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Abstract: This study aims to explore the feasibility of fine-needle aspiration biopsy (FNAB) under
dual modal photoacoustic tomography(PAT)/ultrasound (US) imaging. A total of 25 patients who
have thyroid nodules with thyroid imaging reporting and data system (TIRADS) 3 and 4 (malignant
risk <85%) were recruited. The specimens obtained from the PAT/US-guided FNAB were collected
for cytology analysis. Cytological diagnoses for the 25 patients were classified in perspective of the
Bethesda system for reporting thyroid cytopathology diagnostic category (DC) I: 4%(1/25); DC II: 12%
(3/25); DC III: 20% (5/25); DC IV: 8% (2/25); DC V: 32% (8/25); and DC VI: 24% (6/25). The DC I
nodule exhibited inadequate cytology and had structural characteristic of predominant calcifications
in PAT/US mapping. The DC V-VI nodules showed lower photoacoustic (PA) signals compared to the
DC I-IV nodules. Regions with a high PA signal demonstrated a significant number of erythrocytes
in FNAB cytology. Moreover, nodules with microcalcifications did not show a significant difference
compared to their surroundings in the PA signal, while nodules with macrocalcifications gave higher
PA signals compared to their surroundings. The conclusions are as follows: combining US with
PAT can evaluate the structure and function of thyroid nodules in vivo. This study demonstrates
that dual modal PAT/US imaging has the potential to be an effective clinical tool to guide FNAB of
thyroid nodules.

Keywords: thyroid; photoacoustic tomography; fine-needle aspiration; ultrasonography;
mutli-modality

1. Introduction

Thyroid nodules are common varieties of benign and malignant lesions inside the
thyroid and are radiologically different from the surrounding thyroid parenchyma. The
overall prevalence of thyroid nodules was 24.83% (95% CI 21.44–28.55), regardless of
the diagnostic techniques used [1]. Ultrasonography (US) reveals thyroid nodules in
approximately 50–70% of the population [2,3]. Despite high incidence rates, survival rates
of papillary thyroid carcinoma (PTC) continue to be as high as 97% [4]. It generally shows
indolent behavior with declined mortality. However, a meta-analysis showed that 68.8% of
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all thyroid nodules undergoing surgical excision were benign [5,6]. The overdiagnosis and
overtreatment of the thyroid nodules has caused increasing public health concerns.

Fine-needle aspiration biopsy (FNAB) of the thyroid is a minimally invasive method
and is the gold standard in the diagnosis of thyroid nodules [7]. Tissues obtained by FNAB
for cytological assessment and classification of malignancy risk, are commonly analyzed
using the Bethesda system for reporting thyroid cytopathology (TBSRTC) [8]. The TBSRTC
consists of six diagnostic categories, each associated with a specific risk of malignancy and
corresponding clinical management recommendation. Inadequate samples are classified as
diagnostic category (DC) I, reported as “nondiagnostic” (ND) or “unsatisfactory” (UNS). A
repeated FNAB is recommended for DC I nodules, but some nodules remain persistently
ND/UNS and excision is considered in these cases.

Several factors may contribute to an inadequate specimen, including the guidance
method, nodule’s characteristics, cytological techniques and skill of the operators [9–13].
Previous studies have emphasized the primary diagnostic challenge related to FNAB is the
inadequate extraction of specimens during the procedure [14]. As reported, efforts should
be spent to minimize the prevalence of insufficient FNAB to the lowest possible extent,
ideally falling within the acceptable threshold of 10% [15].

To improve the diagnostic efficacy of FNAB, it is crucial to increase specimen adequacy.
Historically, the FNAB has been performed under palpation guidance. The practice of
performing FNAB under US guidance has become more common in recent years [16]. The
use of US-guided FNAB allows the visualization of the needle in real time, which has largely
reduced the rate of inadequate sampling. Consequently, US guidance is recommended
as the method with the highest sensitivity and specificity for the preoperative estimation
of discriminating benign thyroid nodules from malignant cytologically. Nevertheless,
nondiagnostic FNAB results are up to 15–33.6% in all cases, even under US guidance [17,18].
The poor needle contrast with surrounding tissues and artifacts (e.g., reverberation from
metal or acoustic clutter) have motivated researchers to investigate guidance under a new
imaging method or multi-modality imaging based on US imaging.

