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Abstract: Deviations or distortions in the trajectoy of MEMS-based Lissajous scanning imaging plat-
forms might be detrimental to imaging quality. These deviations often arise from differences in MEMS
mirror frequency response characteristics and asymmetry in parameters within the measurement and
control circuit. This study concentrated on the measurement and control circuit unit as it identified
and analyzed four error sources: the MEMS mirror frequency response error, the AD acquisition
synchronization error, the drive source error, and the cross-coupling error between the MEMS mirror
axes. This study constructed a Lissajous trajectory test platform based on oscilloscopes and a position
sensitive detector. Consequently, its experimental results guided the error processing methods to
access the feasibility of the compensation methods by combining measured trajectories. Overall, re-
garding MEMS-based Lissajous scanning platforms for biomedical imaging, this study could provide
quantitative numerical references for error analysis, image reconstruction, and aberration correction.

Keywords: two-dimensional MEMS mirrors; Lissajous scanning; trajectory distortion; error sources

1. Introduction

The MEMS mirror, employing Micro-Electro-Mechanical Systems (MEMS) and beam
control technologies, offers advantages such as rapid response, compact size, and rela-
tively wide scanning angles [1,2]. Two-dimensional MEMS mirrors have extensive appli-
cations in portable and miniature microscopic imaging instruments, including confocal
microscopy [3–5], nonlinear microscopy [6–10], and photoacoustic microscopy [11–13].
They come in various types, driven by different mechanisms like electrostatic, electromag-
netic, thermoelectric, and piezoelectric methods [1]. Among these, electrostatic MEMS
mirrors offer the advantage of a relatively higher scanning frequency to enable faster frame
rates. Researchers have explored various scanning schemes, including raster scanning,
spiral scanning, and Lissajous scanning [14]. Lissajous scanning, in particular, offers light
uniformity, trajectory parameter selection flexibility, and robust adaptability [15,16].

Several research groups have explored MEMS-based Lissajous scanning techniques
for confocal and two-photon microscopy. Previous work primarily focused on aspects like
the frequency selection principle of the Lissajous patterns, the design and optimization
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of MEMS mirrors, enhancements to optical and mechanical probe schemes, as well as
hardware and software techniques to improve image quality [17–20]. However, limited
research has focused on characterizing the control circuitry within Lissajous imaging sys-
tems, specifically in indentifying the error sources. The complex control circuit, coupled
with several error factors, can introduce deviations or distortions into Lissajous trajectories,
posing challenges for image reconstruction and imaging quality degradation. Moreover,
closed-loop control strategies for integrated portable/miniature confocal and two-photon
microscopy systems remain a persistent challenge when relying on feedback from sensing
elements. Alternatively, open-loop feedforward control strategies are typically employed,
which necessitate prior knowledge of quantitative error data. This information proves
crucial for fine-tuning control circuitry drive signal parameters during feedforward com-
pensation control and determining key parameters, such as the amplitude and phase for
image reconstruction. Consequently, investigating error sources within the measurement
and control circuitry holds theoretical and practical importance in advancing MEMS-based
biomedical platforms.

In this work, we performed an analysis of error sources in the Lissajous scanning
trajectory based on two-dimensional MEMS mirrors. The theory of Lissajous graphs and
signal parameters that define the Lissajous trajectory were introduced, providing a theo-
retical basis for subsequent error analysis and compensation. Furthermore, we identified
four error sources within the measurement and control circuit unit: the MEMS mirror
frequency response error, the AD acquisition synchronization error, the drive source error,
and the cross-coupling error between MEMS mirror axes. We designed and implemented
a test platform using oscilloscopes and a position sensitive detector (PSD). For each type
of error source, experimental methods were developed to quantitatively determine the
errors. Finally, error calibration experiments were conducted, to verify the existence of error
types, assess their magnitudes, and demonstrate the feasibility of error compensation. This
work could provide quantitative references for the implementation of error analysis, image
reconstruction, and aberration correction in MEMS-based Lissajous scanning microscopy.

