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Abstract: Significant focus has been directed towards inorganic perovskite solar cells because of their
notable capabilities in converting sunlight to electricity effectively, their efficient light absorption, and
their suitability for conventional semiconductor manufacturing methods. The identification of the
composition of perovskite materials is an ongoing challenge to achieve high performing solar cells.
Conventional methods of trial and error frequently prove insufficient, especially when confronted
with a multitude of potential candidates. In response to this challenge, the suggestion is to employ
a machine-learning strategy for more precise and efficient prediction of the characteristics of new
inorganic perovskite materials. This work utilized a dataset sourced from the Materials Project
database, consisting of 1528 ABX3 materials with varying halide elements (X = F, Cl, Br, Se) and
information regarding their bandgap characteristics, including whether they are direct or indirect.
By leveraging data augmentation and machine learning (ML) techniques along with a collection of
established bandgap values and structural attributes, our proposed model can accurately and rapidly
predict the bandgap of novel materials, while also identifying the key elements that contribute to this
property. This information can be used to guide the discovery of new organic perovskite materials
with desirable properties. Six different machine learning algorithms, including Logistic Regression
(LR), Multi-layer Perceptron (MLP), Decision Tree (DT), Support Vector Machine (SVM), Extreme
Gradient Boosting (XGBoost), and Random Forest (RF), were used to predict the direct bandgap of
potential perovskite materials for this study. RF yielded the best experimental outcomes according
to the following metrics: F1-score, Recall, and Precision, attaining scores of 86%, 85%, and 86%,
respectively. This result demonstrates that ML has great potential in accelerating organic perovskites
material discovery.

Keywords: perovskite; bandgap; optimization; feature selection; machine learning

1. Introduction

Three-dimensional (3D) inorganic perovskite materials have gained significant at-
tention in the realm of renewable energy research due to their distinctive structural and
optoelectronic properties. Among them, perovskite solar cells (PSCs) are one of the most
advanced applications, with their power conversion efficiencies (PCE) having increased
rapidly from 3.5% [1] to 26.1% in a decade [2–4]. In addition to this, PSCs have some distinct
advantages such as low-cost raw materials, low processing cost, simple manufacture, and
flexible fabrication. These materials, characterized by the ABX3 crystal structure, consist
of corner-sharing BX6 octahedra, creating a versatile framework for tuning properties by
altering the constituents A, B, and X [5]. This structural flexibility offers opportunities to
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tailor their bandgap, a critical parameter that dictates their performance in photovoltaic
applications [6–9]. Traditionally, predicting the bandgap nature of materials like 3D inor-
ganic perovskites relied on empirical rules and computational methods rooted in density
functional theory (DFT) [10]. DFT has provided valuable insights into electronic structure,
such as its accuracy in predicting bandgaps. Nevertheless, DFT requires many computing
resources and an understanding of quantum chemistry, and the weakness of this method on
complex materials can be traced back to two main errors of the standard density functional:
the delocalization error and the static correlation error [11,12].

This difference necessitates innovative approaches to improving bandgap prediction
accuracy. Machine learning, a developing field, has demonstrated promise in addressing
this challenge [13]. By training models on diverse datasets of material properties, machine
learning algorithms can capture complex correlations between structural features and
bandgap values, thereby enabling more accurate predictions [14]. Data augmentation,
which involves generating synthetic data to augment training sets, further enhances model
robustness and generalization. Several recent studies have highlighted the potential of
machine learning in predicting bandgaps of 3D inorganic perovskites. For instance, Rosen
et al. [15] employed several ML models trained on 14,000 MOF structures (the QMOF
database) to accurately predict bandgaps of diverse perovskite compositions. In addition,
Kumar et al. [16] utilized a convolution neural network-based gradient-boosting framework
to predict the bandgap of photoactive catalysts. Not only providing the prediction of
bandgap using machine learning, Liu et al. [17] provided an experiment to explain the
hidden relationship between each feature of the bandgap values in a specific dataset.
From the success of bandgap prediction, much research and many applications have used
machine learning to discover the materials in optoelectronic devices [18–20]. A highlight of
the contributions presented by Zhang et al. [21] resides in the utilization of diverse machine
learning methodologies to define possible candidates among halide perovskites intended
for solar cell utilization. This approach tackles common concerns about the absence of
lead content and the stability challenges that have constituted pivotal concerns within the
domain of perovskite solar cell technology. X. Cia et al. [22] reported on the optimization of
materials’ discovery by applying ML algorithms to unveil the connection between critical
parameters and photovoltaic performance with high-profile MASnxPb1−xI3 perovskite
materials. Another work by Q. Tao et al. [23] described different ML algorithms to identify
different properties of inorganic, hybrid organic-inorganic, and double perovskites to
optimize the experiment process during the property’s discovery of new materials. Work
reported by J. Li et al. [24] employed a dataset comprising 760 perovskites to determine the
phonon cutoff frequency and applied six distinct ML algorithms to predict this instrumental
variable using features available within the provided database.