PAT is a novel hybrid imaging modality which can provide both important structural
and functional information. Over the past decade, several studies confirmed that PAT
imaging can identify tumor boundaries, as well as differentiate benign from malignant
tumor by detecting the distribution of endogenous chromophores including oxygenated
hemoglobin(HbO2), deoxyhemoglobin (HbR), water, collagen and lipids [19]. Moreover,
PAT has shown viability for guiding multiple surgeries and procedures both in animals [20]
and humans [21]. In recent years, there has been a growing accessibility to the implemen-
tation of photoacoustic-guided surgery [22]. Kim C et al., has successfully developed a
pioneering handheld photoacoustic probe, marking the first instance of its application. This
achievement is attributed to the incorporation of optical fiber bundles, which facilitated the
delivery of pulsed laser light for the purpose of PAT image-guided needle biopsy. Notably,
this innovative technique allows for the precise insertion of a needle into rat axillary lymph
nodes containing accumulated indocyanine green (ICG) [23]. The primary work for PAT-
guidance in humans encompasses areas related to the brain [24], spine [25,26], lungs [27],
liver [28–30], prostate [31,32], breast [33,34], cardiovascular system [35,36], kidneys [37],
pancreas [38] and uterus [21].

Recently, PAT has made significant progress in both implementation and technology
development, aiming to provide an important clue in the diagnosis of thyroid diseases
with reliable anatomical and vascular information. Several studies for thyroid diseases
have been conducted using various PAT systems and achieved high-fidelity performance
in the human thyroid in vivo [39,40]. The results demonstrated that PAT made it possible
to detect the thyroid’s outline, as well as identify vascular features. To further analyze
the tissue oxygenation contents in thyroid imaging, multispectral PAT was used. All the
functional parameter analyses of thyroid showed encouraging results with statistically
differentiable distributions [39–41].
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More importantly, PAT has the advantage of having no binding barriers which allows it
to be integrated with other imaging modalities, like US or NIR fluorescence imaging [39,42,43].
To capture and visualize anatomical structures as well as functional imaging in real time,
several PAT/US dual-model imaging systems have already been developed and applied
in clinical applications [40]. In an initial clinical study, PAT combined with US provided
accurate vascular information in the diagnosis of thyroid diseases [44]. More recently,
several groups have successfully visualized PAT/US images of thyroid nodules in real time.
Using PAT/US, viable tissue of thyroid nodules can be accurately detected and located, all
of which have shown excellent capabilities in the diagnosis of thyroid diseases.

Thus, in this study we aim to test the feasibility of PAT/US guidance for FNAB of
thyroid nodules in humans. To the best of our knowledge, it is the first of its kind.

2. Materials and Methods
2.1. Subjects

In this pilot clinical study, a total of 25 patients diagnosed with TIRADS 3 and 4 thyroid
nodules were consecutively recruited from both outpatient and inpatient departments at
the Fifth People’s Hospital of Chengdu (FPHC) between 1 July 2022 and 31 July 2023
(Table 1). All thyroid nodules underwent a FNABs guided by PAT/US imaging. The
examination procedures were approved by the institutional ethics committee of the FPHC.
All the patients signed the informed consent form prior to the examinations.

Table 1. The patients’ characteristic of thyroid nodules.