2. Methods
2.1. Lissajous Theory

The Lissajous trajectory represents the compounded path followed by a point under-
going harmonic motion along both x and y axes [21]. Its mathematical description can be
expressed by Equation (1). {

x = Axsin(2π fxt + ϕx)
y = Aysin

(
2π fyt + ϕy

) . (1)

Ax and Ay are the amplitudes of the x and y axes, fx and fy are the frequencies of the
x and y axes, and ϕx and ϕy are the initial phases of the x and y axes.

Applying the inverse sine function to both sides of Equations (1) and (2) is calculated
as follows: {

2π fxt + ϕx + 2iπ = ±sin−1 x
Ax

2π fyt + ϕy + 2jπ = ±sin−1 y
Ay

, (2)

where i, j are arbitrary integers. By performing calculations on Equation (2), Equation (3) is
obtained as follows:

fx

fy
=
−ϕx − 2iπ ± sin−1 x

Ax

−ϕy − 2jπ ± sin−1 y
Ay

. (3)

The frequency ratio parameters m = fx
gcd( fx , fy)

and n =
fy

gcd( fx , fy)
are defined, with

gcd
(

fx, fy
)

being the maximum common divisor of fx and fy. Taking m
n = fx

fy
(where m, n

are mutually prime integers) into Equation (3), Equation (4) is deduced as follows:

mϕy − nϕx + 2(jm− in)π = ±msin−1 y
Ay
∓ n sin

−1 x
Ax

. (4)
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By taking the sine of both sides of Equation (4), Equation (5) is presented as follows:

sin
(
mϕy − nϕx

)
= sin

(
msin−1 y

Ay
± n sin

−1 x
Ax

)
. (5)

From the trajectory equation presented in Equation (5), the Lissajous trajectory is
evidently determined by the frequency ratio parameters m, n and mϕy − nϕx [22] when the
values of amplitudes Ax and Ay are fixed. The trajectory refresh frequency (frame rate)
of the Lissajous scanning trajectory corresponds to the maximum common divisor of fx
and fy.

2.2. MEMS Scanning Lissajous Trajectory Test Platform Overview

To investigate error factors within the MEMS-based Lissajous scanning system, a test
platform was constructed as illustrated in Figure 1. The platform mainly consisted of a
customized ZYNQ control board, a high-voltage amplification circuit, a low-pass filtering
circuit, a MEMS mirror, a laser, a PSD, an analog-to-digital module (AD), a personal
computer (PC), and oscilloscopes.
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Figure 1. The schematic diagram of the MEMS-based Lissajous trajectory test platform. PSD: position
sensitive detector. AD: analog-to-digital module. PC: personal computer. DC power: direct current
power. Red arrows indicate the optical path. Blue arrows signify the signal paths generated by the
signal generator and observed by the oscilloscope. Finally, the black arrows represent the signal paths
generated by the ZYNQ control board and the X/Y trajectory paths.

The ZYNQ control board was used to generate the differential signals for driving
the MEMS mirror, with a phase difference of ±180◦. These signals offered programmable
control over their frequency (range from 0 to 10 kHz), amplitude (range from 0 V to +10 V),
and phase (range from 0◦ to 360◦). The high-voltage amplification circuit generated a
high-voltage differential driving signal with a DC bias of 80 V and a peak-to-peak voltage
ranging from −150 V to +150 V. The signal contained high-frequency noise, which was
filtered out by the low-pass filtering circuit with a cutoff frequency of 20 kHz before being
utilized to drive the MEMS mirror.

The laser (M-16A650-10, Hengjiu LED, Guangzhou, China) operated at a wavelength
of 650 nm, delivered 10 mW of power, and featured an adjustable output spot diameter.
The fixtures were used to position the laser and the MEMS mirror, ensuring that the laser
beam was incident onto the center of MEMS mirror surface at a 45◦ angle with slightly
shifts in the incident point position within ±4◦ range. During scanning, the reflected
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beam was incident on the PSD, which converted the light trajectory into electrical signals.
After being processed by the filtering circuit, these signals could be either visualized
on an oscilloscope to observe the scanning trajectory or collected by the AD module and
subsequently uploaded to the PC. The digital oscilloscope (TDS2012C, Tektronix, Beaverton,
OR, USA) boasted a bandwidth of 100 MHz and a sampling rate of 2 GS/s. Given that the
signal frequencies did not exceed 5 kHz, the presence of the oscilloscope had a negligible
impact on the measurement and control circuitry. In YT mode and XY mode, the single and
combined electrical characteristics could be observed, respectively.

