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Abstract: Light field imaging involves reconstructing a 4D light field from a 3D focal stack, which
makes it challenging to reconstruct the light field from incomplete projection data. To address this
problem, a linear projection system is established to model the focal stack imaging process using
discrete refocusing equations. Based on this system, we propose the block Landweber iterative
method to find the least-squares solution. This method computes the sparse matrix while iterating,
which overcomes the problem of data storage. The 2-norm of the block matrix is utilized as the
weighted matrix to normalize every block matrix on an identical scale, delivering an effective
relaxation strategy under the convergence condition in the inconsistent case, which yields better
reconstruction results and accelerates the convergence speed. The experimental results based on the
image quality assessments of reference and non-reference images show that our method achieved
better reconstruction results compared to other relevant common methods, even with fewer focal
stacks and higher angle resolution.

Keywords: light field reconstruction; focal stack; relaxation strategy; block Landweber iterative
method

1. Introduction

The light field is a 4D function that captures the light rays entering a lens aperture.
This encompasses not only the 2D projection information of the 3D scene that is acquired
by traditional cameras but also records the 2D spatial and the 2D angular information [1,2].
The light field is regarded as a 2D array of images captured from various viewpoints,
which are referred to as sub-aperture images. Due to the nature of the light field data,
various post-capture image processing methods, including re-focusing [3], extended depth
of field [4], depth estimation, and different viewpoint rendering [1], become more flexible.
The applications of the light field make the acquisition of light field data very important.
In order to record light field data, many acquisition methods have recently been designed
such as light field data acquisition based on camera arrays [4]. However, this approach
requires capturing multiple images using a cumbersome setup to obtain an adequate
angular resolution. Additional optical elements can be integrated into the camera, such
as microlens arrays [3], amplitude masks [5], coded apertures [6], and well-designed
mirrors [7,8]. To create a unit picture, the light from the main lens passes through each
microlens unit and onto a detector plane. Every point in the unit picture represents a beam
of light that comes from the main lens (i.e., light field sampling). However, microlens arrays
need to balance spatial and angular resolution, and the coded aperture may reduce the
amount of light transmitted by the mask, resulting in insufficient brightness that affects
image quality. There are drawbacks to both external lens and prism configurations, as well
as heterodyne mask-enhanced cameras, including a loss of light and microdefects in the
optical components.

Data collection based on the focal stack is one method, which involves an indirect way
of acquiring a light field [9], wherein the light field is reconstructed by calculating collected
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images. Compared to the light field acquisition equipment of camera arrays, the data are
collected using a typical digital camera, which has the advantage of being a lower-cost
approach. In contrast to the microlens array and the coding mask of a light field camera, the
spatial resolution of the focal stack data is sufficient, and some reconstruction algorithms
can be used to reconstruct the light field at any angular resolution. In addition, the focal
stack does not require the insertion of new optical devices.

The 3D focal stack can be used to reconstruct the 4D light field. By moving the lens
or detector, the focal stack collects a series of images focused on several imaging planes.
The set of captured images at different focal points is called the focal stack of the scene.
Focal stack imaging has gained considerable attention in recent years [10], with researchers
exploring various approaches to reconstruct the light field from the focal stacks. Alonso
et al. [9] presented a method for refocusing with apertures of variable shapes and sizes from
an optimal multi-focus image stack and for post-capture perspective shift reconstruction of
a 3D scene. However, the results might not be reasonable if the sparse planes were unable
to accurately convey the object scene. Tomographic reconstruction of epipolar images was
accomplished by Mousnier et al. [11] by applying a masked back-projection approach,
which involved calculating the focus and depth maps from the focal stack. Takahashi
et al. [12] introduced a unique tensor light field display that could replace several focal
stacks. However, this model can only use the same amount of focused images as the amount
of layers of the tensor display. In order to render the 4D light field spectrum from all shifted
3D focal stack sequences, Levin and Durand [13] designed a linear view synthesis method
by using a new light field prior in which the spectra of all shifted focal stack images are
averaged and deconvolved by applying a slope-invariant kernel. However, the range of
slopes of the focal stack required to build a slope-invariant kernel is much larger than the
scene object; thus, this approach was unable to provide good results when sampling with
limited slopes.

The algebraic iterative method is an effective method for reconstruction by discretizing
the continuous light field into the form of a linear system. However, due to the large
dimensions of the discrete matrices, storing these matrices takes up a lot of computer
memory, leading to problems such as very slow convergence when iterative computations
are performed. Yin et al. [14] proposed an iterative method that uses the guided filter
to implement residual filtering during each sub-iteration, thereby reconstructing the 4D
light field from the focal stack. Liu et al. [15] illustrated the importance of the object-
image space consistency of focal stack-based light field reconstruction. However, the linear
system is mostly inconsistent due to the influence of noise. Also, neither of these papers
considered the influence of the relaxation coefficient. The quality of the reconstructed image
is significantly influenced by the convergence condition and the selection of the relaxation
coefficient. A unified framework for the convergence of simultaneous and block-iterative
algorithms in consistent and inconsistent cases was proposed by Jiang and Wang [16]. Liu
and Qu [17] proposed a refined iterative representation of the block Landweber method and
found the optimal as well as the accelerated relaxation coefficients in the consistent case.
The convergence strategy established in [17] can be utilized for light field reconstruction to
obtain better reconstruction results.

