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1 National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str.,
400293 Cluj-Napoca, Romania; maria.gherman@itim-cj.ro (A.M.M.G.); katalin.kovacs@itim-cj.ro (K.K.);
valer.tosa@itim-cj.ro (V.T.)

2 Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea;
wosik@ibs.re.kr

3 Advanced Photonics Research Institute, Gwangju Institute of Science and Technology,
Gwangju 61005, Republic of Korea; yunhyeok@gist.ac.kr

* Correspondence: istvan.toth@itim-cj.ro

Abstract: We report on the reconstruction of ultrashort laser pulses from computer-simulated and
experimental second harmonic generation-frequency resolved optical gating (SHG-FROG) spectro-
grams. In order to retrieve the spectral amplitude and phase we use a convolutional neural network
trained on simulated SHG-FROG spectrograms and the corresponding spectral-domain fields em-
ployed as labels for the network, which is a complex field encompassing the full information about
the amplitude and phase. Our results show excellent retrieval capabilities of the neural network in
case of the simulated pulses. Although trained only on computer generated data, the method shows
promising results regarding experimentally measured pulses.

Keywords: ultra-short laser pulse; pulse reconstruction; frequency resolved optical gating; convolutional
neural network; deep learning

1. Introduction

In order to measure very short events in physical, chemical, biological, or other fast
processes, one needs even shorter events. Ultrashort laser pulses [1] represent the short-
est events ever created, with durations on the femto- (10−15 s) and attosecond (10−18 s)
scale. Ultrashort pulses are used in many fields and experiments like ultrafast optical
imaging [2,3], high harmonic spectroscopy [4], or ion acceleration [5], for example. The ex-
act temporal and/or spectral structure of ultrashort laser pulses may strongly influence
the outcomes of the performed experiments, therefore a reliable and fast characterization
is crucial. In order to characterize and record such a short burst of electromagnetic en-
ergy, a sensor with an even shorter time-response is needed. However, the limitations
of electronic sensors led to the creation of alternative ways to measure such short events,
like frequency resolved optical gating (FROG) and its many variants [6,7]. The impor-
tance of ultrashort laser pulse characterization is also reflected by the development of
other pulse measurement/characterization methods such as reconstruction of attosecond
beating by interference of two-photon transitions (RABBITT) [8,9], spectral phase interfer-
ometry for direct electric-field reconstruction of ultrashort optical pulses (SPIDER) [10],
tunneling ionization with a perturbation for the time-domain observation of an electric
field (TIPTOE) [11], dispersion scan [12], multiphoton intrapulse interference phase scan
(MIIPS) [13], self-phase modulated spectra measurements [14], measurement of electric
field by interferometric spectral trace observation (MEFISTO) [15], and modified interfero-
metric field autocorrelation (MIFA) [16].

In a FROG measurement, a spectrogram is recorded by measuring the spectrum of
the signal produced by overlapping the pulse and a delayed gate function in a nonlinear
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crystal. In second-harmonic FROG (SHG-FROG) the gate function is a delayed replica
of the pulse itself and the spectrogram is obtained from second harmonic spectra for
different time delays τ. The signal in time may be written as Esig(t, τ) = E(t)E(t − τ)
and its Fourier transform Esig(ω, τ) will yield the spectrum of the signal centered at

ω
sig
0 = 2 ·ω0, where ω0 is the central frequency of the original pulse. The spectral intensity

and phase of the unknown pulse is then recovered by applying different algorithms on the
FROG spectrogram.

As mentioned above, the characterization of ultrashort laser pulses is very important
from the perspective of the experiments performed with these pulses. Given their short
duration, ultrashort laser pulses may suffer significant distortions by passing through
optical elements and different media. In some cases the characterization is needed at
multiple points along the beamline, ideally in a pulse to pulse regime, and therefore a fast
retrieval method would be beneficial for laser facilities. Classical recovery methods [17–19]
perform very well, especially for FROG or dispersion scan traces that are pre-processed in
a manual manner for background baseline subtraction and Fourier low-pass filtering as
described in [20], but for noisy, more complicated [21] or weak pulses their recovery may
be time-consuming or may even deteriorate compared to more simple pulses.