For the AD acquisition module, the PXI card (PXI3223) was employed, featuring eight
parallel acquisition channels, 14-bit acquisition precision, adjustable sampling rates ranging
from 1 to 20 MSa/s, and a measurement range of±10 V. The PC was a chassis-controller con-
figuration manufactured by National Instruments. The PSD (PDP90A, Thorlabs, Newton,
NJ, USA) was selected for its 15 kHz bandwidth, a typical output signal amplitude accuracy
of 0.3 mV, and a detection area of up to 9 mm × 9 mm.

3. Experimental Validation

In the experimental validation, we focused on four error sources in MEMS-based Lis-
sajous scanning platforms: the MEMS mirror frequency response error, the AD acquisition
synchronization error, driver source errors, and the cross-coupling error between MEMS
mirror axes. These error sources were analyzed and tested, as described in Sections 3.1–3.4.

3.1. Frequency Response Error of a Two-Dimensional MEMS Mirror

A two-dimensional quasi-static MEMS mirror (A3I12.2, Mirrorcle Technologies, Rich-
mond, CA, USA) was selected for the Lissajous scanning platform [23], as depicted in
Figure 2. This aluminum-coated scanning mirror operated with a differential drive on both
of its axes, featuring a mirror diameter of 1.2 mm, a maximum differential voltage of 150 V,
and a single-ended signal DC bias of 80 V. The mechanical deflection angle of the mirror
had a range of up to ±5.4◦, with resonant frequencies of 2937 Hz for the X axis and 2913 Hz
for the Y axis. This mirror exhibited operational capability across the frequency range from
zero to its resonant frequencies, thereby offering flexible frequency selectivity for Lissajous
trajectory [24].
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Figure 2. A photograph of a two-dimensional MEMS mirror.

To investigate the influence of frequency characteristics on the trajectory of the MEMS
mirror, we designed a model for its frequency response test, as depicted in Figure 3 [25].
The control circuit generated two-channel high-voltage differential signals with a DC bias
of 80 V and a phase difference of π, which drove both the X and Y axes of the MEMS mirror.
The signals induced mechanical angular vibrations of the mirror, resulting in the generation
of a Lissajous trajectory [26]. A PSD was employed to convert the light signal into electrical
signals along both axes [27]. Oscilloscopes were used to measure the amplitude and phase
information of the Lissajous trajectory. Given the sufficiently high bandwidth of the PSD
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and the oscilloscopes compared to the MEMS mirror, the obtained results reflected the
operational characteristics of the MEMS mirror.
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Figure 3. The MEMS mirror frequency response test model.

To account for the MEMS’s mirror lifespan and practicality, this study limited the
operating frequency to 2600 Hz. The output amplitudes of the measurement and control
circuit (also the input amplitude of the MEMS mirror), denoted as Vx, and Vy, were re-
stricted to 40% of the full-scale range Vmax. Employing the model presented in Figure 3,
we conducted frequency response tests for both axes of the MEMS mirror. The measured
output amplitudes of the PSD signals were recorded as V′x, and V′y. The measured phase dif-
ferences between the input MEMS drive signals and PSD output signals were measured as
∆ϕx = Θx −Φx, and ∆ϕy = Θy −Φy. At a specific frequency of 50 Hz, the measured out-
put amplitudes of the PSD signals were recorded as V′x0 and V′y0. The measured amplitude
of the PSD signals versus the input amplitude ratio curves is depicted in Figure 4a. Based
on this figure, when the input amplitude ratio was set as 0.2, the measured amplitudes were
noted as V ′′x0, and V ′′y0. The amplitude frequency response curves obtained in this situation
are depicted in Figure 4b. In this figure, the horizontal axis represents the frequency, and

the vertical axis represents the output amplitude ratios of two axes, V′x
V′′x0

and
V′y
V′′y0

. Meanwhile,

the phase frequency response curves obtained in this situation are depicted in Figure 4c.
The horizontal axis represents the frequency, and the vertical axis represents the phase
differences of two axes, ∆ϕx and ∆ϕy. The variations in the MEMS mirrors’ X and Y axes,
in conjunction with their associated DA circuits, high-voltage amplification circuits, and
low-pass filtering circuits, led to differences in the frequency response characteristics. The
experimental results indicated that when the frequency was below 800 Hz, the frequency
response characteristics of both axes closely matched. However, within the frequency range
of 800 Hz to 2600 Hz, the amplitude ratio of the X axis exceeded that of the Y axis by less
than 0.1. The phase difference of the X axis exceeded that of the Y axis, with a difference
within a range of 10◦.