In this paper, we propose the block Landweber iterative method to reconstruct the 4D
light field from the 3D focal stack. Light field reconstruction is a serious ill-posed problem
with incomplete projection data. The block Landweber iterative method [18] involves
decomposing the linear system into blocks of equations, in which each block matrix repre-
sents a slice of each focal stack. Each block is subsequently treated using the Landweber
method, and the least-square solution is found by iterating over all blocks cyclically. This
block-by-slice approach of computing the sparse block matrix while iterating can effectively
address data storage limitations when working with memory-constrained computers. The
quality of the reconstructed image is influenced by the choice of the relaxation coefficient,
which also has an impact on the computational stability and convergence behavior of the
iterative method. The simultaneous iterative algorithm is the process of combining block
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matrices to solve large linear equations. The maximum eigenvalue of the global projection
matrix determines the selection of the effective relaxation coefficient for the simultaneous
iterative algorithm [19]. However, obtaining the global projection matrix poses a challenge
due to insufficient storage. The linear system is usually inconsistent due to the influence of
noise. Our primary objective is to establish effective relaxation strategies for a common
block-iterative method based on the Landweber method under the convergence condition
in inconsistent cases. If the relaxation coefficient satisfies the convergence condition, the
iterative solution obtained using our method converges to the sum of a minimal 2-norm
solution and the projection of the initial value onto the null space. The effective selection
and adjustment of the relaxation coefficient satisfying the convergence condition results
in appropriate improvements in reconstruction quality. Therefore, we use the integral
imaging principle to construct an equation for discrete light field refocusing. The linear
equations of different blocks are obtained by discretizing each slice of the focal stacks. In
order to find an effective relaxation strategy under the convergence condition, the 2-norm
of block matrices is used to build a weighted block matrix, and then each block matrix is
normalized at an identical scale. Remarkably, satisfactory reconstruction of the light field is
achieved even with a reduced amount of images captured from different focal points.

The remaining sections of the paper are organized as follows. The continuous and
discrete forms of the refocusing equation are presented in Section 2. In Section 3, the
block Landweber iterative method is proposed to reconstruct the light field from the focal
stack, and the convergence results and corresponding relaxation strategy are presented.
Section 4 presents some experimental results, followed by the discussions and conclusions
in Sections 5 and 6, respectively.

2. Light Field Reconstruction Based on the Focal Stack

In this section, we focus on a spatial-domain analysis, which directly connects the
light field and the focal stack. We present the continuous and discrete forms of the focal
stack transforms, respectively.

2.1. Continuous Focal Stack Transform

To parameterize the 4D light field L(x, y, u, v), consider that all light rays proceed
along the route from left to right, crossing through two parallel planes. In Figure 1, the light
ray intersects the main lens plane at (u, v), which determines the directional dimension
of the ray. This light ray keeps moving and intersects the sensor plane at (x, y), which
represents the spatial dimension. According to traditional radiometry, the irradiance of a
point on the imaging plane is equal to the weighted integral of the radiance of all the light
rays passing through the lens and arriving at this point [3]. Assume that the light field
L(x, y, u, v) is compactly supported, supp(L) ⊂ D1 × D2,

D1 = {(x, y)||x| ≤ d̂1, |y| ≤ ď1}, D2 = {(u, v)|u2 + v2 < d2
2}, Ω = D1 × D2, (1)

where d̂1 and ď1 are half-sizes corresponding to the x- and y-dimensions of the image, and
d2 is the radius of the aperture. Let the focal stack be Eρm(xρm , yρm), where ρm = 1− αm,
αm = Fm

F , and F is the distance between the uv plane and the sensor plane. If the sensor
plane is positioned inside the camera at any distance Fm, the light field focused on the new
sensor plane at Fm = αm · F is as follows [3]

Eρm(xρm , yρm) =
∫∫
D2

L(xρm − ρmu, yρm − ρmv, u, v) du dv, (2)

where ρm = ρ1, · · · , ρM is obtained from a collection of images captured at different
focal points.



Photonics 2023, 10, 1219 4 of 17

��������������������������������

� ��

����������������
������

Figure 1. The diagram of the focal stack.

