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Abstract: We have established a novel method for quadrature signal construction in a semiconductor
laser diode self-mixing interferometry system using two photodiodes and a beam splitter with a
liquid crystal phase shifter (LCPS). This method entails placing an LCPS between the photodiode and
the beam splitter so that another phase shift self-mixing signal can be obtained. Then, an arctangent
phase algorithm can be used to demodulate the pair of quadrature signals to reconstruct the vibration
information of the target object. This method simplifies the self-mixing signal demodulation process
and the reconstruction of vibration information. Our experimental results demonstrate the feasibility
of using self-mixing phase shifter detection for self-mixing optical measurements. The work illustrates
a sort of efficient and referable novel design guidance model which supports the quadrature signals
construction in a self-mixing interferometer based on a semiconductor laser diode.

Keywords: self-mixing interferometry; quadrature detection; semiconductor laser sensor; liquid crystal

1. Introduction

Self-mixing interferometry (SMI) is a technique wherein the feedback surface of a
vibrating object is used as the composite cavity of a laser, and it is distinct from other
types of optical interferometry. Measurement technologies based on SMI have simple
structures and are suitable for a scattering target surface. They also have high measurement
sensitivity and accuracy. Therefore, SMI measurement techniques have been applied in
various scenarios in recent years [1–17].

Some recent works have proposed the use of SMI technology to measure physical
properties or reconstruct multidimensional displacement. An all-fiber SMI system without
SMI fringes was developed to measure Young’s modulus and internal friction simulta-
neously [18]. In another study, by proposing an SMI configuration with a single laser
that generates three modulated light beams with different carrier frequencies, a multidi-
mensional displacement measurement technology was developed by using self-mixing
interferometry (SMI) in conjunction with a frequency division multiplexing (FDM) tech-
nique [19]. However, in some applications, a decrease in accuracy and even incorrect
demodulation resulting from the distortion of SMI fringes caused by the undesired varia-
tion of the feedback regime are foreseeable. Therefore, to solve this problem, various signal
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processing methods have been proposed. One study provided a comprehensive analysis
of SMI signal waveforms to determine system parameters and movement directions via a
single-channel weak feedback SMI signal. In the cited work, the influence of two system
parameters, i.e., the linewidth enhancement factor and the optical feedback factor, on the
symmetry of SMI signals was investigated. Then, a method of estimating the system pa-
rameters and displacement directions was proposed [20]. A new signal processing method
named orthogonal signal phase multiplication (OSPM) was proposed, which was used
to improve the precision of vibration measurement in a phase-modulating self-mixing
interferometer (SMI). The modulated signal was acquired using an electro-optic modulator,
which was placed in the external cavity [21].

Methods of quadrature signal construction have also been applied to SMI vibration
measurement to improve its accuracy. In one instance, the integration of phase manipu-
lation and polarization multiplexing was introduced to self-mixing interferometry (SMI)
for highly sensitive measurement [22]. Phases shifts induced by EOMs were utilized to
generate multi-harmonics. The first- and second-order harmonics were filtered through
band-pass filters, and a pair of quadrature signals were obtained. Then, displacements
were demodulated using an arctangent algorithm, and the measuring path number was
increased using polarizing light. A locked-in amplifier technique was also applied to a new
SMI quadrature detection method, thus contributing to high-precision measurement [23].
An EOM in the external cavity was used to modulate the phase of the beam, and a locked-in
amplifier analysis method was employed to calculate the real phase. However, the driver
of EOM had to be increased to a frequency level of 1MHz, and the driver voltage had to
be increased to 100 V. These requirements resulted in the need to use a complicated EOM
driver to ensure modulation. Additionally, the parameter of modulation depth needed
to be selected carefully. A multiple Hilbert transform method was proposed for SMI vi-
bration measurement by Z. Zhang and C. Li et al. [24]. Fringes with different inclinations
(right-inclined and left-inclined) were implemented using the Hilbert transform, once and
three times, to obtain quadrature signals. The reverse point judgement method the authors
used was provided by Y. Fan and Y. Yu et al. [25]. Elsewhere, an integral reconstruction
method was proposed by X. Wang and Y. Yuan et al. [26]. Micro-vibrations can be recon-
structed quickly and easily using this kind of method; however, a high-quality SMI signal
is required, and reverse point judgement will become difficult when the vibration signal
contains complex frequency components.