Furthermore, we selected specific drive signal parameters as follows: fx = 2300 Hz,
fx = 2300 Hz, Vx = Vy = 0.2 Vmax, and Φx = Φy = 0◦. By referring to Figure 4,
we derived the actual scanning trajectory for the X axis, which had an amplitude of
V′x = 0.51 V′x0 = 1.91 V and a phase of Θx = −107◦, and for the Y axis, which had an
amplitude of V′y = 0.45 V′y0 = 1.43 V and a phase of Θx = −112◦. Note that the amplitudes
and phases of the two axes were not equal. This quantitative information can be used to
compensate for the frequency response error caused by the MEMS mirror.
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Figure 4. The MEMS mirror frequency response characteristics. Red line: X axis. Blue line: Y axis.
(a) Measured amplitude of the PSD output signals versus the input amplitude ratio curves. The input
amplitude ratio varied from 0 to 0.4. (b) Amplitude frequency response curves. The frequency varied
from 50 Hz to 2600 Hz in 50-Hz increments. The input amplitude ratio was set as 0.2. (c) Phase
frequency response curves. The frequency varied from 50 Hz to 2600 Hz in 50 Hz increments. The
input amplitude ratio was set as 0.2.

3.2. AD Acquisition Synchronization Error

The AD circuit mainly comprises a conditioning circuit and an AD integrated chip. In
cases involving multiple AD acquisition channels, differences in phase frequency charac-
teristics arise due to the asymmetry of circuit parameters among the channels. When the
frequency of the acquired signal varies across these channels, it exacerbates phase delays.
Consequently, the initially set phase difference for the acquired signal deviates from its
theoretical value, resulting in an AD acquisition synchronization error.

As per Lissajous graph theory, variations in phase between X and Y axes lead to
alterations in the Lissajous trajectory [28]. To illustrate this point, we considered two sets of
parameters, Vx = V′x = 5 V, Vy = V′y = 5 V, fx = f ′x = 1200 Hz, and fy = f ′y = 1300 Hz,
differing only in the initial phase ϕx = ϕ′x = 0◦, ϕy = 0◦, ϕ′y = 1◦. Two theoretical
Lissajous trajectories were plotted, as illustrated in Figure 5a,b. After zooming in Figure 5a,
a deviation between the two theoretical trajectories became noticeable, as depicted in
Figure 5b. This trajectory deviation could induce distortion during image reconstruction.

A signal generator was used to generate two sine signals for the X and Y channels, with
the following parameters: Vx = 5 V, fx = 1200 Hz, ϕx = 0◦ and Vy = 5 V, fy = 1300 Hz,
ϕy = 0◦. Subsequently, two independent parallel AD channels simultaneously captured the
X and Y signals at a sampling rate set of 10M Sa/s, The overview and zoomed-in view of the
uncompensated measured Lissajous trajectory, along with the theoretical trajectory 1, were
plotted, respectively, as shown in Figure 6a,b. The synchronization between the acquisition
of the two AD channels deviated, leading to a change in the initial phase difference between



Photonics 2023, 10, 1123 7 of 14

the X and Y signals and causing an offset in the Lissajous trajectory. The uncompensated
measured trajectory partially coincided with the theoretical trajectory 1.
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Figure 6. Overall and zoomed-in diagrams of the measured and theoretical trajectories. (a) Overall
view of the uncompensated measured and theoretical trajectory 1. (b) Zoomed-in view of the green
dashed box labeled in (a). (c) Overall view of the compensated measured and theoretical trajectory 1.
(d) Zoomed-in view of the green dashed box labeled in (c).