Nodule Age Gender BMI(Kg/m2) Nodule Size (mm) Nodule Depth (mm) TIRADS Cytology *

#1 66 F 20.8 7.1 10.2 4a III
#2 33 F 25.2 5.4 8.1 4b V
#3 24 M 23.7 14.3 8.8 4a V
#4 61 F 23.9 6.8 9.5 3 VI
#5 43 F 22.2 6.9 7.3 4b VI
#6 49 M 22.5 5.1 10.5 4a II
#7 50 F 23.4 9.2 12.4 4c V
#8 40 M 22.6 5.3 10.0 4b VI
#9 34 F 22.7 5.3 9.0 4b V

#10 49 F 20.8 4.4 18.2 4a II
#11 33 F 19.5 4.3 7.4 4a II
#12 58 F 20.8 6.0 8.2 4b III
#13 43 F 20.0 6.6 8.5 4b III
#14 33 F 23.8 4.9 6.3 4b III
#15 41 F 22.3 9.9 13.5 4b III
#16 48 F 22.2 4.9 7.9 4c IV
#17 47 F 27.1 5.9 12.6 4b V
#18 52 F 19.9 15.2 6.3 4b IV
#19 40 M 21.1 4.3 13.5 4a VI
#20 48 M 19.4 27.8 6.2 3 VI
#21 49 F 20.8 8.8 12.6 4b VI
#22 69 F 20.3 7.4 8.8 4b I
#23 30 F 22.3 7.6 5.8 4c V
#24 56 F 21.5 8.8 9.3 4c V
#25 73 F 26.6 6.4 12.4 4b V

Nodular depth: From the gel surface to the nearest point on the surface of nodule. * Cytology results based on the
Bethesda reporting system for reporting thyroid cytopathology. BMI: body mass index; TIRADS: thyroid imaging
reporting and data system.

Body mass index (BMI) of all our patients was calculated by the following formula:

BMI = body weight (kg)/body height2 (m2)
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2.2. Experimental System

An imaging system devised by our group was used to perform PAT imaging [45],
which enables real-time visualization of thyroid nodules. The schematic diagram is shown
in Figure 1. In this system, optical parametric oscillators pumped with Nd: YAG provide
the laser illumination with a wavelength range of 680–950 nm and frequency 20 Hz (Surelite,
Continuum, Santa Clara, CA, USA). Optical fibers were used to transmit light to the imaging
object. The PA signals were received via a 128-element concave transducer array with a
5 MHz central frequency and transferred to 64 data acquisition channels (12-bit sampling
progress, sampling frequency 50 MHz). This concave-shaped array of transducers was
arranged in a half arc (180◦ spanning range) with a radius of 50 mm. The demonstrated
time resolution was 100 ms by using a multiplexer without taking 10 times average. The
spatial resolution was ~150 µm. Image depth of view was demonstrated to be at least
25 mm depending on transducer configuration and concave array. To avoid physiological
thyroid movements (e.g., respiratory movements) and improve the signal-to-noise ratio,
the signal was averaged ten times (as verified in previous studies) [46]. All gray-scale and
color Doppler flow imaging (CDFI) examinations were performed by using 8–15-MHz
linear probe (S60; Sonoscape Medical System, Shenzhen, China).

2.3. PAT/US guided FNAB

The procedure of PAT/US FNAB for human thyroid in vivo were conducted by fol-
lowing three steps (Figure 1b).

Step 1: Thyroid nodule localization by US.
The thyroid nodules were imaged at axial locations. Nodule location (right lobe, left

lobe, or isthmus), depth (vertical distance from skin to the nearest point on the surface of
nodule), size (largest diameter), internal component (solid, predominantly solid, predomi-
nantly cystic, or pure cystic), echogenicity(hypoechoic, isoechoic, hyperechoic, or anechoic
appearance), calcification, and vascularity were assessed by US. Nodule vascularity was
assessed by CDFI and classified based on Adler semi-quantitative standard [47].

Step 2: Selecting a puncture point by PAT.
PAT was performed before FNAB. An imaging plane localization was marked on

the body’s surface at the location where cross-sectional imaging was acquired by US
(Figure 1b). To reduce the disturbance of breathing and movement, all patients were told to
keep motionless and breathe calmly. For each US position, a matching set of PAT images
was performed using our PAT system, as described above [48]. PAT images were acquired
at three wavelengths: 760 nm, 840 nm and 910 nm. In addition, a maximum amplitude
projection image was obtained by a multispectral reconstruction algorithm [49], which was
used to analyze the oxyhemoglobin saturation(SO2), HbO2 and HbR contents for the region
of interest. The SO2 distribution of the thyroid nodule and surrounding parenchyma were
revealed with multispectral PAT mapping. Moreover, PA signals for SO2 were categorized
according to their intensity, referred to in the scale bar (Figure 2). These were low-intensity
(0–0.5), moderate-intensity (0.5–1.0) and high-intensity (1.0–1.5). Moderate-intensity PA
signals were selected as the puncture point.