2.2. Discrete Focal Stack Transform

The continuous light field function L(x, y, u, v) is compactly supported in Equation (1).
Ω can be partitioned into a hypercube grid with dimensions of Nx × Ny × Nu × Nv.
According to Equation (2), the focal stack Eρm is known for focal distances Fm with
m = 1, · · · , M ∈ Z. The aim of light field reconstruction is to find the approximate
light field L(x, y, u, v) by solving the discrete form of the reconstruction Equation (2). As
the number of ρm increases, the image reconstruction results will improve. The focal
stack Eρm is known at points (xρm , yρm) = (t1∆x, t2∆x) with t1 = −nx, · · · , nx ∈ Z and
t2 = −ny, · · · , ny ∈ Z, which satisfy |t1∆x| < d̂1, |t2∆x| < ď1. By taking these known
points (t1∆x, t2∆x) of Eρm , the discrete form of Equation (2) is

Eρm(t1∆x, t2∆x) = (∆u)2
nu

∑
i=−nu

nv

∑
j=−nv

L(t1∆x− iρm∆u, t2∆x− jρm∆u, i∆u, j∆u). (3)

Since L(x, y, u, v) has a compact support supp(L) ⊂ Ω, the variables x, y, u, and v
are discretized at equal grids, x = p∆x, y = q∆x, u = i∆u, and v = j∆u, where
p = −nx, · · · , nx ∈ Z, q = −ny, · · · , ny ∈ Z, i = −nu, · · · , nu ∈ Z, j = −nv, · · · , nv ∈ Z,
satisfying |p∆x| ≤ d̂1, |q∆x| ≤ ď1, |i∆u| ≤ d2, and |j∆v| ≤ d2. In general, t1∆x− iρm∆u and
t2∆x− jρm∆u are not equal grids in Equation (3). L(t1∆x− iρm∆u, t2∆x− jρm∆u, i∆u, j∆u)
is estimated using L(p∆x, q∆x, i∆u, j∆u), with bilinear interpolation at these discrete points
xρm = t1∆x, yρm = t2∆x, u = i∆u, and v = j∆u. In order to facilitate the calculation,
∆u = S∆x is unified into units. Let ∆x = ∆, and then ∆u = S∆x = S∆. Equation (3) is
subsequently written as

Eρm(t1∆, t2∆) = S2∆2
nu

∑
i=−nu

nv

∑
j=−nv

L((t1 − iρmS)∆, (t2 − jρmS)∆, iS∆, jS∆). (4)

Suppose that [20]

t1∆− iρmS∆ = (m0 + a0)∆, t2∆− jρmS∆ = (n0 + b0)∆, (5)

where m0, n0 are integers, and 0 ≤ a0 < 1, 0 ≤ b0 < 1. Thus, using bilinear interpolation,

L(t1∆− iρmS∆, t2∆− jρmS∆, iS∆, jS∆)
= (1− a0)(1− b0)L(m0∆, n0∆, iS∆, jS∆) + a0(1− b0)L((m0 + 1)∆, n0∆, iS∆, jS∆)
+(1− a0)b0 L(m0∆, (n0 + 1)∆, iS∆, jS∆) + a0b0 L((m0 + 1)∆, (n0 + 1)∆, iS∆, jS∆).

(6)
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For notational simplicity, Eρm(t1∆, t2∆) and L(p∆, q∆, iS∆, jS∆) are replaced with Ēρm(t1, t2)
and L̄(p, q, i, j), respectively. For each ρm, we have

Ēρm(t1, t2) =
nx

∑
p=−nx

ny

∑
q=−ny

nu

∑
i=−nu

nv

∑
j=−nv

Am(t1, t2; p, q, i, j)L̄(p, q, i, j)

=
m0+1

∑
p=m0

n0+1

∑
q=n0

nu

∑
i=−nu

nv

∑
j=−nv

Am(t1, t2; p, q, i, j)L̄(p, q, i, j),

(7)

where p = {m0, (m0 + 1)}, q = {n0, (n0 + 1)}, Am is the projection matrix. Equation (4)
is a discrete refocusing equation that concatenates the sub-aperture images at the refer-
ence location F and the focal stack image focused at position Fm. It is derived from the
integral imaging principle. Equation (7) is obtained using bilinear interpolation by sub-
stituting Equation (5) into Equation (6). Suppose that each slice of the focal stack has
dimensions of Nx × Ny. For the known focal stack Eρm , in order to reconstruct the 4D light
field L, vectorization calculation is performed according to Equation (7). If L is rewritten
as a 1D vector, the dimensions of L are (Nx × Ny × Nu × Nv) × 1 and the dimensions
of Eρm are (Nx × Ny) × 1. Then, Am is written in the form of a 2D matrix. Therefore,
the projection matrix Am has dimensions of P×Q = (Nx × Ny)× (Nx × Ny × Nu × Nv),
P = 1, · · · , (2nx + 1) × (2ny + 1) ∈ Z, Q = 1, · · · , (2nx + 1) × (2ny + 1) × (2nu + 1) ×
(2nv + 1) ∈ Z. When t1, t2, p, q, i, j take different values, for each ρm = ρ1, · · · , ρM, the
positions of the elements in matrix Ēρm(t1, t2) and L̄(p, q, i, j) are determined by the follow-
ing equation:

m = (t1 + nx)(2ny + 1) + (t2 + ny + 1),

n = (i + nu)(2nv + 1)(2nx + 1)(2ny + 1) + (j + nv)(2nx + 1)(2ny + 1)

+ (p + nx)(2ny + 1) + (q + ny + 1),

(8)

where m and n are the positions of the number of rows and columns of matrix Am, respec-
tively. Then, matrix Am is obtained using Equation (4) through the bilinear interpolation
of Equation (6). According to Equation (6), there are at most 4× (2nu + 1) × (2nv + 1)
elements for each row of the matrix Am, and the other values are all zero; thus, Am is sparse.
Therefore, matrix Am is stored using sparse storage, which greatly reduces the amount of
memory required and makes the calculation possible.