The contribution of this study mainly consists of four different aspects:

(1) Data processing has been approached to clean, null, and duplicate values from
1528 materials. This dataset was characterized by an intricate feature space span-
ning 130 dimensions, encompassing pertinent attributes including the nature of the
bandgap.

(2) Through the raw database, the application of the data augmentation methodology was
undertaken to enhance the diversity of the dataset. Additionally, the implementation
of Pearson Correlation was performed to ascertain the degree of correlation between
each individual feature, and, notably, the intrinsic nature of the bandgap, thereby
uncovering latent relationships.

(3) Following the completion of the data processing pipeline, the refined dataset under-
went training across a spectrum of six distinct machine learning algorithms. The
selection process was driven by the pursuit of optimal performance as gauged by
precision, recall, and F1-score [25] criteria.

(4) Discovering the predictive mechanisms of ML models opens up unexpected findings
that can be used to further research directions. By applying game theory to assign
credit for the model’s prediction to each feature value based on Shapley Additive
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exPlanations (SHAP) [26] algorithms, these values can be used to understand the
importance of each feature, explain the result of the machine learning model, and
represent essential features that can directly affect the natural bandgap. Finally, the
investigation reveals that variations in the range neighbor distance hold paramount
importance in determining the character of the bandgap, surpassing the influence of
other feature values.

2. Materials and Methods

As shown in Figure 1, this research is structured into three main parts: Construction
of the dataset, Data Processing, and Modeling.
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• Construction of the dataset: This process involves extracting data from an open-source
database and filtering it to identify relevant features related to the materials from the
raw data.

• Data Processing: This phase is crucial for understanding hidden relationships and
identifying important features in the ML algorithms based on numeric information.

• Modeling: This step entails selecting a suitable ML algorithm for the dataset and con-
ducting the final experiments based on the collective results from the previous stages.

The methodology adopted for this research is designed to comprehensively investigate
and predict the direction of the bandgap in materials established with model explanation,
data generating, data engineering, and model experiments.

2.1. Data Construction

The dataset employed in this study originates from the Materials Project and was col-
lected by Smarak Rath et al. [27]. in 2022. The dataset encompasses 1528 distinct chemical
compounds with the ABX3 formula. Each row within the dataset includes information
about the nature of the bandgap and the chemical formula, as well as 130 distinct features
associated with parameters such as molecular distance, valence electrons, and bond length
between diverse molecules. The compilation of these materials was facilitated using Py-
matgen [28], a Python library package provided by the Material Project Database [29]. The
structural attributes of the materials obtained through Pymatgen contain details regarding
unit cell parameters and atomic placements within the unit cell.

Given the presence of a dataset featuring a multitude of high-dimensional features, the
systematic exploration of the dataset becomes an essential process to discover data patterns,
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duplicate information, and missing values in the dataset. Based on this, the utilization of
data summarization techniques has been applied to encapsulate comprehensive insights
concerning the dataset. The sample result of these techniques is documented in Table 1. In
addition to the sample shown in Table 1, the entire dataset in this study has been validated
to have no missing or duplicate entries during the data preprocessing phase.