Step 3: The FNAB process by real-time US guidance.
The FNABs were performed by two sonographers with more than 5 years’ experience

in thyroid US examination. A 22-gauge 8 cm long needle (CCZD Type, Leapmed Healthcare
Corporation) was employed for FNAB [50,51]. A sterile transducer cover was used to
avoid the risk of infection. Based on prior research, all FNAB procedures were conducted
without local anesthesia [52,53]. The nodule for biopsy was localized in a transverse
plane. The needle was punctured obliquely along a path parallel to allow continuous
visualization of the tip and shaft during the procedure of the FNAB. According to both
the structural and functional parameters of the thyroid nodules, solid components (US-
mode) with moderate-intensity signals (PAT-mode) were confirmed in the puncture area,
which effectively avoided the feeding vessels, both around and inside the thyroid nodules
(Figure 2). Based on the quantity of the specimens, 2–5 passes were performed until a proper
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amount of material filled the needle hub [54]. All thyroid nodules included in our study
were biopsied using the same size needle and smeared with the same method. Additionally,
any complication that occurred during or after FNAB procedures were also recorded.
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Figure 1. The PAT/US system for human thyroid imaging. (a) The schematic of the hardware com-
ponents employed, including the pulsed laser, optical fiber, computer, DAQ system, lens, amplifier, 
and US transducer. (b) The procedure of PAT/US FNAB for human thyroid in vivo. Step 1: US-

Figure 1. The PAT/US system for human thyroid imaging. (a) The schematic of the hardware compo-
nents employed, including the pulsed laser, optical fiber, computer, DAQ system, lens, amplifier, and
US transducer. (b) The procedure of PAT/US FNAB for human thyroid in vivo. Step 1: US-guided
imaging for nodule localization; step 2: PAT-guided imaging(PA signals for SO2 distribution) for
selecting puncture point(white asterisk); step 3: real-time US-guided FNAB for thyroid nodule. PAT:
photoacoustic tomography; US: ultrasound; DAQ: data acquisition; L: left thyroid lobe; R: right
thyroid lobe; TR: trachea. White asterisk represents viable tissues (moderate-intensity PA signals);
green arrow indicates small blood vessels in the thyroid nodule and yellow arrow indicates the
needle tip.

2.4. Cytologic Analysis

Following biopsy, each sample was mounted onto a glass slide immediately after
biopsy and fixed in 95% ethanol for pathological analysis. All cases were reviewed by two
cytopathologists with a minimum of five years’ experience in pathology. The pathological
results are based on the Bethesda reporting system for TBSRTC [55]. Inadequate cytology
was reported as DC I, which defined as specimens showing less than 6 groups of well-
visualized follicular cells that consisted of less than 10 cells per group, while adequate
cytology was reported as DC II to VI. Patients with DC V and DC VI in this study underwent
thyroidectomy or hemithyroidectomy surgery. The BRAF V600E gene tests were performed
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according to the patients’ willingness. In total, twenty-five thyroid nodule samples were
analyzed (Table 1).
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Figure 2. FNAB procedures under PAT/US-guidance. (a) US(in CDFI mode) shows a blood vessel
around the TN. (b) The moderate-intensity PA signals (*) for SO2 inside the TN were selected as
puncture points. (c) Needle tip was positioned in the region of TN under US guidance according to the
PAT results. FNAB: fine-needle aspiration biopsy; US: ultrasound; PAT: photoacoustic tomography;
M: muscle; R-THY: right thyroid lobe; R-CCA: right common carotid artery; TN: thyroid nodular;
TR: trachea. White asterisks represent viable tissues (moderate-intensity PA signals); green arrows
indicate the needle and yellow arrow indicates the needle tip.

