GEq is the stationary Green function of the atom
(see [24]). Using the partial expansion of the final state, the angular dependence of the ion-
ization amplitude (12) can be separated out, which leads to the following parameterization:

A(2)
limi

= e−2iφ ∑
l=li ,li±2

∑
q=0,2

A(2)
q,lli

{
{e⊗ e}q ⊗Yl(p̂)

}
limi

, (13)

where the dynamic (or radial) amplitude parameters are independent of the electron
emission angles and the pulse polarization. Note that the dependence of the dynamic
parameters on the pulse envelope cannot be factored out as in the first-order PT case.
Thus, the width of the functions A(2)

q,lli
(p) in momentum space is determined by both the

bandwidth of the laser pulse and the dependence of the compound matrix elements on p.
Only for n = 1 is the width of the functions A(1)

lli
(p) determined by the Fourier transform

F+
0 of the pulse envelope (see (9)).

At this stage, we should mention that due to the broadband nature of few-cycle pulses,
the second-order PT amplitude should also contain the terms corresponding to absorp-
tion+emission and two-photon emission. However, these terms are small [24], and they are
neglected in the treatment below. For the sake of simplicity, we limit our consideration only
to the case of purely CP laser pulses. In this case, we have {e⊗ e}00 = −(e · e)/

√
3 = 0,

and the term with q = 0 in (13) vanishes. Accordingly, below, we use the notation
A(2)

lli
≡ A(2)

2,lli
. Thus, it is easy to deduce that in the n-th PT order, the amplitude of

the ionization by a CP pulse can be parameterized as

A(n)
limi

= e−inφ ∑
l
A(n)

lli

{
{e}n ⊗Yl(p̂)

}
limi

, (14)

where {e}n denotes the tensor product of n vectors e [27,29], and the summation index l is
limited by the triangle rule |li − n| ≤ l ≤ li + n. The parity conservation law leads to the
condition (−1)l+li+n = 1. This means that the parity of l is the same as that of li for even
values of n and is the opposite to that of li for odd values of n. The total amplitude of the
ionization by a few-cycle CP pulse is the sum of all PT orders:

Alimi
=

∞

∑
n=1

e−inφ ∑
l
A(n)

lli

{
{e}n ⊗Yl(p̂)

}
limi

. (15)

This equation can be simplified when an electron is detected in the photon polarization
plane (the in-plane geometry) in the direction defined by the polar angle ϕ:

Alimi
(p, φ) =

∞

∑
n=1

ξn ei[(mi+ξn)ϕ−nφ] B(n)limi ,ξ
(p), (16)



Photonics 2023, 10, 1235 5 of 13

where the parameters B(n)limi ,ξ
are defined by

B(n)limi ,ξ
(p) = ∑

l
A(n)

lli
Climi

n(−ξn) l(mi+ξn)Yl(mi+ξn)

(π

2
, 0
)

. (17)

Here, the summation runs over all values of l > 0, satisfying the conditions

(−1)l+n+li = 1, (−1)l+n+mi = 1. (18)

Note that in (17), both the Clebsch–Gordan coefficients and the spherical harmonics
can be evaluated in closed form [26]. However, we do not present the corresponding
expressions here for the sake of brevity. Since the parameters A(n)

lli
(p) correspond to n-

photon absorption, they have pronounced maxima at the values of p corresponding to the
photoelectron energy close to Ip + nω, where Ip is the ionization potential.

Note that the relative magnitude of the parameters A(n)
lli

and A(n±1)
lli

is not necessarily
determined by the ratio F/Fa, where F is the peak pulse field strength and Fa is the atomic
field strength. For example, for Fa > F, the second-order PT parameter A(2)

lli
can be larger

than A(1)
lli

depending on p. Mathematically, this stems from the fact that compound matrix
elements can be much larger than the dipole matrix element of the direct transition into
the continuum.