Table 1. Dataset summarization of 5 features from the total 130 features.

Name Data Types Missing Uniques Mean Standard
Deviation

Nature of bandgap Int64 0 2 0.270 0.444
Max relative bond length Float64 0 1368 1.095 0.041
Min relative bond length Float64 0 1369 0.806 0.069
Frac s valence electrons Float64 0 114 0.416 0.454
Frac p valence electrons Float64 0 191 0.583 0.545

2.2. Data Engineering

Data engineering is an extremely important process after summarizing and cleaning
the data. Within this stage, data augmentation and feature selection are proposed to
tackle the challenges posed by unbalanced datasets. Moreover, the removal of redundant
features is undertaken to enhance the performance of machine learning models in terms
of both speed and accuracy. The below subsection elucidates the benefits of employing
these techniques.

2.2.1. Data Augmentation

This research confronts the challenge of an imbalanced dataset, comprising 884 sam-
ples labeled as “non-natural bandgap” and only 340 samples labeled as “nature of the
bandgap.” This skewed distribution poses a significant problem as the underrepresentation
of the “nature of the bandgap” class could result in biased model training and hinder
accurate predictions for classification tasks. To address this issue, Synthetic Minority Over-
sampling Technique (SMOTE) [30] emerges as a compelling solution. SMOTE leverages
an ingenious approach to tackle class imbalance by generating synthetic instances of the
minority class (“nature of the bandgap”) based on the existing data distribution. By doing
so, SMOTE effectively bridges the gap in class representation, augmenting the dataset
and leveling the playing field for the model. The SMOTE works by generating synthetic
examples of the minority class by interpolating between existing minority class instances.
SMOTE selects a minority class instance, identifies its k-nearest neighbors, and creates
synthetic examples by blending the features of the selected instance with those of its neigh-
bors which is visualized in Figure 2. This augmentation process entails creating synthetic
samples in feature space regions where the minority class is underrepresented, effectively
enriching the dataset, and rectifying the imbalance. The general formula of SMOTE can be
explained below:

SI = xi + rand ∗ (xnn − xi) (1)

where:
SI: the generated synthetic instance.
xi: the minority class instance
xnn: a randomly selected nearest neighbor from k neighbors.
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2.2.2. Feature Engineering

The progression of feature engineering is an important phase before applying machine
learning algorithms. Feature engineering provides functions to transform and select input
variables to enhance the predictive performance of models. One key factor of feature
engineering involves dimensionality reduction, which addresses the challenge of high-
dimensional datasets. By reducing the number of features while retaining meaningful
information, models become more reliable and less complex in terms of dimension. In
this endeavor, the Pearson Correlation coefficient emerges as a valuable tool. It enables
the quantification of the linear relationship between pairs of features, which is shown
in Figure 4. Through the application of Pearson Correlation, features exhibiting strong
interdependence are identified, allowing for informed decisions about which features to
retain, discard, or transform. Features that display low correlation with the target variable
can be pruned, leading to a refined feature set that not only improves computational
efficiency but also enriches the predictive capabilities of machine learning models.

2.3. Machine Learning Algorithms

In the pursuit of predicting the nature of the bandgap in materials, a fundamental
aspect of the methodology involved the application of diverse machine learning algorithms.
These algorithms were systematically employed to understand the complex relationships
between material properties and bandgap characteristics. A selection of six potential
machine learning models was exploited, with each model capturing specific features within
the dataset. The summary of the six models is shown in Table 2.
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Table 2. The summary of mythologies in all machine learning used in the research.

ML Algorithms Brief Description Formular

Linear Regression (LR) [31]

LR is a fundamental machine-learning
technique used for classifying data points into
distinct categories. This approach seeks to
draw a linear decision boundary that
effectively separates different classes in the
feature space.

f(x) = WTx + b
where:

x: input features of data points.
W : weight of the vectors.
b: the bias of the function.