The recent surge in performance of the convolutional neural networks (CNNs) [22]
have led to rapid solution-finding for diverse problems originating in various fields such as
image-classification [23], skin cancer classification [24], Earth system science [25], weather
forecasting [26], physics-informed deep learning approaches [27,28], Raman-spectroscopy
based classification in biomedical applications [29], high harmonic flux prediction [30], and
even estimation of polymer properties [31] based on Graph Neural Networks, a type of
CNNs, which allow for irregular input data.

Neural networks have been employed with limited performance very early on to re-
construct pulses from polarization-gated FROG traces [32]. Inspired by more recent [33,34]
approaches to reconstruct ultrashort pulses, we developed our own approach to retrieve
pulses from SHG-FROG traces. One possible approach [33] is to use them as labels for
the CNN time-domain pulses. In our method we used the spectral-domain field as labels,
which makes a direct comparison with measured spectral intensities possible if experi-
mental data are to be reconstructed. Another difference to [33] is that we used randomly
generated data for both spectral amplitude and phase. Also, our method employs a state-of-
the-art CNN, named DenseNet-BC [35], specially modified and trained by us to serve the
reconstruction process. Since experimentally it is time- and resource-consuming to generate
a large number of FROG traces needed to train CNNs, we relied on computer-generated
traces and the corresponding laser fields as equivalents to labels for the neural network in
a supervised learning scenario [22]. Although in simulations we cannot account for all the
experimental aspects, which may influence the structure of an ultrashort laser pulse, we
found that our method is able to qualitatively reconstruct experimentally measured FROG
traces, using a CNN trained only on simulated data. Further, the method reconstructs a
FROG trace very fast, on the millisecond scale, while classical algorithms typically operate
on a longer time-scale—seconds or longer [34]. In addition, the trained CNN does not need
any manual pre-processing in order to reconstruct pulses. For a better performance, we
expect that a more diverse and larger dataset would be needed in order to properly train a
neural network.

2. Model and Methods

In this section we detail the CNN architecture, the data generation methods employed,
the training methodology, and the related parameters.

2.1. The Model

In our study, the DenseNet-BC [35,36] deep neural network was employed, being
first introduced for image recognition because it showed improvements over previous
neural networks like ResNet [37], GoogLeNet [38,39], FractalNets [40], or generalized
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ResNet [41]. DenseNet employs a dense connectivity pattern, connecting all layers with the
same feature map sizes, thus ensuring a superior information and gradient flow from the
input to the output layer. Feature maps are images on which some mathematical operation
was performed, such as convolution. It also requires fewer trainable parameters compared
to other convolutional networks. In a DenseNet-BC architecture the convolutional layers
are organized in dense blocks, each of them with an equal number of layers. Inside a block
the width × height size of the feature maps propagating through the block is unchanged,
however the number of feature maps increases. Each layer outputs k new feature maps, and
therefore the number of feature maps entering the ith layer is k0 + k× (i− 1), where k0 is the
number of channels in the input layer, while k is the growth rate of the block, which doubles
for subsequent dense blocks. The layers in a DenseNet-BC block are composite layers, with
their main ingredient being a 3× 3 convolutional layer. They are designated as bottleneck
layers (B in the name of the network refers to these layers), since they limit through a 1× 1
convolutional layer the number of input feature maps to the 3× 3 convolutional layers.
The dense blocks are separated by transition layers that have two main features: they reduce
the size of the feature maps (by applying 2× 2 average pooling layers) and optionally
reduce the number of outgoing feature maps through 1× 1 convolutional layers and a
compression factor c (C in the name of the network refers to this factor). The compression
factor has a value between 0 and 1. In the original DenseNet paper [35], c = 0.5, which
means that the number of input feature maps is halved at the output of the transition layer.
More generally, the number of outgoing feature maps will be c ·M if the number of input
feature maps to the transition layer is M.