Furthermore, the initial phase of the X axis ϕx remained unaltered, and the initial
phase of the Y axis ϕy was adjusted. When the compensated measured trajectory coincided
with the theoretical trajectory 1, the initial phase of the Y axis, ϕ′y = 1.12◦, corresponding to
a phase adjustment, ∆ϕy = ϕ′y − ϕ

y
= 1.12◦. ∆ϕy could be regarded as the AD acquisition



Photonics 2023, 10, 1123 8 of 14

synchronization error under the specified parameters. As depicted in Figure 6c,d, we
observed an improved overlap between the compensated measured Lissajous trajectory
and the theoretical trajectory 1. Note that the phase adjustment values were determined for
specific frequency parameters. When the frequencies of the X and Y axes signals changed,
the phase adjustment values also altered accordingly.

3.3. Drive Source Error

Within the platform, the measurement and control unit generated the drive signals for
the MEMS mirror, consisting of the voltage generation circuit, the bias conditioning circuit,
the high-voltage amplifier circuit, and the low-pass filter circuit [29–32]. Due to asymmetry
in the circuit parameters and frequency characteristics, the measured drive signals deviated
from the theoretical signals, particularly in the amplitude and phase. These discrepancies in
drive source resulted in a mismatch between the theoretical and measured trajectories [33].

By referring to Figure 1a, we used an oscilloscope to monitor the drive signals out-
put by the high-voltage amplifier circuit at three frequencies: 2300 Hz, 1200 Hz, and
600 Hz. We quantified the measured amplitude differences and deviations in the phase
differences between X2 and Y2 relative to their input signals, denoted as ∆AX2−Y2 and
∆Phase di f f erenceX2−Y2, respectively. As depicted in Figure 7a, the amplitude difference
∆AX2−Y2 exhibited an overall increasing trend, fluctuating within the range of −0.1 V
to +0.9 V. Furthermore, as presented in Figure 7b, the deviations in phase differences
∆Phase di f f erenceX2−Y2 ranged from −1◦ to +0.6◦.
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Figure 7. The characteristics of the drive source errors at three different frequencies. (a) Amplitude
difference ∆AX2−Y2 versus the input amplitude ratio curves. The input amplitude VX2 = VY2.
(b) Phase difference deviation ∆Phase di f f erenceX2−Y2 versus input phase difference curves. The
input amplitude VX2 = VY2 = 0.2 Vmax.

To assess the impact of the low-pass filter circuit on the drive source error, we per-
formed tests on the X3 channels. The frequency response curves of the low-pass filter circuit
are illustrated in Figure 8a,b. The input amplitude VX2 = 0.2 Vmax, ϕX2 = 0◦. The results
indicated that the measured output amplitude ratio AX3

AX2
consistently exceeded 0.97, and

the measured phase difference ∆ϕX3−X2 varied between −1◦ and −15◦.
To establish a reference for the Lissajous trajectory, the drive signal parameters were

set as follows: VX = 0.2 Vmax, VY = 0.2Vmax, fX = 2300Hz, fY = 1200Hz, fX
fY

= m
n = 23

12 ,
ϕX = 0◦, ϕY = 0◦, and mϕY − nϕX = 0◦ and were generated by the signal generator. The
reference Lissajous trajectory was observed by an oscilloscope, as illustrated in Figure 9a,b.

The parameters were also set and output by the measurement and control circuit for
testing the Lissajous trajectory. Figure 9c,d display the uncompensated Lissajous trajectory,
exhibiting a reduction in the X axis amplitude. The measured amplitudes for X3 and
Y3 axes were 13.3 V and 15.72 V, and the amplitude difference ∆AX3−Y3 was approxi-
mately −2.4 V, and the phase difference ∆ϕX3−Y3 was approximately −6.3◦. The calculated
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mϕ′Y − nϕ′X 6= 0◦, which resulted in a deviation from the reference Lissajous trajectory. Fig-
ure 9e,f show the compensated Lissajous trajectory. The X axis amplitude increased by 2.4 V,
such that the amplitude difference ∆AX3−Y3 = 0 V. The Y axis phase remained unchanged,
while the X axis phase adjusted by ∆ϕX = 6.3◦, such that mϕ′Y − n(ϕ′X + ∆ϕX) = 0◦. These
results indicated that the compensated Lissajous trajectory aligned with the reference
Lissajous trajectory.
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Figure 8. Low-pass filter circuit frequency response characteristics. Frequency fX2 vary from 50 Hz
to 2600 Hz in 50 Hz increments. (a) Amplitude frequency response curve. (b) Phase frequency
response curve.
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Figure 9. The overall and zoomed-in diagrams of the Lissajous trajectories. (a) The reference Lissajous
trajectory. (b) The zoomed-in view of the white box in (a). (c) The uncompensated measured Lissajous
trajectory. (d) The zoomed-in view of the white box in (c). (e) The compensated measured Lissajous
trajectory. (f) The zoomed-in view of the white box in (e).