Decision Tree (DT) [32]

DT is a versatile and intuitive
machine-learning algorithm used for both
classification and regression tasks. It resembles
a flowchart-like structure, where each internal
node represents a decision based on a specific
feature, and each leaf node represents a
predicted outcome. The algorithm works by
recursively partitioning the feature space into
subsets based on the values of different
attributes. At each step, the attribute that best
separates the data is chosen, creating a
branching structure.

Entropy:

E(S) = −
c
∑
ι=1

ρilog2 ρi

Information gain:
Gain(T, X) = Entropy(T)− Entropy(T, X)

Gini index:
Gini = 1 −

c
∑
ι=1

(ρi)
2

where:
S: the dataset calculated using entropy.

ι: the classes in the set, S.
ρ: the proportion of data points that belong to class I to

the number of total data points in set, S.
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Table 2. Cont.

ML Algorithms Brief Description Formular

Random Forest (RF) [33]

RF is a powerful ensemble learning algorithm
that leverages the collective wisdom of
multiple DTs to enhance prediction accuracy
and control overfitting. Each DT in the
ensemble is built on a different subset of the
data, and its predictions are combined to
produce a more robust final prediction. The
algorithm introduces randomness at two
levels: during data sampling and
feature selection.

FD∇{(§) =
1
D

D
∑

d=1
Td(§)

where:
D: the total number of decision trees in Random Forest
Td: the class prediction of the dth Random Forest tree.

Support Vector Machine (SVM) [34]

SVM is a versatile machine learning algorithm
primarily used for classification tasks,
although it can be extended to regression as
well. SVM aims to find an optimal hyperplane
in a high-dimensional space that best separates
data points of different classes. This
hyperplane maximizes the margin between the
two classes, thereby enhancing the algorithm’s
generalization capability for new, unseen data.

Linear SVM (Hard Margin):
WTx + b = 0

where:
W : the weight vector perpendicular to the hyperplane

x: the feature vector of the data point.
b: the bias term.

Linear SVM (Soft Margin):
WTx + b ≥ 1− ξi f or the positive class

WTx + b ≤ −1 + ξi f or the negative class

where:
ξi: the slack variable associated with the i − th data point

Non-Linear SVM (Kernel SVM):
N
∑

i=1
αiγiK(χi ,χ) + b = 0

where:
N: the number of support vectors.

αi: Lagrange multipliers assciated with support vectors.
γi: the class labels of support vectors.

K: the kernel function that computes the similarity
between data points χi and χ

Extreme Gradient Boosting
(XGBoost) [35]

XGBoost is an advanced and highly optimized
machine learning algorithm used for both
classification and regression tasks. XGBoost is
an enhanced version of gradient boosting that
incorporates regularization techniques to
improve predictive accuracy while mitigating
overfitting. XGBoost employs an ensemble of
decision trees, where each new tree is built to
correct the errors of the previous ones.

Objective Function:

Obj(θ)L = (γ̂ι,γι) +
K
∑

k=1
Ω( fk)

where:
Obj(θ): The objective function to minimize

L: the loss term that measures the difference between
actual target γι and predict target γ̂ι

(: represent the regularization term, where f_k is the
predict of

the k − th tree
Individual Tree Prediction:

fk(χι) = Wp(χι)
where:

fk(χι): is the prediction of the k–th tree for the data point
χι

Wp(χι): is the weight assigned to the leaf node that data
point χι

Final Prediction:

Ŷi =
K
∑

k =1
fk(xi) =

K
∑

k =1
wq(xi)

where:
Ŷi: is the final predicted value for the data point xi

K: total number of values in each tree

Multi-layer Perceptron (MLP) [36]

MLP is a foundational type of artificial neural
network (ANN) that excels at capturing
complex patterns in data. It consists of
multiple layers of interconnected nodes
(neurons) organized into an input layer, one or
more hidden layers, and an output layer. Each
neuron in a layer is connected to every neuron
in the subsequent layer. MLP leverages
activation functions to introduce non-linearity
into its computations, enabling it to model
intricate relationships in data.