We modified DenseNet-BC (see Figure 1) in order to fit our purpose of reconstructing
ultrashort pulses. Before reaching the first dense block, the 64× 64 images were taken
through two convolutional layers with filter sizes of 7× 7 and 3× 3. After going through
each layer the feature maps sizes are reduced by half using 2× 2 average pooling layers.
Following that, the images reach the dense blocks section of the network, which in our case
means 3 blocks separated by transition layers. Each dense block consists of 6 bottleneck
layers. The first block has a growth rate of 8, which doubles for subsequent blocks. Since
our images are relatively large, we also introduced a third transition layer after the last
dense block to further reduce the size and number of feature maps. In the next step, the
feature maps are flattened into a vector. We removed the classification layer from the
original network and replaced it with two fully-connected layers with input channel sizes
of 2048 and 512. The flattened vector enters these layers and the last one outputs a vector
with 128 elements, consisting of the real and imaginary part of the predicted spectral
electric field of the pulse. Throughout the network we use ReLU (rectified linear unit) as an
activation function.

Figure 1. Schematics for the modified DenseNet-BC neural network. Details about the network are
described in the text.

We tested several architectures for the DenseNet-BC network, however in terms of
generalization, the above-described architecture proved to be adequate. Besides using
the DenseNet-BC network, we built and trained our own networks. We found that even
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a relatively simple network with only four or five convolutional layers (with different
filter sizes) and two or three fully-connected layers would lead to comparable validation
errors. However, the lowest validation error and the best performance were obtained with
DenseNet-BC, which is why we opted to use it in our study.

2.2. Datasets

The training of a neural network usually requires a substantial-sized dataset. Below we
detail what data our dataset contains and how it is generated.

Since the training of our network follows the supervised learning methodology, we
generated the actual data (the FROG images) and a label-vector, which were used to
calculate the error between the CNN-predicted and the original spectral electric field.
The information contained in the error function was then used to adjust the parameters of
the neural network until the error reaches a minimum value and the network is optimized.

We generated our label-vectors as the spectral electric field of the ultrashort laser pulse

E(ω) =
√

S(ω)eiϕ(ω), (1)

where the spectral phase, ϕ(ω), is randomly generated and is unwrapped and smoothed in
order to eliminate its fast variations. The spectral amplitude,

√
S(ω) = |E(ω)|, is described

by a sum of Gaussian functions. The number of Gaussians is generated randomly between
10 and 30. We also randomly generated the spectral widths and the central wavelengths of
the Gaussian functions. We then used E(ω) to obtain the pulse E(t) in the time domain,
and further on to generate the FROG spectrogram (image) according to the well-known
expression for second-harmonic FROG traces [6]:

IFROG
SHG (ω, τ) =

∣∣∣∣∫ +∞

−∞
E(t)E(t− τ) exp(−iωt)dt

∣∣∣∣2. (2)

The duration of the generated pulses varies between their transform-limited duration
and an upper limit of 300 fs. With this method, we generated a set of around 300,000 FROG
images and the corresponding spectral electric fields.

SHG-FROG has several ambiguities. The ambiguities mean that different pulses may
lead to the same FROG image, which is we have multiple label-vectors for a single FROG
trace. However, multiple labels are a big problem from the perspective of training a CNN,
therefore we remove these ambiguities from our data. If E(t) is the original pulse, then the
following variations of the time domain E(t) would lead to the same FROG trace [6]:

• E(t) exp(φ0)—absolute phase shift, where φ0 = ϕ0 is the absolute phase
• E(t− t0)—time translation by t0
• E∗(−t)—time reversal

After we clean our data from ambiguities the dataset is randomly shuffled and further
split into three subsets of 80%, 10%, and 10% of the initial set, representing the training,
the validation, and the test set. The training set is used to train the neural network while
the validation set is employed for monitoring the training process for overfitting. Once
the CNN is trained, we evaluate its performance on data never ‘seen’ by the CNN during
training, using the test set.