2.5. Statistical Analysis

Continuous variables are presented as means with standard deviations (mean ± SD).
Data variability and group comparisons were represented by using boxplots drawn in R.
p < 0.05 was considered statistically significant (ns p > 0.05; * p < 0.05; ** p < 0.01).

3. Results and Discussion

In this pilot clinical study, for the first time to our knowledge, we report the thyroid
FNAB using a dual modal PAT/US guidance, which investigate the feasibility of this system
for humans in vivo.

A curved array, as opposed to linear array was used in acquiring PA signals. In general,
PA waves propagate in all directions, which ideally require detection on a spherical surface
that completely encloses the volume illuminated. In this regard, the geometry of the
detection array greatly affects the quality of the PAT image. By using curved arrays, it is
possible to collect a more complete projection data set, which can be used to represent the
light absorption distribution more accurately.

The FNAB procedures were without local anesthesia in this study. In our experience,
US-FNABs have been performed without local anesthesia for several years and this does not
cause significant pain when compared to procedures with local anesthesia. Furthermore,
performing US-FNABs without local anesthesia shortens the procedure duration and can
prevent the formation of micro-air-bubbles caused by lidocaine injections that may interfere
with the guidance.

In our study, PAT/US dual-modality imaging was performed in 25 cases. There were
5 male and 20 female participants in total, the median age was 46.8 ± 12.4 years (age
range, 24–73 year). Twenty-five patients (BMI range, 19.4–27.1 kg/m2; mean size ± SD,
22.2 ± 2.0) underwent PAT/US FNAB for 25 nodules (size range, 4.3–27.8 mm; mean
size ± SD, 7.9 ± 5.0 mm; depth range, 5.8–18.2 mm, mean size ± SD, 9.7 ± 2.9 mm). In
the literature, female sex, older age, and higher BMI are associated with an increased
prevalence of thyroid nodules [56,57]. These results were consistent with our experiment.
Female patients aged >40 accounted for the majority of patients with thyroid nodules and
an increase in BMI at any age was associated with malignant risk of thyroid nodules in
cytology (Figure 3a). The two sonographers graded all PAT/US images observed as having
good image quality, independent of the BMI level, in all of 25 cases. In addition, there is no
statistically significant difference in nodule depth between DC V-VI and DC I-IV(Figure 3b).
This may indicate that nodule depth had no correlation with the malignant risk of thyroid
nodules. A quantitative SO2 value (average ROI) of thyroid nodules and their surrounding
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parenchyma has also been calculated (SO2 values range of thyroid nodules, 0.72–1.44;
mean values ± SD, 1.04 ± 0.23; SO2 value range of surrounding thyroid parenchyma,
0.75–1.39; mean values ± SD, 1.07 ± 0.19). There was no significant differences between
DC V-VI and DC I-IV in the SO2 values of surrounding thyroid parenchyma (p < 0.05).
Since the quantitative SO2 value of the surrounding thyroid parenchyma does not vary
among different DC groups with normal thyroid hormone levels, it suggests that the PAT
intensity of surrounding thyroid parenchyma can be used as reference values for future
studies as well as for clinical routines using this imaging system.
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Figure 3. Boxplot graph showing statistical difference between DC V-VI and DC I-IV in BMI (a) and
ND (b). The red boxplot represents the DC V-VI group, and the blue boxplot represents the DC I-IV
group. BMI: body mass index; DC: diagnostic category; ND: nodular depth. (ns p > 0.05; * p < 0.05).