Neuron Activation:

a(l)j = f
(nl−1

∑
i=1

w(l)
ij a(l−1)

i + b(l)j

)
where:

a(l)j : the activation of neuron j in layer 1.

w(l)
ij : the weight connecting neuron I in the layer l − 1 to

neuron j in layer 1.

b(l)j : the bias term of neuron j in layer 1
f: the activation function applied to the weighted sum.

Activation Function (Sigmoid):
f(x) = 1

1 + e−x
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3. Results

The Sections 3 and 3.2 presents the outcomes of the implemented methodologies,
shedding light on the effectiveness of the applied techniques in addressing the research
objectives. This section highlights quantitative evaluations, such as accuracy, precision,
and recall values, that evaluate the performance of the predictive models. Additionally, it
delves into qualitative insights, interpreting the significance of specific features and their
impact on predicting the nature of the bandgap in inorganic perovskite solar cells.

Before feeding data into machine learning algorithms, the data are split into training
and testing sets which are shown in Table 3. After that, in order to choose the most suitable
algorithm for predicting the nature of the bandgap, six of the most common models have
been selected for evaluation based on accuracy and precision criteria. For measuring the
correct quality of the model, all default hyperparameters are kept, ensuring the evaluation
is correct. Through the provided information from Table 4, it is easy to see that Random
Forest outperformed the others with approximately 82% accuracy. Furthermore, in this
study, the confusion matrix [37] is built to evaluate the performance of a classification
model. It summarizes the model’s predictions by showing the true positive, true negative,
false positive, and false negative counts, enabling a detailed assessment of its accuracy and
error rates. The detailed result of the confusion matrix is represented in Figure 5. If the
prediction labels are correct in Random Forest, it is 95 for the indirect bandgap and 101 for
the direct bandgap which is almost 20% higher compared to Linear Regression with just 66
and 79, respectively. In addition, the decision region of the two highest feature correlations,
Sc Fraction and mean Atomic Radius, can be used to define the planes of each class.

Table 3. The optimization of the hyperparameters used in Random Forest.

Algorithm Optimized Hyperparameter

Random Forest (RF)
n_estimators: 277, min_samples_split: 5,

min_samples_leaf: 1, max_features: ‘sqrt’,
max_depth: 28

Table 4. The classification report on the performance of the Random Forest algorithm.

Precision Recall F1-Score

0 0.85 0.85 0.85
1 0.86 0.86 0.86

Accuracy 0.86
Macro avg 0.86 0.86 0.86

Weighted avg 0.86 0.86 0.86

In addition to the representation of the confusion matrix, Figure 6 offers a visual
depiction of the decision regions in a two-dimensional space for the six distinct machine-
learning algorithms. This visualization demonstrates the efficacy of these algorithms in
relation to the crucial mean Atomic Radius and Sc fraction, which results in the feature
engineering procedure. The outcome describes the domains of data points in which each
point is assigned a specific color corresponding to their respective decision regions. This
observation reveals that the Decision Tree, Random Forest, and Extreme Gradient Boosting
algorithms try to cover all decision regions through relatively fine and contrasting partitions
compared to the other algorithms.

3.1. Model Evaluation

After validating the data through the six different models, and based on the per-
formance result, the RF algorithm has been chosen for process optimization and is used
for the final experiments. To figure out the hyperparameter, the K-fold algorithm with
10 different folds and the Grid Search algorithm, which is a systematic method used for
hyperparameter tuning in machine learning and optimization tasks, were used. In the
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Grid Search, a predefined set of hyperparameters is specified along with their possible
values. The algorithm then exhaustively searches through all possible combinations of
these hyperparameter values, evaluating the model’s performance using a chosen evalua-
tion metric (e.g., accuracy, precision, F1-score) for each combination. The combination of
hyperparameter values that yields the best performance on the validation data is selected
as the optimal set of hyperparameters for the model. The result of this algorithm is shown
in Table 3.
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After hyperparameters are selected, the final experiment with RF was conducted and
the result is shown in Table 4.