From condition (18), it immediately follows that all parameters B(n)limi ,ξ
vanish when

(−1)li+mi = −1. In other words, photoelectrons cannot be emitted in the photon polar-
ization plane when the parity of mi is opposite to that of li. For example, in the case of
an initial P-state, we find that in-plane emission is forbidden for mi = 0. Further, the
symmetry properties of the Clebsch–Gordan coefficients and spherical harmonics entering
Equation (17) lead to the conclusion that the parameters B(n)limi ,ξ

are invariant under the
replacement ξ → −ξ, mi → −mi up to a phase factor, i.e.,

B(n)limi ,ξ
= (−1)li+nB(n)li−mi ,−ξ . (19)

3. Ionization Probability and Dichroism Parameters

Within the density matrix formalism, the TDP for the ionization of a polarized atom is
defined by

W ≡ d3W
dpdΩp

=
li

∑
mi ,m′i=−li

Alimi
〈limi|ρ|lim′i〉A∗lim′i , (20)

where ρ is the density operator of the polarized initial atom and Ωp is the solid angle
corresponding to the emission direction of the photoelectron. The angular dependence of
the matrix elements of ρ can be separated out by introducing the “polarization momenta”
Prm [29,30], which are the irreducible tensor components of the polarization density matrix:

〈limi|ρ|lim′i〉 =
2li

∑
r=0

(−1)li−mi Crm
lim′i li−mi

Prm, m = m′i −mi. (21)

(Often, the polarization is described by polarization state multipoles ρrm [30], which
are connected with the polarization momenta by ρrm = P∗rm).

Inserting (21) into (20) and noting Equation (16) for the ionization amplitude, one can
perform summations over mi, m′i. However, this comes at the expense of introducing one
summation over the momentum index coupling the orbital momenta of photoelectrons from
both amplitudes in (20): l from Alimi

and l′ from Alim′i
. In atomic ionization, the momentum

li is usually small (li < 4), so it is more convenient to analyze the expression (20) as it is.
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For example, let us consider the ionization of an initial state, purely polarized along the
photon beam propagation direction. In this case, the polarization density operator is

ρ = |limi〉〈limi|, (22)

and the non-zero polarization momenta in (21) are

Pr0 = (−1)li−mi Cr0
limi li−mi

, r = 0, 1, . . . , 2li. (23)

Accordingly, the TDP (20) becomes

Wlimi
(ξ) = |Alimi

|2 =
∞

∑
n,n′=1

ξn+n′ ei(n−n′)(−φ+ξϕ) B(n)limi ,ξ
B(n′)

∗
limi ,ξ =

=
∞

∑
n=1

(
|B(n)limi ,ξ

|2 + 2 Re
∞

∑
n′=n+1

ξn+n′ ei(n−n′)(−φ+ξϕ) B(n)limi ,ξ
B(n′)

∗
limi ,ξ

)
. (24)

Note that the major contribution to the magnitude of the expression in brackets
comes from the first term. The point is that the overlap of the maxima of the B-parameters,
corresponding to different PT orders (indicated by n), is weak. (Parameters B(n) and B(n′ 6=n)

do not overlap in the limit of monochromatic, i.e., infinitely long, pulses). Therefore, we
conclude that the dependence of MD on ϕ should be weak, too. Consequently, MDs should
be seen as a series of slightly distorted concentric circular patterns since the first term in (24)
is independent of ϕ. We also note that the overlap of non-adjacent PT orders, like first and
third, etc., is negligible, and only the term with n′ = n + 1 contributes to the summation
over n′ in (24). Thus, Equation (24) simplifies to

Wlimi
(ξ) =

∞

∑
n=1
|B(n)limi ,ξ

|2 + 2ξ Re ei(φ−ξϕ)
∞

∑
n=1
B(n)limi ,ξ

B(n+1)∗
limi ,ξ . (25)

Similarly, one can obtain the TDP for the ionization of an initial state with mi < 0,
which is purely polarized oppositely to the laser pulse propagation:

Wli−mi
(ξ) =

∞

∑
n=1
|B(n)li−mi ,ξ

|2 + 2ξ Re e−i(φ+ξϕ)
∞

∑
n=1
B(n)li−mi ,ξ

B(n+1)∗
li−mi ,ξ . (26)

Noting the symmetry property (19) of the B-parameters, we can re-write (26) as follows

Wli−mi
(−ξ) =

∞

∑
n=1
|B(n)limi ,ξ

|2 + 2ξ Re e−i(φ−ξϕ)
∞

∑
n=1
B(n)limi ,ξ

B(n+1)∗
limi ,ξ . (27)

When comparing (27) to (25), we conclude that the MD for the ionization of an atom,
polarized along the pulse propagation, can be obtained from the MD for the ionization of
an atom polarized oppositely to the pulse propagation by the replacement ϕ→ −ϕ.

3.1. Circular and Magnetic Dichroism Effects in MD

We define the magnitude of the absolute CDMD effect as

∆CD =W(ξ = +1)−W(ξ = −1). (28)
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From (25), we obtain the absolute dichroism parameter for the ionization of a purely
polarized state with the well-defined value of the magnetic quantum number m = mi,

∆CD =
∞

∑
n=1

(
|B(n)limi ,1

|2 − |B(n)limi ,−1|
2
)

+ 2 Re eiφ
∞

∑
n=1

(
e−iϕ B(n)limi ,1

B(n+1)∗
limi ,1 + eiϕ B(n)limi ,−1B

(n+1)∗
limi ,−1

)
. (29)

Note that ∆CD 6= 0, even for monochromatic pulses, when the second term describing
the overlap of amplitudes corresponding to different PT orders vanishes. In this case, the
MD will be seen as a series of concentric, perfectly circular patterns. For broadband laser
pulses, the non-zero overlap of amplitudes will lead to distortions of the circular symmetry
in one azimuthal direction since the second term in (29) is a combination of cos ϕ and sin ϕ.

Now, let us consider the magnetic dichroism effect in MDs, which is defined as

∆MD =W(mi, ξ)−W(−mi, ξ). (30)

By considering (25) and (27), we obtain the absolute magnetic dichroism for the
ionization by a CP pulse,

∆MD =
∞

∑
n=1

(
|B(n)limi ,ξ

|2 − |B(n)limi ,−ξ |
2
)

+ 2ξ Re ei(φ−ξϕ)
∞

∑
n=1

(
B(n)limi ,ξ

B(n+1)∗
limi ,ξ + B

(n)
limi ,−ξB

(n+1)∗
limi ,−ξ

)
. (31)

As can be seen, the dependence of the MDs on p (i.e., the radial dependence of TDP in
the emission plane) for both the CDMD and MDMD parameters, is the same, as it is mostly
determined by the first term in (29) and (31). Thus, the corresponding MDs only differ in
azimuthal asymmetry, which exhibits cos ϕ-like dependence in both cases.

3.2. CD Effect for Aligned States

So far, we have analyzed dichroism effects emerging in the in-plane electron emission
for an oriented initial atomic state (see Equations (29) and (31)). Such states are characterized
by polarization momenta Pr0 with odd values of the momentum index r = 1, 3, . . .. For
an aligned state, only polarization momenta Pr0 with even values of r are non-zero, i.e.,
r = 0, 2, . . .. An example of such a state is given by the following expression for the
polarization density operator [30]:

ρ =
|limi〉〈limi|+ |li −mi〉〈li −mi|

2
. (32)

This choice means that the initial atomic states with positive and negative magnetic
projections mi enter the statistical mixture with the same probability, which is equal to 1/2.
The corresponding polarization momenta are

Pr0 = (−1)li−mi Cr0
limi li−mi

, r = 0, 2, 4, . . . , 2li. (33)

Using Equations (25) and (27), we can write the TDP for the ionization of an aligned
state defined by the density operator (32):