Eighteen nodules were found in the right lobe and seven nodules were found in the
left lobe. The TIRADS category for 25 nodules were as follows: 2 cases were TIRADS 3
(Malignant risk, ≤5%); 6 cases were TIRADS 4a (Malignant risk, 5~10%); 13 cases were
TIRADS 4b (Malignant risk, 10~50%); and 4 cases were TIRADS 4c (Malignant risk, 50~85%).
One patient had a prior history of Hashimoto thyroiditis (Case No.24 in Table 1). For
25 nodules, 1 “DC I”, 3 “DC II”, 5 “DC III”, 2 “DC IV”, 8 “DC V” and 6 “DC VI” were
identified by cytology based on TBSRTC, accounting for 4%, 12%, 20%, 8%, 32%, and
24% of all nodules, respectively (Table 1). The cytology results showed that 12 out of
the 17 nodules with TIRADS ≥ 4b and 2 out of 8 nodules with TIRADS ≤ 4a were DC V
(suspicious malignancy) or DC VI (malignancy) in cytology by PAT/US-guided FNAB.
Later, patients with DC V and DC VI underwent thyroidectomy or hemithyroidectomy
surgery revealed PTC in pathology. As a result, PAT/US-guided FNAB may have the
feasibility for differentiating malignant from benign nodules.

To enhance the sample adequacy, areas having moderate-intensity PA signals were
selected as FNAB sites. The sample inadequacy of thyroid FNAB is associated with
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specific nodule characteristics, including hypervascularity, necrosis, sclerosis, calcification
and fibrosis [58]. It was found that a high sample adequacy was achieved when both
hypervascular and hypovascular site aspirates were evaluated together [59]. However, FNAB
in hypervascular site from nodules may result in cytology of DC I in the literature [60,61].
Consistent with our findings, regions with a high-intensity PA signal demonstrated a
significant quantity of erythrocytes in FNAB cytology. Non-viable tissues, such as old
fibrosis, infarction, and hemorrhage generally show low-intensity PA signals. Therefore, a
region with moderate-intensity PA signals was chosen to be the target area of FNAB.

Figure 4 shows results for case No.1 in Table 1, which is a DC III nodule in the right
thyroid lobe with the largest diameter of 7.1 mm. The nodular depth (the gel surface
to the nearest point on the surface of nodule) is 10.2 mm. Nodular CDFI showed Adler
grade 0 blood signals inside the thyroid nodule, while CDFI showed Adler grade I blood
signals around the thyroid nodule (Figure 4a). PAT imaging displayed abundant PA signals
inside the nodule and its surrounding thyroid parenchyma (Figure 4b), indicating a more
vasculature distribution in the thyroid. Annular calcification around this nodule was
presented as a hyperechoic feature in the US and high-intensity signal in PAT. According
to the trial protocol, we have selected the moderate-intensity PA signals area inside the
nodular as the puncture point. Pathological results showed adequate FNAB cytology of
the No.1 nodule rendering a conclusive diagnosis possible.
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PAT is an effective imaging modality for observing microvascular perfusion as well 
as detecting viable tissues [39,42]. A grayscale US and even US with a CDFI mode cannot 
differentiate between viable and non-viable tissues, especially in predominantly cystic 
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Figure 4. FNAB procedures under PAT/US-guidance for a calcified nodule. (a) US (in CDFI mode)
imaging showed a nodule in the right thyroid lobe represented as an annular calcification with
posterior shadow; (b) PAT imaging showed puncture points (asterisks) inside the thyroid nodular,
showing moderate-intensity PA signals for SO2; and (c) FNAB under US-guidance according to the
PAT imaging in cross-sections of the right thyroid lobe. US: ultrasound; CDFI: colored Doppler
flow imaging; PAT: photoacoustic tomography, R-THY: right thyroid lobe; Tr: trachea, M: muscle.
R-CCA: right common carotid artery; TN: thyroid nodule. White asterisks represent viable tissues
(moderate-intensity PA signals); green arrows indicate the needle and yellow arrow indicates the
needle tip.