2.3. Training the CNN

During the training of the CNN we feed the data in mini batches (batch size: 256).
When a trace or a batch of traces enters the CNN they are propagated through the different
layers and the final layer outputs the reconstructed spectral electric field. We used the
original spectral fields, from which the traces were obtained, as labels (see Figure 2),
and calculated the error between the reconstructed and original spectral fields applying



Photonics 2023, 10, 1195 5 of 13

the loss function, which measures the mean absolute error between the elements of the
reconstructed and original vectors.

l1 = ‖ER(ω)− EO(ω)‖1 =
1
n

n

∑
i=1

∣∣∣ER(ωi)− EO(ωi)
∣∣∣ (3)

Figure 2. Schematics for the training process of the convolutional neural network. After the FROG
traces are propagated through the layers of the CNN, the network outputs a reconstructed (R)
spectral field, characterized by the spectral amplitude and phase, AR(ω) and φR(ω). The l1 loss is
then calculated between the reconstructed and the original (O) spectral fields. The gradient of the
loss function is then back-propagated and the parameters of the CNN are adjusted accordingly.

The gradient of the loss function is back-propagated through the layers of the CNN and
the Adam [42] optimization algorithm updates the parameters or weights of the network
according to these gradient values. Adam is a variant of the stochastic gradient descent
algorithm, but implements the use of adaptive learning rates for individual parameters.
The parameters are updated after the propagation of every mini-batch through the CNN
until all the data in the training set are fed to the network. A single cycle of propagating
the training set through the layers of the CNN is called an epoch. We trained the CNN in
several hundred epochs, and the training process was monitored by calculating a validation
error after every epoch. The validation error is the mean l1 loss for the validation set,
a distinct set of data, which is not used directly to train the CNN. The calculation of this
error is important, since it signals if the CNN shows overfitting behavior. Overfitting refers
to the over-learning of the training data and leads to poor generalization on new data. We
trained our CNN on a desktop computer using the Pytorch framework as software, while
the training was performed on an Nvidia GeForce 3090 Ti GPU.

3. Results and Discussion

The immediate goal of our study was to retrieve the spectral amplitude and phase of a
computer-simulated ultrashort laser pulse by passing the associated FROG trace through
the layers of a CNN. Although we worked with computer-simulated data, the final goal
was to train a neural network capable of fast reconstruction of experimental data.

As mentioned earlier, the CNN returns the real and imaginary parts of the recon-
structed spectral field. We opted for this variant instead of directly reconstructing the
amplitude and the phase, since this allowed us to reconstruct the full electric field (i.e.,
both spectral quantities) with a single trained neural network. Moreover, given that in
experiments the spectrum is usually measured, our method allows for a direct comparison
between the two quantities. Finally, the real and imaginary parts of the field have significant
values only in the spectral region where the spectral amplitude is significant. Using the
spectral phase, which usually has large variations outside the meaningful spectral region,
leads to a slower training process. Also, in time-domain the full pulse is usually described
by a real quantity, with no direct access to the information regarding the phase of the pulse.

The data in the test set were used to evaluate the performance of the trained CNN.
The test set contains data which are not used during the training of the neural network. It
is worth mentioning that all samples in all three datasets (training, validation, and test)
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are entering the network as images of zero mean (µ = 0) and a standard deviation of
one (σ = 1) at the pixel level. However, the CNN is trained with added Gaussian noise
(µ = 0, σ = 0.15) on the FROG traces of the training set only. The main motivation to add
Gaussian noise during training is that in experimental measurements, the FROG traces may
be contaminated with noise, and therefore this method is a way to improve the robustness
of the reconstruction against noisy data. Nevertheless, noise may act as an augmentation
method for the CNN.