3. Iterative Scheme

In this section, based on the discrete focal stack transform, we establish the block
Landweber iterative method to solve the linear system and the corresponding effective
relaxation strategy.

3.1. Method

The value of Eρm at the pixel (xρm , yρm) is equivalent to the integral of L for multiple
viewpoints. For sub-aperture images, L from multiple viewpoints is obtained through the
known focal stack Em and the corresponding projection matrix Am, with m = 1, · · · , M ∈ Z.
Thus, the M system of linear equations is obtained, combining the M system of linear
equations to obtain a larger system of linear equations. That is, by assuming that the focal
stack contains M slices, the linear system can be written as

Ax = b, (9)

where A = [A1, . . . , AM]> is the projection matrix. x = [L1, . . . , LN ]>, Ln is treated as one
sample of the light field (a sub-aperture image), b = [Eρ1 , . . . , EρM ]>. M is the number of
captured images at different focal points, and the m-th slice of the stack corresponds to each
sub-matrix Am. A light field (sub-aperture images) can be projected onto a set of images
focused at various depths by matrix A. The 4D light field x is reconstructed using the 3D
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focal stack b, and the discrete Equation (4) is used to solve the linear system (9) for light
field reconstruction.

3.2. The Block Landweber Iterative Method

In this subsection, we introduce the block Landweber iterative method to reconstruct
the light field from the focal stack. Suppose that the light field has angular dimensions
of Nu × Nv, spatial dimensions of Nx × Ny, and M is the total number of slices in the
focal stacks. The dimensions of matrix A are determined by (M× Nx × Ny)× (Nu × Nv ×
Nx × Ny). When the image pixels are large, the number of focal stacks is too high, or the
light field with a higher angular resolution is reconstructed, that is, the dimensions are
too large, a computer that does not have enough memory may face the problem of not
being able to store matrix A>A, which is required by some algorithms. In this case, the
importance of the block iteration is evident. As mentioned above, even the sparse storage
method is used to store matrix A. However, when performing multiple iterations, the
matrix multiplication causes the sparseness of the matrix to be weakened, resulting in the
inability to perform storage calculations. If the block Landweber iterative method is used
for calculation, the relevant sub-matrix Am is recalculated in each block iteration, so that
the whole projecting matrix A does not have to be stored in memory. This block-by-slice
approach of computing the sparse block matrix while iterating can address the issue of
insufficient memory. Another significant advantage of using the block Landweber iterative
method is that it can speed up convergence. The amount of non-zero eigenvalues in the
block matrix A>m Am is less than the amount of non-zero eigenvalues in the overall matrix
A>A. This phenomenon causes the convergence speed of the block Landweber iterative
method to be faster than the convergence speed of the overall iteration. Therefore, we
consider using the block Landweber iterative method to solve the linear system (9).

Since the amount of focal stacks of M is less than the amount of viewpoints N, the
linear system (9) is an ill-posed problem. Suppose that the dimensions of the projection
matrix A are (M × P) × Q. Then, the block iterative scheme based on the Landweber
method is [16]

x(k+1) = x(k) + λk A>[k](b[k] − A[k]x
(k)), k = 0, 1, · · · , (10)

where the control sequence is cyclic, i.e., [k] , k(modM) + 1. Equation (10) is written as
the following inner-outer iterative scheme, so the block Landweber iterative method is

x(k,1) = x(k),

x(k,m+1) = x(k,m) + λk,m A>m(bm − Amx(k,m)),

x(k+1) = x(k,M+1),

(11)

where the relaxation coefficient λk,m is different for each block iteration.
If matrix A is not partitioned, that is, matrix A is introduced into the computation as a

whole, the block Landweber iteration is equivalent to the following Landweber iterative
scheme [21]

x(k+1) = x(k) + λk A>(b− Ax(k)), (12)

where λk is the relaxation coefficient.
Due to the influence of noise, the linear system (9) is inconsistent. The block Landweber

iterative scheme is a method for finding the least-square solutions of the linear system (9).
The least-squares functional [19]{

f (x) = 1
2‖b− Ax‖2

min f (x)
(13)
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is used to find the solution to Equation (9). All minimum points of f (x) satisfy the
normal equation

A>Ax = A>b. (14)

Equation (14) is always solvable and has a minimal 2-norm solution x+, which is equal
to A†b, where A† is the Moore–Penrose inverse of A [22]. When the linear system (9) is
inconsistent, the constant vector b can be decomposed into b̄ + b̂, where b̄ ∈ R(A) and
b̂ ∈ R(A)⊥. According to the definition of the orthogonal complement,R(A)⊥ = N (A>).
Thus, when the linear system (9) is inconsistent, the following process is performed [23]

A>Ax = A>(b̄ + b̂) = A> b̄. (15)

For the block Landweber iterative scheme (11), the limit is x+ + PA(x0), which is also a
solution to (14). PA(x0) denotes an oblique projection of the initial value x(0) onto the null
space N (A).