3.4. Cross-Coupling Error between the MEMS Mirror Axes

The two-dimensional MEMS mirror utilizes biaxial mechanical vibration to precisely
control the reflector’s position. It employs a double-axis orthogonal support beam structure.
As such, machining process errors, including support beam width, unequal elasticity, and
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mass asymmetry, can lead to inter-axis cross-coupling interference [34–36]. In [37], the
presence of asymmetry along both axes, resulted in unequal elasticity, leading to the
generation of coupling forces. The Equation describing the coupling force along the Y axis
is as follows:

Fy =
sin 2α

2
(kxx − kyy) · x, (6)

where α represents the angle between the elastic and inertial principal axis, kxx and kyy
are the stiffness coefficients along the X and Y axes, respectively, and variable ‘x’ denotes
the displacement of the X axis support beam. The coupling force along the Y axis induces
the deflection of its support beams around the X axis, subsequently driving the scanning
mirror’s deflection and generating a trajectory component in the Y axis.

Given the symmetry and similarities between the MEMS mirror’s X and Y axes, we
conducted the test on the X axis. Five sets of sinusoidal signals with different amplitudes
VX and frequencies fX were applied to the X axis, while the amplitude of Y axis was set
to zero. PSD was used to capture the trajectory of the MEMS mirror and convert it into
electrical signals. The specific parameters of the X and Y signals were observed in the YT
mode of the oscilloscope, and the trajectory was observed in the XY mode, as illustrated
in Figure 10. In the first set of waveforms (a), (b), and (c), the amplitude was fixed at
VX = 0.1 Vmax and the frequencies were set to 2300 Hz, 1200 Hz, and 600 Hz, respectively.
In the second set of waveforms (a), (d), and (e), the frequency was fixed at fX = 2300 Hz,
and the amplitudes VX were set to 0.1 Vmax, 0.2 Vmax, and 0.3 Vmax, respectively.
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Figure 10. Cross-coupling error characteristics of the MEMS mirror’s X axis. Yellow line: X axis. Blue
line: Y axis. They indicate the results of the PSD waveform signals from the X and Y axes captured
in the oscilloscope’s YT mode at different drive conditions. (a,b) VX = 0.1 Vmax, fX = 2300 Hz.
(c,d) VX = 0.1 Vmax, fX = 1200 Hz. (e,f) VX = 0.1 Vmax, fX = 600 Hz. (g,h) VX = 0.2 Vmax,
fX = 2300 Hz. (i,j) VX = 0.3 Vmax, fX = 2300 Hz.
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As depicted in Figure 10a–c, when the amplitude was fixed at VX = 0.1 Vmax, the
trajectory captured in the oscilloscope’s YT Mode exhibited a component in the Y direc-
tion [38], with respective amplitudes of 8.8 mV, 9.8 mV, and 10.4 mV. These frequencies
aligned with the X axis operating frequency, and the coupling error amplitude tended
to decrease as the signal frequency increased. These variations in coupling interference
amplitude were attributed to the amplitude frequency characteristics of the MEMS mirror,
as discussed in Section 3.1. Specifically, the MEMS mirror exhibited low-pass characteristics,
causing an increased amplitude attenuation and a decrease in the oscillation angle along
the X axis with higher frequencies. Consequently, this attenuation weakened the coupling
forces acting on the Y axis, resulting in reduced interference in the Y axis deflection. This
reduction was manifested as a decrease in the amplitude component along the Y axis,
consistent with experimental results.