Based on the research on quadrature detection for self-mixing interferometry con-
ducted by J. Wu and F. Shu [27], we propose a method for obtaining a pair of quadrature
SMI signals using a liquid crystal phase shifter (LCPS) in combination with a non-polarizing
beam splitter, in which the LCPS used only requires an up to 10 Vpp square wave drive
voltage with a constant frequency of 1 kHz. In this method, reverse point judgement is no
longer needed. The obtained signal can be directly used to reconstruct the displacement of
vibrating objects using the arctangent demodulation algorithm.

2. Theory
2.1. Fundamentals of Lasing Characteristics of Laser Diode (LD) with External Cavity

An example of a simplified LD structure is the Fabry–Perot-type laser, as shown in
Figure 1. A stripe waveguide along the active layer is formed, and the optical wave may
propagate along this waveguide until it is reflected after a length of z = L at the cleaved
rear endface of the laser device. Lasing characteristics may be described using the field
equation approach [28]. The forward-travelling complex electrical field can be expressed as

E f (z) = E f (0)·e−j 2πµeνz
c + 1

2 (g−αs)z, (1)

while the backward version can be expressed as

Eb(z) = Eb(0)·e−j 2πµeν(L−z)
c + 1

2 (g−αs)(L−z), (2)
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with light velocity c [28].
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Figure 1. Electrical field flow in forward and backward directions in a semiconductor laser with facet
field reflectivity coefficients r1,r2.

E f (z) and Eb(z) are related to one another by the reflection coefficients r1, r2 of the laser
facets, where µe, denoting the effective refractive index of the LD, and ν = nc/2Lµe, with
the integer n, are the possible emission frequencies. The total gain coefficient is represented
by (g− αs).

According to the condition for a stationary laser oscillation, the field amplitude and
phase should yield the following [28]:{

r1r2e−j 2πµeνL
c +(g−αs)L = 1

4πµeνL
c = 2π·n

, (3)

In a similar way, a typical SMI system can be considered to be a structure represented
by an LD laser with an external cavity, as shown in Figure 2. Then, the field amplitude and
phase should yield {

r1|r2|e(g−αs)L = 1
4πµeνL

c + ϕr = 2π·n
, (4)

where ϕr is the phase retardance caused by the roundtrip travelled within the external
cavity. The effective field reflection coefficient r2 is expressed as

r2(ν) = r2s +
(

1− |r2s|2
)

r2exte−j2πντext , (5)

where r2s is the field reflection coefficient of the laser facet at z = L, r2ext is the field
reflection coefficient of the target surface, and τext is the roundtrip time of the optical wave
in the external cavity.
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The parameter of the feedback level is defined as C = X
√

1− α2, with X = τext
τL

κext and

κext =
r2ext
r2s

(
1− |r2s|2

)
, where α is the linewidth enhancement factor of the LD, and τL is
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the trip time of the optical wave in the LD cavity. Yielding the condition of field amplitude
and phase, the phase relationship of SMI can be described as

0 = ϕ(t)− ϕ0(t) + C· sin(ϕ(t) + tan−1 α), (6)

where ϕ0(t) represents the phase of the external roundtrip without optic feedback, and
ϕ(t) is the aforementioned parameter with optic feedback [28].

P0 represents the original emitting power of the LD, and m is the modulation depth
factor. Power with feedback P1(t) can be approximately expressed as follows:

P1(t) = P0(1 + m· cos(ϕ(t))), (7)

2.2. Theory of Quadrature Signal Construction in SMI Using LCPS

In order to construct quadrature signals in SMI, a π/2 phase shift should be added to
the signal detected by PD2 at the front arm, while the signal detected by PD1 at the rear
arm has a ±π phase shift [6]. In this work, we use an LCPS to shift the signal phase at the
front arm by generating a certain degree of optical phase retardance. Figure 3 presents a
corresponding schematic.
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At the front arm, S light is absorbed by the polarizer placed between a non-polarized
beam splitter (NPBS) and the LCPS. Therefore, two models are employed in this structure
for S light and P light, respectively, as shown in Figure 4. For S light, the model is equivalent
to a typical SMI system (Figure 4a). For P light, the model is a double external cavity SMI
system (Figure 4b).

Similar to Equation (5), the effective field reflection coefficient r2 in the P light model
can be written as

r2(ν) = r2s + t2
2t4

2r3e−j 4πνL1
c + t2

2t4
2tp

2r5e−j 4πνL2
c , (8)

where t2, t4, and tp represent the field transmittance coefficients of the LD facet, NPBS,
and polarizer. The NPBS is an R:T = 50:50 type, where r4 = t4. Therefore, r3 is the field
reflection coefficient of the target surface, while r5 is that of the PD2 surface. L1 is the length
of the external cavity in the S light model, while L2 = L21 + L22 is that of the front arm in
the P light model.
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Figure 4. Models for S light and P light in quadrature SMI system: (a) for S light; (b) for P light. The
purple line represents S light, and orange one represents P light.