W (a)
limi

=
1
2

∞

∑
n=1

(
|B(n)limi ,ξ

|2 + |B(n)limi ,−ξ |
2
)

+ ξ Re ei(φ−ξϕ)
∞

∑
n=1

(
B(n)limi ,ξ

B(n+1)∗
limi ,ξ −B

(n)
limi ,−ξ B

(n+1)∗
limi ,−ξ

)
. (34)
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It can be seen that the first term in brackets is invariant under the exchange ξ → −ξ,
whereas the second term changes its sign. Thus, the first term in (34) does not contribute
to the absolute CD (28) for the ionization of an aligned state, and the expression for
∆CD becomes

∆(a)
CD = sin ϕ Re ei(φ−π/2)

∞

∑
n=1

(
B(n)limi ,1

B(n+1)∗
limi ,1 −B

(n)
limi ,−1 B

(n+1)∗
limi ,−1

)
. (35)

According to this equation, the CDMD effect emerges only due to the interference
of the amplitude terms corresponding to different PT orders. Clearly, such an effect is
only possible because of the broadband nature of few-cycle electromagnetic pulses. Note
also that ∆(a)

CD vanishes after the integration over the emission direction of photoelectrons
defined by ϕ.

4. Numerical Results for the Ionization of the 2P-States of the Hydrogen Atom

To illustrate the theoretical analysis of Section 3, we present the MDs for the ionization
of the 2P-states of the hydrogen atom, obtained by the direct numerical solution of the
corresponding TDSE using the Qprop (ver. 3.2) software package [31].

We show the results for two values of the carrier frequency: ω = 0.08 and 0.12 a.u.
The electron-binding energy in the 2P-state is 0.125 a.u. Thus, for ω = 0.08 a.u., the
main ionization channel is two-photon absorption, whereas for ω = 0.12 a.u., one-photon
absorption is dominant. In Figure 1, we show the results for a laser pulse with ω = 0.08 a.u.
and a duration of nc = 2 cycles of the frequency ω.
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Figure 1. Absolute values of the ionization amplitude multiplied by p, p|A|, and the relative
CDMD (36) for the ionization of the 2P-state of the hydrogen atom by a single CP pulse with a carrier
frequency ω = 0.08 a.u., peak electric field E0 = 0.0119 a.u. (peak intensity I0 = 5× 1013 W/cm2),
and duration of nc = 2 cycles of the frequency ω.

Note that we show the color maps of the parameter p|A| rather than the TDP,W , for
better visualization of the angular dependence details. The left panel corresponds to the
ionization of an initial state with mi = 1 by an RCP pulse. In the central panel, the pulse
is an LCP, and the initial state has mi = −1. In accordance with the above analysis (see
Equations (25) and (27)), the two MDs are mirror images of each other with respect to the
horizontal line. In other words, the image in the center is the same as the one on the left
after the replacement ϕ→ −ϕ and vice versa. The MDs in Figure 1 form a series of circular
patterns distorted by cos-type angular factors, which enter Equation (25) via the complex
exponent exp(−iϕ). The right panel in Figure 1 shows the magnitude of the relative CD
parameter, defined by

∆rel =
W(ξ = +1)−W(ξ = −1)
W(ξ = +1) +W(ξ = −1)

, −1 ≤ ∆rel ≤ 1. (36)

It can be seen that the MD of ∆rel exhibits circular patterns (corresponding to the first
term in (29)), superimposed by azimuthal distortion with one maximum. Again, this is due
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to the terms exp(±iϕ) entering Equation (29). We note that the CDMD is large in regions
where the TDP is small. In regions where the TDP is maximal, the magnitude of the relative
CDMD is ∼20%, which is rather large compared to the CD in ionization by monochromatic
(i.e., long) pulses [16].