3.3. Convergence Results

For the Landweber iteration, regardless of whether the linear system (9) is consistent or
inconsistent, the relaxation coefficient must satisfy the corresponding convergence condition.

Theorem 1 ([24]). Let ‖ A ‖= θ > 0. Assume that the relaxation coefficient is chosen such
that 0 ≤ λkθ2 ≤ 2 for all k ≥ 0. Thus, the iteration x(k) generated by the Landweber iteration
Equation (12) converges to a solution to the normal Equation (14) if and only if

∞

∑
k=0

γ1,k = +∞, (16)

where γ1,k = min(λkθ2, 2− λkθ2), and θ2 is the maximum eigenvalue of matrix A>A.

The following theorem provides the convergence condition in the inconsistent case for
the proposed block Landweber iterative algorithm (10).

Theorem 2 ([16]). Assume that there exists a > 0 such that ‖ Am ‖≤ a for m = 1, . . . , M and
0 ≤ a2λk ≤ 2 for all k ≥ 0. If subset Em is disjoint and even if the linear system (9) is inconsistent,

lim
k→∞

λk = 0 and
∞

∑
k=0

λk = +∞. (17)

Under these conditions, the iteration x(k) generated by Equation (10) converges to x+ + PA(x0).

3.4. The Relaxation Strategy

In this paper, we have assumed that the relaxation coefficient is not constant during
one sub-iterative cycle, i.e., for each sub-matrix A>m Am, the relaxation coefficient λk,m
is a different value. In order to select an effective relaxation strategy to obtain better
reconstruction results, the 2-norm of all sub-matrices Am are normalized for m = 1, · · · , M
by dividing the second term on the right-hand side in Equation (11) by ‖Am‖2, equivalent
to λk,m = σk

1
‖Am‖2

. Then, Equation (11) is transformed as

x(k,m+1) = x(k,m) + σk
1

‖Am‖2
A>m(bm − Amx(k,m)). (18)
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Note: for M = 1, Equation (18) can be written in the form of the algebraic reconstruction
technique (ART) iterative scheme:

x(m+1)
q̄ = x(m)

q̄ + σ
bp̄ −∑Q

k̄=1 A p̄k̄x(m)

k̄

∑Q
k̄=1 A2

p̄k̄

A p̄q̄, p̄ = 1, 2, · · · , P, q̄ = 1, 2, · · · , Q. (19)

Theorem 3 ([17]). Suppose that Gm = W
1
2

m Am, b̄m = W
1
2

mbm, and the weighted block matrix is
Wm = 1

µ1,m
Im for m = 1, · · · , M, where µ1,m is the maximum eigenvalue of A>m Am and Im denotes

the identity matrix of order P. Equation (18) is transformed as

x(k,m+1) = x(k,m) + σkG>m (b̄m − Gmx(k,m)), (20)

where σk is the relaxation coefficient. If the linear system (9) is inconsistent, the iteration x(k,m)

generated by Equation (20) converges to x+ + PA(x0) under the following conditions

lim
k→∞

σk = 0 and
∞

∑
k=0

σk = +∞. (21)

Therefore, the relaxation coefficient σk is assumed to be decreasing as the iteration
times increase. There are many options for the sequence of σk satisfying the convergence
condition Equation (21). The following formulas are tested as the relaxation coefficient for
the block Landweber iterative method (20),

(a) σk =
τ

k + 1
, k = 0, 1, . . . , (22)

(b) σk =
τ

(k + 1) ∗ ln(k + 3)
, k = 0, 1, . . . , (23)

where τ ∈ (0, 1] is a parameter.
The harmonic series ∑∞

k=0
1

k+1 = +∞ and limk→∞
1

k+1 = 0. Then, option (a) of σk satisfies
the convergence condition Equation (21). For σk = τ

(k+1) ln(k+3) = τ
t ln(t+2) , with t = k + 1

monotonically decreasing, and suppose that g(t) = 1
t ln(t+2) , where g is a continuous, positive,

decreasing function of t for all t ≥ 1, limt→∞ g(t) = 0. Since
∫ k+1

k
1

t ln(t+2)dt < 1
k ln(k+2) ,∫ ∞

1 g(t)dt < ∑∞
k=1

1
k ln(k+2) , and

∫ ∞
1

1
t ln(t+2)dt >

∫ ∞
1

1
(t+2) ln(t+2)dt =

∫ ∞
3 (ln z)−1d(ln z) =

+∞. Therefore, option (b) of σk satisfies the convergence condition Equation (21).