For brevity, we replace (g− αs) with g. PD1 receives both P light and S light, while
PD2 receives S light only. The complex electrical fields Es for S light and ED for P light can
be expressed as

Es = s1E0·r1r2se−j 4πµeνL
c +gL

[
1 + κ1e−j 4πνL1

c

]
, (9)

ED = s2E0·r1r2se−j 4πµeνL
c +gL

[
1 + κ1e−j 4πνL1

c + κ2e−j 4πνL2
c

]
, (10)

where s1 and s2 represent the ratio of S light to P light from the laser source, respectively. L is
the internal cavity length of the LD. The factors are κ1 = t2

2t4
2r3/r2s, κ2 = t2

2t4
2tp

2r5/r2s.
Then, the power received by PD1 and PD2 can be given as

P1 ∝
∣∣∣∣ ⇀ED +

⇀
Es

∣∣∣∣2 ≈ m1

[
1 + κ1e−j 4πνL1

c

]
, (11)

P2 ∝ ED
2 ≈ m2

[
1 + κ1e−j 4πνL1

c + κ2e−j 4πνL2
c

]
, (12)

in which the scaling factors are

m1 =

√
2

2
(s1 + s2)E0·r1r2se−j 4πµeνL

c +gL, (13)

m2 = s2E0·r1r2se−j 4πµeνL
c +gL, (14)

The phase relationships of quadrature SMI can be described as

0 = ϕPD1(t)− ϕ0(t) + C· sin(ϕPD1(t) + tan−1 α), (15)

0 = ϕPD2(t)− ϕ0(t) + C· sin(ϕPD2(t) + tan−1 α) +
κ2

κ1
C· sin(ϕ2 + tan−1 α), (16)

where ϕPD1(t) and ϕPD2(t) represent the phase of the photocurrent from PD1 and PD2,
respectively. ϕ2 is the phase retardance brought about by the front arm, which is controlled
by the LCPS. Assuming that α = 3.1 and C = 0.8, when ϕ2 = (−0.6151 + 2n)π (according
to our calculations), a pair of quadrature signals can be obtained.

G is a constant coefficient representing the power scale of the two PDs. P0 is the
original emitting power of the LD, and m is a constant modulation depth factor. The pair of
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quadrature signals I1(t) and I2(t) can be obtained by cancelling the DC components of the
signal as follows:

I1(t) = −GP0m cos(ϕPD1(t)), (17)

I2(t) = GP0m cos(ϕPD2(t)) = −GP0m sin(ϕPD1(t)), (18)

Using arctangent and unwrapping demodulation, ∆ϕ(t) can be calculated from I1 and
I2. λ is the center wavelength of the LD. As the half wavelength corresponds to the 2π
phase variation, the displacement of a vibrating object can be rewritten as follows:

Displacement =
∆ϕ(t)λ

2·2π
= unwrap

(
tan−1 I1(t)

I2(t)

)
· λ

2·2π
. (19)

3. Simulations and Experiments
3.1. Experimental Setup

The experimental setup is shown in Figure 5. To partly avoid the unexpected emission
wavelength drift caused by changes in the LD’s driving current, a single longitudinal
mode laser diode (namely, RLD65NZX2 produced by ROHM, with maximum power
p = 7 mW, visible wavelength λ = 650 nm, and a driven current of 39 mA) is used as the
laser source. An adjustable LD collimation tube (LTN330-B by Thorlabs China, Shanghai)
with an aspheric lens is placed in front of the LD to adjust the focal length. The front PD
(PD2 in Figure 5) is a Si photodiode with a spectral response range of 190–1000 nm and
a peak response of 0.36 A/W at 720 nm (S1226-8BQ by HAMAMATSU), while the rear
PD (PD1 in Figure 5) is the LD’s built-in monitor PD. A non-polarized beam splitter with
R:T = 50:50 (BS016 by Thorlabs) is positioned, and an LCPS with a gap of 5.1 µm filled with
liquid crystal materials—with the ability to add phase retardance to the front-arm beam
from 0 to 1.57π, for which there is an alternating drive peak–peak voltage between −5 V
and 5 V of the square wave at 1 kHz—is used to construct the quadrature signals and fix
the phase retardance caused by the beam splitter. A polarizer with an extinction ratio of
500:1 is placed between the beam splitter and the LCPS to attenuate the energy of the light
components that are not parallel with the principal axis of the LCPS. This minimizes the
amplitude modulation.
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Figure 5. Schematic of the experimental setup.