Table 4 shows the precision, recall, and F1-score results on classification between
indirect bandgap (labeled as 0) and direct bandgap (labeled as 1). The table also calculates
the average result of each criterion up to 86%. Besides the summary performance table, the
ROC curve, Precision-Recall Curve, and Confusion Matrix are also provided to evaluate
the model, which is shown in Figure 7.
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The higher performance provided by RF algorithms in this experiment demonstrates
the potential of using ML algorithms in predicting other properties of ABX3 perovskite in
different fields. In addition, it is interesting to show the effectiveness of RF when compared
with other algorithms that have been used in the past to predict the properties of ABX3.
Gladkikh et al. used kernel ridge regression (KRR) and extremely randomized trees (ERT)
to predict the bandgap of perovskites that have a non-zero bandgap to figure out the
non-linear relationship between the bandgap and the properties of materials [38]. Ericsson
et al. used the Support Vector Regression (SVR) model to find the best prediction of the
formation energy with an error rate of Mean Square Error (MAE) at 0.055 eV/atom, and
0.096 eV/atom Root Mean Square Error (RMSE) [39]. Rath [27] et al. have applied Extreme
Gradient Boosting (XGBoosting) on the same dataset and achieved an accuracy of 81%.

3.2. Discussion

In the conclusive section of the results, a comprehensive exploration is provided
through the SHAP (Shapley Additive Explanations) summary plot, providing a deep
understanding of the different features that influence the determination of the bandgap
nature. As illustrated in Figure 8, the graphical representation describes the relative
importance of the top 20 selected input features derived from the Pearson Correlation
algorithm. Within this description, the highest impact factor can be seen at the top of the
graph, which is minimum neighbor distance variation, and the lowest impact factor can be
found at the bottom of the graph which is known as the Tb fraction. Besides the position
of each feature being shown, the two different colors, light blue and light pink, also point
out the effect of each feature with indirect or direct bandgap. The longer bar in each class
also shows the importance of that feature, taking the most change in the decision of the
model to classify the nature of the bandgap. Evident from the SHAP summary plot are key
insights that illuminate the following discourse:
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• The minimum neighbor distance variation shows more importance compared to other
features, while the Pearson Correlation shows that the most important feature is the
mean Atomic Radius. This observation shows that this metric holds significance as
it contributes insights into the structural integrity and electronic properties of the
perovskite, which are pivotal factors in determining its properties.

• The presence of the Cs, V, Tb, Sc, and Sm factors [40] does not show the importance
to the final prediction of the model, which proves that the amount or concentration
of ions in the “A” position of perovskite structure does not make a difference to
the result of the experiment which is totally opposite to the initial opinion from
Pearson Correlation.

• The role of electronic charge density [41] is lower compared to another feature which
is known as the pivotal role in understanding various material properties such as the
structure of bandgap, mobility, conductivity, and thermal properties.
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The results from this experiment and the observations above can change the evaluation
point of view for future research so that the researcher can have a different approach to
selecting the material to maximize the change and reduce experiment time to obtain the
direct bandgap.

4. Conclusions

Experimental findings highlight the efficacy of the RF algorithm, which achieved
an impressive precision rate of 86% on the test dataset. This outcome demonstrates the
model’s capability to make accurate predictions, rendering it a promising ML model for
predicting the nature of the bandgap in inorganic perovskite materials for solar cells.
The pivotal role of data augmentation through SMOTE is evidenced by the fact that it
effectively mitigated the challenges stemming from class imbalance and data scarcity. By
addressing these issues, SMOTE contributes to enhancing the model’s performance and
robustness. Further supporting this, the SHAP analytic affords a deeper understanding
of the intricate relationship between the minimum neighbor distance variation and the
nature of the perovskite bandgap. In this regard, the SHAP analysis sheds light on hidden
connections and aids in discovering the influential factors affecting the prediction process.
These achievements can take advantage of reducing the dependence on traditional methods
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and the number of resources needed, have a deeper understanding of the complexities of
inorganic perovskite materials for solar cells, and hold promise for future applications in
renewable energy technologies.
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