PAT is an effective imaging modality for observing microvascular perfusion as well
as detecting viable tissues [39,42]. A grayscale US and even US with a CDFI mode cannot
differentiate between viable and non-viable tissues, especially in predominantly cystic
and purely cystic nodules [41]. More vascular signals inside the nodules and surrounding
thyroid parenchyma were seen in PAT imaging than in US(CDFI mode) imaging. It was
demonstrated PAT/US can image viable tissues by visualizing small vessels and vessels
with slow blood flow speed, as well as providing functional imaging besides speed. Alter-
natively, the DC V~VI nodules in this study showed lower intensity PA signals compared
to DC I~IV. DC V, and DC VI represents suspicions for malignancy and malignant sample
in cytology, respectively. It was found that vascularity was more frequently seen in benign
nodules, since fibrosis within thyroid carcinoma cause the low vascular density [62]. More-
over, a previous study revealed a lower SO2 level in the PTC than in the benign nodule by
PAT/US dual-model imaging [41], indicating that this mixed method has a large potential
for localizing viable tissues in thyroid tumors. In this regard, it has potential to provide
those specific nodule characteristics to improve the sample inadequacy of FNABs.

Nodules with calcified morphology generally resulted in inadequate cytology due to
their lack of cellularity [63]. It was reported that 19.8–32.1% of thyroid nodules presented
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with some type of calcification [64,65]. The prevalence of calcification in thyroid nodules is
estimated to be around 40% in malignant and 20% in benign nodules [66]. In US imaging,
microcalcifications appear as hyperechoic spots that are ≤2 mm in diameter (named as
stromal calcification, psammoma bodies or bone formation), while macrocalcifications were
>2 mm with posterior acoustic shadow [67]. Nodules with microcalcifications can be easily
identified by US imaging, and easily confirmed the appropriate puncture site for FNAB.
However, due to the posterior acoustic shadow of macrocalcifications, it is difficult to
identify viable tissues from those dark shadows. In a chicken breast phantom, calcification
particles measuring 0.5 mm can be visualized with PAT at a depth of 30 mm [68]. Within
this depth range, all 25 nodules were successfully visualized in PAT imaging, including
7 calcified nodules. Only one of whom showed inadequate cytology, classified as DC I
(case No. 22). In this regard, the inadequate rate in our work has achieved the acceptable
threshold of 10% in the literature [15].

Among seven calcified nodules, three nodules exhibited microcalcifications (punctate
hyperechogenic foci) in the US. In the PAT imaging, microcalcification areas showed similar
PA signals compared with surrounding nodular tissues. Since PAT is more sensitive to
changes of tissue absorption rather than scattering changes, microcalcifications may be
difficult to detect in thyroid nodules by PAT alone [69]. Four nodules exhibited macro-
calcifications by US. In thyroid nodules, it is generally accepted that microcalcifications
represent psammoma bodies and are therefore reliable indicators of malignancy, while
central macrocalcifications are usually predictive of benign in pathology. However, there
are some different classifications for the types of macrocalcifications associated with malig-
nancy, such as coarse macrocalcifications and interrupted eggshell macrocalcifications [63].
Coarse macrocalcifications are referred to as dystrophic calcifications, which can be found
in malignant conditions of the thyroid, as well as benign diseases (e.g., Graves’ disease or
nodular goiter) [63]. The tumor infiltration through the broken calcification rim may be pre-
sented as the focal interruption of an eggshell calcification. Since those macrocalcifications
are associated with malignancy, they lead to FNABs. Case No.22 in our study was classified
as TIRADS 4b with the largest diameter of 7.4 mm before FNAB. It was presented as a
completely coarse macrocalcification, which presented as a hyperechoic nodule with a wide
shadow in US and high-intensity signals in PAT imaging. Thus, it was difficult to detect
viable tissues by both US and PAT imaging, resulting in an inadequate cytology(DC I). An
eggshell calcification was found in case No.1, presenting as a hypoechoic nodule with a
hyperechoic boundary in US imaging and moderate-intensity signal with high-intensity
boundary in PAT imaging (Figure 4). The cytology after FNAB revealed it was a DC III
thyroid nodule. Therefore, the challenge to FNAB in calcified nodules is to choose an
appropriate puncture position, allowing more sufficient samples for cytology. US-guided
FNAB makes it difficult to detect viable tissues in macrocalcified nodules, due to the hyper-
echoic characteristics and posterior wide dark shadow. However, in our investigation, PAT
in 760 nm and 840 nm imaging was capable of depicting viable tissues in macrocalcified
nodules with both anatomic and functional information.