4. Experimental Results

In this section, we experimentally validate and discuss the effectiveness of our pro-
posed method (20) under the convergence condition Equation (21). Several focal stacks
from four datasets were tested:

1. The 4D Light Field Benchmark dataset (‘Boxes’ and ‘Rosemary’ [25]) was generated
by a computer (CVIA Konstanz & HCI Heidelberg) and has an angular resolution of
9× 9 and a spatial resolution of 512× 512.

2. The INRIA Light field dataset contains light fields captured using a second-generation
Lytro Illum camera (‘Lytro1GCamera’ and ‘Toys’ [26]), which has an angular resolution
of 15× 15 and a spatial resolution of 625× 434.

3. A first-generation Lytro camera was used to capture the ‘Fruits’ dataset [11].
4. The real data were recorded using a Basler camera (Model: acA411220uc) with a

Myutron prime lens (Model: HF5018V), an F-number of f /1.6, and a focal length of
f = 25 mm.

For the different datasets, a stack with a number of different slices was synthesized.
The values of the light field data were normalized in the range of [0, 1].
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The Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure
(SSIM) [27] evaluation methods, based on reference images, as well as the blind reference-
less image spatial quality evaluator (BRISQUE) [28], natural image quality evaluator
(NIQE) [29], and perception-based image quality evaluator (PIQE) [30] evaluation methods,
based on non-reference images, were used to quantitatively evaluate the quality of the
reconstructed images. The quality of the reconstructed images was higher, as these three
no-reference quality metrics have lower scores. The PSNR value indicates the ability to
suppress noise levels in the reconstructed results, where a higher PSNR value corresponds
to less noise present in the image. The similarity between the original and reconstructed
images was quantified by applying the SSIM. A high degree of resemblance is indicated by
an SSIM score that is closer to 1. We compared our method to Levin’s method (also known
as the linear view synthesis (LVS)) method, proposed in [13], and a guided filter-based
iterative method (also known as the FI method), proposed in [14], to demonstrate the
performance of our proposed method.

4.1. Simulation Data

The slices of 10 and 14 focal stacks were synthesized to evaluate our method for the
‘Boxes’ and ‘Rosemary’ experiments, respectively. The reconstruction accuracy is quantified
by the SSIM and PSNR, and the convergence curve is presented in Figure 2. The provided
SSIM and PSNR values were averaged over all sub-aperture images. As can be seen in
Figure 2, compared to other methods, the block iteration method used fewer iterations to
attain higher SSIM and PSNR values, and convergence was achieved more quickly.
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Figure 2. Convergence curves for average SSIM and PSNR for all views.

Figure 3a,c show the focal stacks of the ‘Boxes’ and ‘Rosemary’ datasets, and Figure 3b,d
show the relevant red and green wireframes highlighted in Figure 3a,c, respectively. Figure 4a
displays the sketch maps of the viewpoint switching (sub-aperture images) connected with the
reconstruction results of the block Landweber iterative method after six iterations. Figure 4b,c
show the sub-aperture images of the central and boundary views of the reconstruction re-
sults obtained using our method, highlighted by the red and green wireframes in Figure 4a,
and the error maps compared to the reference images, respectively.

4.1.1. Comparing Different Relaxation Coefficient Formulas

In this subsection, we compare the different formulas (a) and (b) for choosing the
relaxation coefficient σk proposed in Section 3.4, and verify that both Formulas (22) and (23)
are effective when the relaxation coefficient satisfies the convergence condition (21). The
relaxation coefficients for the ‘Boxes’ and ‘Rosemary’ experiments were set to τ = 0.25 and
τ = 0.2 for k = 0, 1, · · · .
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(b)

(a) (c)

(d)

Figure 3. Synthesized focal stacks from the HCI light field dataset: (a,c) focal stacks of the ‘Boxes’
and ‘Rosemary’ datasets; (b,d) relevant red and green wireframes highlighted in (a,c), respectively.
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(a)
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Figure 4. Viewpoint switching of the reconstructed light field: (a) sketch map of sub-aperture images
using the block Landweber iterative method; (b,c) enlarged central and boundary sub-aperture
images related to the red and green wireframes highlighted in (a), along with the corresponding
reconstruction error maps.

Figure 5 shows the results of the convergence curve by selecting different formulas for
σk in the ‘Boxes’ and ‘Rosemary’ experiments. The ‘Boxes’ and ‘Rosemary’ experiments
are represented in red and blue, respectively, and solid and dashed lines represent the
relaxation coefficient Equations (22) and (23) in (a) and (b), respectively. Since both (a) and
(b) satisfy the convergence condition, we can see that regardless of the formula used, the
curves of the PSNR and SSIM converge, so the relaxation coefficient Equation (22) is chosen
for the calculations in the subsequent experiments.
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Figure 5. Convergence curves of the SSIM and PSNR, averaged for all views, obtained by selecting
different formulas for σk.