In Figure 3 we show three examples of our pulses and their reconstruction both in the
spectral and time domains. In both domains, a good reconstruction of the pulse intensity
and phase may be observed. These examples are taken from the test set, but may also be
representative of the training and validation sets, since all these subsets were obtained by
splitting a larger, randomly shuffled dataset. Our test set contains about 30,000 samples
of FROG traces and the associated spectral fields. In Figures 4 and 5 we show two other
samples of our simulated FROG images and pulses. Here, only the spectral domain pulses
are plotted, but we also show the reconstructed FROG image besides the original one. The
reconstruction is performed for FROG traces, which enter the CNN with different noise
levels. In these figures the first column (A, C, and E panels) contains the original FROG
trace with increasing noise level from top to bottom. A: zero noise; C: Gaussian noise with
µ = 0 and σ = 0.15; E: Gaussian noise with µ = 0 and σ = 0.2. We mention here that
the noise level on the middle FROG image has the same mean and standard deviation
as the noise added during the training of the CNN. In the third column we plotted the
reconstructed spectral intensities and phases corresponding to the three FROG images.
Panels G, H, and I show these quantities as a function of the angular frequency ω. In all
three cases, a good agreement between the original and the reconstructed spectral quantities
was observed. This was also confirmed by the reconstruction error (l1 loss) calculated in
every case. The error is similar for the zero noise and for the noise level with σ = 0.15 case.
This is not surprising, since the latter noise level was also employed during the training
of the CNN. The highest error value was found for the highest noise level. For a single
FROG trace, the reconstruction time is on the millisecond scale (about 30 ms) on a 2.2 GHz
computer. We also calculated the mean l1 loss for the entire test set, which are 0.022199,
0.022286, and 0.024890 for increasing noise levels. Our simulated pulse from Figure 4 was
also reconstructed with the FROG code [43] of the Trebino group, and the comparison with
the CNN is summarized in the table below. We tested the reconstruction without and with
noise (σ = 0.15), but without any pre-processing of the noisy traces. Table 1 shows that the
CNN time and error does not noticeably change, while reconstruction with the FROG code
takes a longer time period for the same or even higher errors.

Table 1. Comparison of the reconstruction time and FROG reconstruction error for the simulated
pulse in Figure 4 in case of the CNN method and the FROG code [43].

Method Time (s) G Error

CNN (σ = 0) ≈0.030 ≈10−3

CNN (σ = 0.15) ≈0.030 ≈10−3

FROG (σ = 0) ≈0.500 ≈10−3

FROG (σ = 0.15) ≈few sec ≈10−2

The reconstructed spectral intensity and phase were used to reconstruct the FROG
trace itself for all noise levels mentioned above. The reconstructed FROG traces are plotted
in the second column of Figures 4 and 5 (panels B, D, and F), along with the reconstruction
error [6] G, for FROG traces, where:

G =

√√√√ 1
N2

N

∑
i,j

[
Iorig.
FROG(ωi, τj)− Irec.

FROG(ωi, τj)
]2

. (4)
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Here, N is the size of the FROG image in pixels, while Iorig.
FROG and Irec.

FROG are the original
FROG with zero noise and the reconstructed FROG trace, respectively. As shown in the
second column of Figures 4 and 5, the reconstructed FROG traces are very similar to the
original ones. The G reconstruction error is lowest for the zero noise case, while the highest
reconstruction error is found again for the highest noise level added to the FROG images.

Version October 20, 2023 submitted to Photonics 6 of 14

Figure 3. Reconstruction of three simulated pulses in the spectral and temporal domain. Each row
contains the original FROG image, the original and reconstructed spectral intensity (S) and phase (φ)
and the temporal intensity (I) and phase (ϕ). Panels A, B, C: first pulse. Panels D, E, F: second pulse.
Panels G, H, I: third pulse. In the spectral domain the l1 (eq. 3) reconstruction error is also shown on
the figures.

Figure 3. Reconstruction of three simulated pulses in the spectral and temporal domain. Each row
contains the original FROG image, the original and reconstructed spectral intensity (S) and phase (ϕ)
and the temporal intensity (I) and phase (φ). Panels (A–C): first pulse. Panels (D–F): second pulse.
Panels (G–I): third pulse. In the spectral domain the l1 (Equation (3)) reconstruction error is also
shown on the figures.