Figure 2 shows the dependence of the parameter p|A| and the relative CDMD on the
pulse duration. Specifically, three pulse durations are considered: nc = 2 (upper row),
3 (middle row), and 4 (lower row) cycles of the carrier frequency ω = 0.12 a.u., with a peak
pulse intensity of 1014 W/cm2. One can observe that the azimuthal distortions of the MDs
decrease as the pulse duration increases. This can be explained by Equation (25), where it
can be seen that the dependence of the TDP on ϕ is determined by the overlap of the B-
parameters corresponding to adjacent PT orders. This overlap vanishes for monochromatic
pulses so that the color maps of the MDs in this case will comprise a series of infinitely thin
circles with zero TDP in between. Interestingly, although the MDs for nc = 4 appear as a
series of regular circularly symmetric patterns, the CD effect is still substantial in this case.
This is emphasized by the azimuthal color asymmetry seen in the panel for ∆rel . Note also
that the above results were given for a zero CEP, φ = 0. The dependence of the TDP on
φ mostly leads to an overall rotation of the azimuthal asymmetries in the color maps of
the MDs.
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Figure 2. Absolute values of the ionization amplitude multiplied by p, p|A|, and the relative
CDMD (36) for the carrier frequency ω = 0.12 a.u., peak electric field E0 = 0.0169 (peak inten-
sity I0 = 1014 W/cm2), and three pulse durations: two, three, and four cycles of the carrier frequency,
as indicated by nc. Left column: p|A| for an RCP pulse with φ = 0; middle column: LCP pulse with
φ = π; right column: relative CDMD defined by (36).

Finally, in Figure 3, we present the results for the ionization of an aligned (see
Equation (32)) initial 2P-state. As discussed in Section 3.2, we can observe that the az-
imuthal dependence of the TDP is much more pronounced than the radial one. Addi-
tionally, it can be seen that the relative CDMD vanishes along the line corresponding to
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ϕ = 0, π, and changes sign under the replacement ϕ→ −ϕ, which is the signature of the
factor sin ϕ entering Equation (35) for ∆(a)

rel .

nc=2 ω=0.08

-1 -0.5  0  0.5  1

px

-1

-0.5

 0

 0.5

 1
p y

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18
 0.2

p⋅|A|, 2P, aligned, E0=0.0119

nc=2 ω=0.08

-1 -0.5  0  0.5  1

px

-1

-0.5

 0

 0.5

 1

p y

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18
 0.2

p⋅|A|, 2P, aligned, E0=0.0119

nc=2 ω=0.08

-1 -0.5  0  0.5  1

px

-1

-0.5

 0

 0.5

 1

p y

-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

Δrel, aligned,  E0=0.0119

Figure 3. Absolute values of the ionization amplitude multiplied by p, p|A|, and the relative
CDMD (36) for the ionization of the aligned 2P-state of the hydrogen atom (see (32)) by a single RCP
pulse with a carrier frequency ω = 0.08 a.u., peak electric field E0 = 0.0119 a.u. (peak intensity
I0 = 5× 1013 W/cm2), and duration of nc = 2 cycles of the frequency ω.

5. Discussion

Above, we have presented the results of numerical TDSE calculations for the hydrogen
atom only. However, our treatment was not specific to this atom. Rather, it is valid for an
arbitrary many-electron atom beyond the single active electron approximation. Indeed, our
consideration is based on the expansion (15) for the ionization amplitude. This expansion,
however, is perfectly general, as the spherical harmonics Ylm(p̂) form a complete basis set
in the momentum space. The same is true for the set of tensor products {e}nµ, which form
a complete basis in the space of functions depending on the polarization vectors e. The
perturbation theory was only used to provide the physical interpretation for the terms of
the expansion (15). In particular, within the PT, the summation in (15) should include only
the terms satisfying the first condition from Equation (18). In addition, for the in-plane
emission of electrons, the second condition in (18) should also be fulfilled. Next, PT was
used to simplify the expression (24) for the ionization probability, where it was assumed
that the non-adjacent terms of the ionization amplitude, for which the difference in the
number of absorbed photons is larger than unity, do not overlap. The validity of all the
above assumptions was confirmed by the TDSE results for the hydrogen atom. We expect
this to be true for other atoms (or ions), provided the peak pulse electric field strength is
smaller than the atomic field. Note that high-intensity few-cycle laser pulses are currently
available in both the near IR (up to 1018 W/cm2, ω = 1.5 eV [32]) and XUV regions (up
to 1014 W/cm2 for ω = 36 eV were reported [19,33]). Currently, experiments are being
performed with alkali atoms like lithium [6] or potassium [34]. The electron-binding energy
in these atoms is much smaller than that in the hydrogen atom. Therefore, an intensity
range of 1012 ÷ 1013 W/cm2 for few-cycle CP pulses in the optical region would suffice for
the observation of dichroism effects.