4.1.2. Focal Stack Number

In this subsection, we discuss the effect of the number of captured images at different
focal points for light field reconstruction. The relaxation coefficient for the ‘Boxes’ experi-
ment was set to τ = 0.25 for k = 0, 1, · · · . In the focal stack dataset, shown in Figure 3a,
we selected 2 images (the first and last images), 5 images (selected at every interval of
the total image), and 10 images as the captured images for light field reconstruction. The
quantitative evaluation results comparing the different numbers of captured images at
different focal points are depicted in Table 1. In the same scene range, a set of focal stack
data needs to contain most of the information of the scene to obtain effective light field
reconstruction results. The reconstruction results obtained are not usable when a significant
amount of information is missing, such as when the input data consist of only two images.
In addition, the error of the reconstructed light field decreases with the increase in the
number of focal stacks.

Table 1. Quantitative evaluation of the reconstructed light field with different numbers of focal stacks
in the ‘Boxes’ experiment.

Method
Average SSIM and PSNR for All Views

2 5 10

SSIM PSNR SSIM PSNR SSIM PSNR

LVS 0.7411 21.3103 0.7778 23.446 0.8458 25.2633
FI 0.4032 10.7146 0.7653 16.7028 0.8804 24.2654
Our method 0.7618 17.2243 0.9133 26.8554 0.9373 27.5334

4.1.3. Angular Resolution

The comparison experiments in other subsections of the light field reconstruction
from the focal stack are based on a constant angular resolution (i.e., u × v = 5 × 5).
The influence of the angular resolution on reconstructed light fields is covered in this
subsection. The relaxation coefficients for the ’Boxes’ and ’Rosemary’ experiments are set
to τ = [0.2, 0.25, 0.3] and τ = [0.15, 0.2, 0.25], with angular resolutions of 3× 3, 5× 5 and
7× 7. Furthermore, the central view images of the reconstructed light fields are exhibited
and compared with the reference images.

Figure 6 shows the sub-aperture images from the central view corresponding to the
three angular resolutions, respectively. Table 2 presents the quantitative evaluation results
comparing different methods with different angular resolutions. Furthermore, the errors of
the reconstructed light field increase with the increase in the angular resolution in the FI
and the LVS methods. The LVS approach was tested using the code provided by the authors
of [13]. To obtain the best results, the PSF radius and maximum slope parameter in the algo-
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rithm were manually tweaked. Based on the various angular resolutions, the reconstruction
results demonstrate that our method performed better than the other methods.

u v
3 3 5 5 7 7

Central view
(original)

(reconstruc�on)

(a)Our method

(b) FI method

(c)LVS method

Figure 6. The center viewpoint of the reconstructed light field with different angular resolutions
(u× v): (a) our method, (b) FI method, (c) LVS method.

Table 2. Quantitative evaluation of the reconstructed light field with different angular resolutions.

Method
Average SSIM and PSNR for All Views

3 × 3 5 × 5 7 × 7

Boxes

SSIM PSNR SSIM PSNR SSIM PSNR

LVS 0.8717 26.7195 0.8458 25.2633 0.8164 24.0324
FI 0.9122 27.2251 0.8804 24.2654 0.8635 22.3545
Our method 0.9183 27.4617 0.9385 27.4987 0.9491 27.0213

Rosemary

SSIM PSNR SSIM PSNR SSIM PSNR

LVS 0.9008 26.7446 0.8799 25.4402 0.8488 24.2101
FI 0.9194 27.1431 0.9136 26.8578 0.9051 25.8106
Our method 0.9223 27.4177 0.9360 27.7976 0.9432 27.4324
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4.2. INRIA Dataset

The INRIA light field dataset was decoded using the Matlab Light Field Toolbox
v0.5 [31,32]. Note that the toolbox was used to provide a 4D light field close to the raw
images captured using a second-generation Lytro Illum camera. Lytro images are affected
by vignetting and noise. We used the decoded images as the original images for comparison
to verify the effectiveness of our method, which led to inaccuracies in the evaluation
parameters. Therefore, quantitative evaluation parameters such as the SSIM and PSNR are
not used in this subsection.

The focal stacks with 14 slices for the ‘Lytro1GCamera’ and 20 slices for the ‘Toys’
experiment were synthesized to evaluate our method, and the relaxation coefficient was
set to τ = 0.2 for k = 1, 2, · · · in both experiments. The different viewpoints of the
reconstructed images using the three methods are displayed in Figure 7 and compared to
the reference images (Figure 7(a1,a2)).