We tested our trained CNN on two experimentally measured SHG-FROG traces,
shown in Figures 6 and 7 (panel A). The experimental FROG traces of laser pulses cen-
tered around 800 nm were measured with grating-eliminated no-nonsense observation of
ultrafast incident laser light E fields (GRENOUILLE) [44] at CoRELS. The grid size of the
measured FROG traces was 64 with a delay increment of 7.5 fs. In the third panel (C) of
Figures 6 and 7 we plotted the retrieved spectral intensity and phase, where we compared
the results of two different reconstruction algorithms: the GRENOUILLE’s built-in algo-
rithm and our CNN method. The general trend of the curves agrees for both retrieval
methods and spectral quantities. More specifically, the spectral phases overlap along a
certain frequency range, where the intensity has significant values. For both pulses the
spectral intensities show similar shapes for both retrieval algorithms; in the case of the
second pulse the CNN can even resolve the two-peak structure of the intensity. However,
there are also obvious discrepancies between the curves retrieved by GRENOUILLE’s
built-in algorithm and our CNN. According to the GRENOUILLE’s software, the FWHM
duration of the first pulse is 28.7 fs, while our method gives a FWHM duration of 30 fs.
For the second experimental pulse the estimated durations were 60.9 fs and 75 fs, respec-
tively. This can be roughly observed on the original and reconstructed frog traces, where



Photonics 2023, 10, 1195 8 of 13

at the central frequency the red portion of the spectrograms has approximately the same
width along the temporal axis on Figure 6, while on Figure 7 this is larger in the case of the
reconstructed trace.

Figure 4. Reconstruction of a computer-simulated pulse. Panels (A,C,E): original FROG traces with
different noise levels, as detailed in the text. Panels (B,D,F): reconstructed FROG traces showing the
FROG reconstruction error defined in Equation (4). The FROG traces are normalized to one (dark red
color). Also, the color code is the same as in Figure 3. Panels (G–I): black dashed line with circles:
original intensity; blue dashed line with circles: CNN-retrieved intensity; green line with circles:
original spectral phase; Red line with circles: CNN reconstructed spectral phase. Panels (G–I) also
show the l1 (Equation (3)) reconstruction error for the pulses, as detailed in the text.
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Figure 5. Reconstruction of a second computer-simulated pulse. Panels (A,C,E): original FROG traces
with different noise levels, as detailed in the text. Panels (B,D,F): reconstructed FROG traces showing
the FROG reconstruction error defined in Equation (4). The FROG traces are normalized to one (dark
red color). Also, the color code is the same as in Figure 3. Panels (G–I): black dashed line with circles:

original intensity; blue dashed line with circles: CNN retrieved intensity; green line with circles:
original spectral phase; Red line with circles: CNN reconstructed spectral phase. Panels (G–I) also
show the l1 (Equation (3)) reconstruction error for the pulses, as detailed in the text.

Figure 6. Reconstruction of an experimental ultrashort laser pulse. Panel (A): experimental FROG
trace. Panel (B): retrieved FROG trace showing the FROG reconstruction error defined in Equation (4).
The FROG traces are normalized to one (dark red color). Also, the color code is the same as in
Figure 3. Panel (C): black dashed line with circles: intensity retrieved by GRENOUILLE’s built-in
algorithm; blue dashed line with circles: CNN retrieved intensity; green line with circles: spectral
phase retrieved by GRENOUILLE’s built-in algorithm; red line with circles: CNN reconstructed
spectral phase.
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Figure 7. Reconstruction of a second experimental ultrashort laser pulse. Panel (A): experimental
FROG trace. Panel (B): retrieved FROG trace showing the FROG reconstruction error defined in
Equation (4). The FROG traces are normalized to one (dark red color). Also the color code is the same
as in Figure 3. Panel (C): black dashed line with circles: intensity retrieved by GRENOUILLE’s built-in
algorithm; blue dashed line with circles: CNN retrieved intensity; green line with circles: spectral
phase retrieved by GRENOUILLE’s built-in algorithm; red line with circles: CNN-reconstructed
spectral phase.