Of course, PT formalism can also be used to obtain numerical values of the dynamic
amplitude parameters A(n)

lli
. The corresponding calculations, however, are rather compli-

cated, even for the ionization of the hydrogen atom ground state when only first- and
second-order PT terms are retained in the ionization amplitude [24]. The main complication
is in the calculation of the integrals over the energy, taken from the compound matrix
elements involving the Coulomb Green function. Numerical calculations of the parameters
A(n)

lli
within the PT become practically inaccessible for higher PT orders (n > 2). Again, we

emphasize that our conclusions are not related to the problem of the calculation of dynamic
amplitude parameters since they are based on general assumptions about the properties of
the coefficients in the tensor expansion (15).
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Although we have analyzed the CDMD effects, assuming the initial bound state to be
purely polarized, our results can easily be generalized to the case of partially polarized ini-
tial states based on Equation (20) and the parameterization (16) of the ionization amplitude.
For partially polarized initial states, the elements of the density matrix (21) are determined
by the set of polarization momenta Prm, whose values should be provided either from
the experiment or from calculations describing the atomic polarization process. Then, the
probability of the corresponding ionization process will be determined by Equation (20)
upon the substitution of the matrix elements (21).

6. Conclusions

We have analyzed the MDs of electrons emitted by polarized atoms subjected to a few-
cycle CP electromagnetic pulse. Due to the large number of angular parameters inherent
in the problem, we concentrated on the case of the emission of electrons in the pulse
polarization plane (the “in-plane” emission geometry). We expect that other experimental
geometries will not lead to the emergence of dichroism effects in the MDs other than those
analyzed above. It is important to note that the results of our PT analysis are not specific to
the hydrogen atom. Rather, they are applicable to the process of short CP pulse ionization
of any atomic or molecular target. In Section 2, we established a selection rule, stating
that the in-plane emission is forbidden in all PT orders when the initial orbital momentum
quantum number and its projection have different parities. This selection rule is perfectly
general and should hold for any kind of initial target.

Among the dichroism effects considered in this article, the most physically interesting
is the CDMD effect in the ionization of aligned atomic states. Such an effect is absent in
long pulse ionization since it is forbidden by symmetry arguments. Indeed, an aligned
state has no right–left asymmetry, which is essential for the CD effect to occur. It is the
short pulse itself that carries the asymmetry, and it is described by the parameter φ (i.e., the
CEP). It is known that the CEP causes nonlinear CDMD effects in the short pulse ionization
of spherically symmetric atomic S-states [24,35]. Here, we have demonstrated that such
nonlinear CEP-caused CDMD effects take place in the general case of the ionization of
initial bound states with non-zero orbital momentum. Such effects should be taken into
account in investigations of the interaction of few-cycle XUV pulses with atomic inner
shells, which have recently been reported [36,37].

Author Contributions: Both authors contributed to the derivation of the results presented and the
writing of the text. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of Russia
through project No. 075-15-2021-1351.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article or can be generated using publicly
available computer programs.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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CEP Carrier-envelope phase
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LCP Left-hand circular polarization
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MDMD Magnetic dichroism in momentum distribution
PT Perturbation theory
RCP Right-hand circular polarization
TDP Triply differential probability
TDSE Time-dependent Schrödinger equation
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