(a1  )

(b1)

(c1)

(d1)

(a2)

(b2)

(c2)

(d2)

Figure 7. Different viewpoints of the reconstructed light field in the INRIA dataset: (a) Ground truth,
(b) our method, (c) FI method, (d) LVS method.
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As can be seen from the patch in Figure 7(b1,b2), the noise points of the original
decoded images were eliminated using the block Landweber iterative method. The recon-
structed images obtained using the FI method always contained some artifacts, as shown
in Figure 7(c1,c2). In addition, there was a viewpoint offset between the central and outer
views in the reconstructed results. A very evident viewpoint offset was also observed in
the results of the LVS method, resulting in unclear images (the first and fifth columns in
Figure 7(d1,d2)). The aberration at the edge part of the lens was typically greater than that
at the central part of the lens, which may have been caused by lens distortion. However,
despite the offset phenomenon in our method, the reconstructed images still exhibited
good quality. In general, our method achieved good reconstruction results in this dataset.

4.3. Real Focal Stack Data

Due to the lack of ground-truth data in the experiments using a first-generation Lytro
camera and the real data, the BRISQUE, NIQE, and PIQE values were calculated to verify
the reconstruction results of the experiments. The numbers of slices of the focal stacks were
12 and 16 for the ‘Fruits’ and ‘Pets’ experiments, with dimensions of 12× 3× 1088× 1088
and 16× 3× 981× 594, respectively. The relaxation coefficient was set to σ1 = 1, τ = 0.02,
k = 2, 3, · · · in both experiments. Table 3 presents a comparison of the quantitative
evaluation, showing that for the three indicators, our method performed the best in
both experiments.

Table 3. Quantitative evaluation of the reconstructed light field.

Method Average SSIM and PSNR for All Views

Fruits Pets

BRISQUE NIQE PIQE BRISQUE NIQE PIQE

LVS 40.6613 4.4096 29.5531 39.8596 3.0506 56.662
FI 53.6426 4.3635 86.9005 46.574 4.4673 81.8001
Our method 10.033 3.1677 11.1459 25.6965 2.3513 39.3187

The reconstruction results and the close-up images of the local details shown in
Figures 8 and 9 demonstrate the effectiveness of our method. Since residual filtering was
implemented using guided filters in each sub-iteration, as in [14], the error may increase
in the reconstructed light field from the actual shot focal stack, leading to the artifacts
shown in Figures 7c and 9b. The reconstruction images of the synthetic light field data in
Figure 6b do not exhibit this problem. Since the influence of the relaxation coefficient was
not considered, although guided filtering was used in the FI method, our method yielded
better reconstruction results compared to the FI method. Similar to the results in other
datasets, the LVS model showed a significant viewpoint shift at the edge of the image. For
the real data, such as the ‘Pets’ experiment, the results shown in Figure 8 reveal that our
method yielded better reconstruction results compared to other methods, including the
scale of the backboard and the details of the doll.
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(a)

(b)

(c)

Figure 8. Different viewpoints of the reconstructed light field in the real dataset: (a) our method,
(b) FI method, (c) LVS method.

(a)

(b)

(c)

Figure 9. Different viewpoints of the reconstructed light field in the ‘Fruits’ experiment: (a) our
method, (b) FI method, (c) LVS method.



Photonics 2023, 10, 1219 16 of 17

5. Discussion

This paper uses some image quality assessments based on reference and non-reference
images to quantitatively evaluate the quality of reconstructed images in different datasets.
The experimental results show that compared to the FI and LVS methods, our proposed
method yields better reconstruction results. The quality of the reconstructed light field is
related to the choice of the relaxation coefficient, the number of different focal point images
captured, and the angular resolution. An experimental verification is conducted for the
simulated dataset. It is possible to slightly improve the reconstruction results by choosing
other relaxation coefficient formulas under convergence conditions. A small adjustment
of the parameter τ in different datasets will also result in minor improvements in the
reconstruction results. The number of captured focal stacks should be sufficient to contain
most of the scene information for reconstructing effective light field images. Within the
same scene range, increasing the number of focal stacks can achieve better reconstruction
results. Compared to other methods, our method can obtain better reconstruction results,
even when using fewer captured images at different focal points or when reconstructing
light fields at higher angular resolutions.

6. Conclusions

In this paper, we have proposed a novel light field reconstruction algorithm, the block
Landweber iterative method. The projection matrix is formed by concatenating the focal
stack and the original light field views using bilinear interpolation. Each block matrix cor-
responds to a slice of the focal stack. The sparse block matrix Am is calculated per iteration
and does not need to be stored, which overcomes the problem of data storage. Our block
iterative approach has a wide variety of potential applications due to its computational
efficiency and flexibility in terms of the number of input images. Our method is able to
reconstruct high-quality light fields, even with a reduced amount of input data (a few
images). According to the convergence conditions described in Section 3.3, the effective
relaxation coefficient is necessary to obtain better reconstructed images. The 2-norm of the
block matrix is utilized to construct the weighted matrix to normalize each block matrix
on a unified scale, delivering effective relaxation strategies, as described in Section 3.4.
The experimental results have shown that our method yields better reconstruction results
compared to some corresponding methods.
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