Panel B on both Figures 6 and 7 show our retrieved FROG spectrograms. Again, one
may observe good similarities between the retrieved and the experimental FROG traces:
for example, our method nicely reproduces some of the ‘wings’ observed in the experi-
mental FROG in Figure 6. The G FROG errors between the experimental and our CNN
retrieved FROG trace are 0.01366 and 0.05943 for the experimental pulses in Figures 6 and 7,
respectively. The same errors in case of GRENOUILLE’s built-in software are 0.00844 and
0.01832, respectively. Although these values are slightly lower than in the case of the CNN
reconstruction, we emphasize that our method relies only on simulated data, while the
FROG algorithm used by the GRENOUILLE setup uses input from the experimentally
measured traces. Given that the CNN was trained only with these computer generated
FROG traces, this is a remarkable performance, and in the same time a very fast pulse
reconstruction process. Also, our method does not need any background noise subtraction
compared to the GRENOUILLE software, which may constitute a further speed boost.

4. Conclusions

We developed a CNN-based method in order to retrieve the spectral intensity and
phase of ultrashort laser pulses from simulated SHG-FROG traces. The neural network
was trained with computer-simulated FROG traces and the corresponding spectral domain
pulses employed as labels. The performance of the CNN was tested on a set of about
30,000 FROG samples, which were not employed during the training of the network. We
found an excellent performance in retrieving the spectral intensity and phase of simulated
pulses with very low pulse reconstruction errors (l1 loss) and FROG errors G.

One of the main advantages of our method is a very fast reconstruction of ultrashort
laser pulses. The CNN reconstructs a single pulse on the millisecond scale, while classical,
iterative algorithms usually provide reliable results on a longer timescale. The speed of the
reconstruction is especially useful for tuning and adjusting the high repetition rate laser
systems in real time. Also, our method does not need any background noise substraction,
unlike, for example, the GRENOUILEE software, which automatically substracts any
unwanted background noise. As shown above for simulated pulses, the CNN is very
robust to noisy data. Another advantage is that the CNN is trained to reconstruct the
complex spectral electric field, which provides both the spectral intensity and phase using
a single trained neural network. This method also makes a direct comparison possible with
measured spectral intensities. Further, the reconstructed complex spectral field gives direct
access to the spectral phase. In time-domain, for pulses described by real fields the phase
information would not be directly accessible.

As mentioned earlier, our goal was to reconstruct simulated ultrashort pulses. How-
ever, we wanted to further test our method, therefore we reconstructed two experimentally
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measured FROG traces. The CNN retrieved spectral intensity and phase was compared to
the corresponding quantities retrieved by the built-in software of the GRENOUILLE setup,
which measured the experimental pulses. Trained only on simulated pulses, the CNN was
able to qualitatively reproduce the experimental pulses, providing relatively low FROG
reconstruction errors and comparable pulse durations compared to the FROG software.
Although the FROG errors provided by the GRENOUILLE software are slightly lower,
we emphasize again that our method relies only on simulated data, while the FROG al-
gorithm used by the GRENOUILLE setup uses input from the experimentally measured
traces. Nevertheless, further improvements need to be implemented in order to achieve a
better performance. We plan to combine this method with a semi-empirical spectral phase
generation method. The latter is based on the Taylor expansion of the spectral phase, where
the expansion coefficients of the second and higher order terms are calculated taking into
account several parameters of the pulse compressor, like the incident angle or the grating
distance. Transfer learning between the two methods would also be worth exploring.
Obviously, a larger and more diverse dataset would potentially add further improvements
to the performance of the network.
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FROG Frequency Resolved Optical Gating
SHG-FROG Second-Harmonics Generation Frequency Resolved Optical Gating
RABBITT reconstruction of attosecond beating by interference of two-photon transitions
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spectral phase interferometry for direct electric-field reconstruction of ultrashort
optical pulses

TIPTOE
tunneling ionization with a perturbation for the time-domain observation of
an electric field
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E fields
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