As depicted in Figure 10a,d,e, when the frequency was fixed at fX = 2300 Hz, there
was a component in the Y direction, with respective amplitudes of 8.8 mV, 15.6 mV, and
22.6 mV. The coupling error amplitude tended to increase as the driving signal amplitude
increased and the MEMS mirror vibration amplitude increased. As the amplitude of the
MEMS mirror’s X axis vibration increased, the amplitude of coupling errors in the Y axis
also rose. This increase in coupling interference aligned with the experimental observa-
tions as the X axis amplitude continued to increase. The single axis cross-coupling error
characteristics presented above revealed an inter-axis coupling interference phenomenon
when the MEMS mirror was in operation. The coupling error was found dependent on the
driving signal parameters, with a signal-to-noise ratio of approximately 40 dB.

In practical Lissajous scanning situation, effective drive signals were applied to both
MEMS mirror axes. For example, a group of input drive signals paramters were considered:
VX = VY = 0.1 Vmax, fX = fY = 1200 Hz, and ϕX = 0◦, ϕY = 90◦. As depicted in
Figure 11a,b, the Y axis peak-to-peak signals were compensated by +0.4 V, while the X and
Y axes’ phase difference was compensated by +0.2◦, effectively eliminating the drive source
signal error (Section 3.3). Furthermore, by referring to Section 3.4, the Y axis peak-to-peak
signals were compensated by +0.16 V, while the X and Y axes phase difference was compen-
sated by −2.6◦, as shown in Figure 12a,b, thus eliminating the effect of the MEMS mirror
frequency response characteristics. The compensated waveforms and combined trajectory
were then obtained, as shown in Figure 13a,b. The theoretical trajectory, representing a
circle, closely matched the measured trajectory after eliminating the source signal and
MEMS mirror frequency response errors. Additionally, the cross-coupling error (less than
20 mV) exhibited a minimal impact in the practical two-dimensional scanning applications.
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Figure 11. Source drive signal waveforms captured in the YT mode. Yellow line: X axis. Blue line:
Y axis. (a) Uncompensated X and Y axis waveforms. VX = 13.6 V, VY = 14 V, fX = fY = 1200 Hz.
X and Y axes’ phase difference of 89.8◦. (b) Compensated X and Y axis waveforms. VX = 14 V,
VY = 14 V, fX = fY = 1200 Hz. X and Y axes’ phase difference of 90◦.
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Figure 12. Signal waveforms after eliminating the effect of MEMS mirror frequency response charac-
teristics captured in the YT mode. Yellow line: X axis. Blue line: Y axis. (a) Uncompensated X and Y
axis waveforms. VX = 0.88 V, VY = 1.04 V, fX = fY = 1200 Hz. X and Y axes’ phase difference 92.6◦.
(b) Compensated X and Y axis waveforms. VX = 0.88 V, VY = 1.04 V, fX = fY = 1200 Hz. X and Y
axes’ phase difference 90◦.
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Figure 13. Compensated trajectory waveforms. Yellow line: X axis. Blue line: Y axis. (a) X and Y axis
waveforms in the YT mode. VX = VY = 1.04 V, fX = fY = 1200 Hz. X and Y axes’ phase difference
90◦. (b) Combined trajectory in the XY mode.

4. Conclusions

This study aimed to analyze the error sources in MEMS-based Lissajous scanning
platforms. To provide a theoretical foundation for error analysis and compensation, we
introduced Lissajous graph theory and essential signal parameters. Furthermore, we
identified four error sources within the measurement and control circuit and developed
dedicated experimental methods for quantitative assessment. Finally, error calibration
experiments were conducted, to verify the existence of error types, assess their magni-
tudes, and demonstrate the feasibility of error compensation. Overall, this study offers
essential quantitative error references for implementing feedforward control and image
reconstruction in MEMS-based Lissajous scanning microscopy.

In forthcoming research endeavors, we aspire to further develop Lissajous scanning
miniature nonlinear microscopy using two-dimensional MEMS mirrors. In this case, our
upcoming research focus will prioritize high-density scans of Lissajous trajectories, precise
circuit synchronization, thus achieving the integration of miniature nonlinear probes for
biomedical applications, including label-free endomicroscopic imaging and brain imaging
in freely behaving mice.
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