The distribution of blood and perfusion in PTC are associated with tumor size [70,71].
Smaller nodules measuring less than 10 mm might exhibit poor blood flow signals, whereas
larger nodules exceeding 20 mm could demonstrate the contrary pattern. A nodular with
the largest diameter of 6.4 mm (case No. 25 in Table 1) is shown in Figure 5. The nodular
depth (the gel surface to the nearest point on the surface of nodule) is 12.4 mm. This
nodule had an unclear boundary and hypoechoic US feature. Nodular CDFI identified
no blood signal (Adler grade 0) inside the thyroid nodule (Figure 5a), while PAT imaging
displayed more PA signals inside the nodule and its surrounding thyroid parenchyma
(Figure 5b), indicating a higher vasculature distribution in the thyroid nodule. The FNAB
result showed adequate cytology (DC V) in Bethesda system, adding confidence on the
feasibility of this dual-modality method for FNAB of nodule with small lesions. Finally, the
patient underwent a right thyroid lobectomy. The immunohistochemistry result confirmed
PTC with BRAF V600E gene mutation, which is a risk factor of lymph node and distant
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aggressiveness. Consequently, this PAT/US dual-model evaluation of the thyroid nodule
before FNAB would assist sonographers to choose puncture paths, depth and site, especially
for the smaller size nodules with poor CDFI signals. In addition, PAT imaging is potentially
providing information for screening early PTC with a high risk of aggressiveness.
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Figure 5. FNAB procedures under PAT/US-guidance. (a) US(in CDFI mode) imaging showed a
nodule in the right thyroid lobe without CDFI signals inside, (b) area with moderate-intensity PA
signals (black asterisk) inside the thyroid nodular was selected as the puncture point and (c) FNAB
under US-guidance according to the PAT imaging in cross-sections of the right thyroid lobe. Green
arrows indicate the needle, and yellow arrow indicates the needle tip in right thyroid lobe. US:
Ultrasound; CDFI: colored Doppler flow imaging; PAT: photoacoustic tomography, R-THY: right
thyroid lobe; Tr: Trachea, M: muscle.

Given the continuously ultrasonic reflected signals in thyroid nodules shown by
PAT, the PAT/US dual modality provides precise guidance for targeted area puncturing.
PAT/US guided FNAB may eliminate the effect of both calcified and cystic components to
sample adequacy, by increasing the adequate cytology rate of those thyroid nodules. In ad-
dition, PAT/US can provide dual-model imaging of the thyroid’s structural and functional
information (e.g., HbO2, HbR and SO2 contents) without injection of exogenous contrast
agents during FNAB process. Moreover, it takes the advantages of a brief examination
duration (~5 min) and radiation-free, which has great potential for clinical application.

Our study had some limitations. First of all, quantitative parameters (e.g., HbO2, HbR
and SO2 contents) within the thyroid nodules could not be displayed in real time. Second,
the sample size of this study was relatively small; therefore, statistical analysis of thyroid
nodules with different components was not performed. Third, PAT and US imaging were
performed separately, which might cause inconsistency in the acquisition sections between
the two imaging modalities. Forth, the different PA imaging systems may also exhibit
different signal strengths for the same samples, meaning there was lack of a standard that
can be transferred across different systems. Subsequent developments are needed to further
update the PAT/US dual-model system in several regards, as follows: (1) PAT/US-guidance
in real-time; (2) multispectral parameters processed; (3) high temporal resolution; (4) three-
dimensional fast imaging for vessel information of thyroid tumor; (5) further studies being
conducted to explore a more comprehensive quantitative analysis of thyroid nodules, such
as PA radio( the ratio of nodule to the normal thyroid tissue), thereby enhancing the value
of our studies; and (6) further research on the feasibility of PAT/US guided FNAB will be
conducted in a larger sample of thyroid nodules.

Taken together, dual modal PAT/US imaging shows great promise as a real-time diag-
nosis and biopsy guidance tool for visualization of thyroid nodules and has the potential
for FNAB guidance of high-risk inadequate thyroid nodules.
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