In the optical part, the emission beam including both P light and S light from the LD
passes through the collimation tube and reaches the NPBS. The NPBS splits the beam into
two beams, and each beam contains both P light and S light. One beam passes through
the NPBS to the surface of the target, and it is reflected back to the LD through the same
path from which it came, forming a typical SMI external cavity. The other beam split by
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the NPBS is transmitted to the front arm, and S light is attenuated by the polarizer. P light
passes through the polarizer and LCPS to reach PD2, forming an external cavity in the front
arm. At the front arm, a controllable degree of optical phase retardance is generated by the
LCPS.

The benefit of using this scheme is that the phase difference drift caused by the
alteration of the LD’s wavelength and environmental disturbance can be partly fixed, while
a pair of quadrature signals can easily be acquired.

In the setup of the electrical part, a low-noise (6 nV/
√

Hz, 1 fA/
√

Hz) JFET amplifier
(LT1169) is used to transfer the photocurrents from PD1 and PD2 to voltage signals. Two
sets of trans-impedance amplifiers (TIAs) composed of operational amplifiers (LT1122)
provide the DC bias and gain adjustment. When measuring the vibration of the loudspeaker,
the LCPS is driven by a 2.51 Vpp alternative square wave with a 1 kHz frequency in order
to obtain the quadrature signals.

Subsequently, the voltage signals are obtained using a synchronized data acquisition
card (USB-6356 by NI) and processed on a PC. It is a quick and easy task to acquire and
demodulate the signals. Therefore, measurement using this method is performed online
and in real time.

3.2. Results

A small loudspeaker driven by a sinusoidal wave was used as the target. Only
normalization was carried out in the preprocessing of SMI signals, as shown in Figure 6
(denoted by blue and green traces). Then, an arctangent demodulation algorithm was used
to reconstruct the vibration information.
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Figure 6. Acquired SMI signals and the reconstructed displacement. The sinusoidal-like trace is
the calculated displacement, while the other two traces are normalized SMI signals obtained from
processing the monitored PD (PD1) output and front PD (PD2) output.

An experimental result, namely a 200 Hz vibration measurement, is shown in Figure 6.
The blue and green traces show the pair of quadrature SMI signals after normalization,
while the red trace shows the result of the reconstruction of the vibration information. The
peak–peak values of displacement reconstructed using the proposed method and estimated
using the fringe-counting method are 2288 nm and 2275 nm, respectively. The accuracy
of the displacement reconstructed using the proposed method is acceptable, despite the
degradation of SMI signals.

Figures 7 and 8 show the results of the reconstructed displacement, in which a set of
vibrations with different frequencies were detected. Low-frequency vibrations of 50 Hz,
100 Hz, and 200 Hz were detected, and the results are shown in Figure 7. The blue trace
represents the reconstructed vibration information for 50 Hz, while the green and red traces
represent the 100 Hz and 200 Hz vibration information, respectively. Additionally, Figure 8
shows the results for vibrations with slightly higher frequencies, i.e., 800 Hz and 1000 Hz.
The blue trace represents the reconstructed vibration information of 800 Hz, and the green
trace represents information for 1000 Hz. To distinguish between the two traces, we shifted
the green trace negatively by 1000 nm on the vertical axis. Obviously, a resolution much
better than the half wavelength of the LD was attained.
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Therefore, we have verified that the proposed method can construct quadrature SMI
signals using a liquid crystal phase shifter. Additionally, vibration information can be ex-
tracted from the quadrature self-mixing signals using the typical arctangent demodulation
algorithm, in which quadrature signals are obtained by driving the liquid crystal phase
shifter at a certain peak–peak voltage.

3.3. Simulations and Experiments under the Condition of Vibration Amplitudes near λ/4

When the amplitude of the vibration is smaller than the half wavelength of the LD,
fringes will no longer be visible in SMI signals. This will nullify the effect of the methods
based on fringe processing. Using the proposed method, vibrations with amplitudes far
smaller than λ/2 can be measured when phase retardance is correctly provided.

However, we found a weakness in this method: when the vibration amplitude is near
λ/4, a distortion in the results will occur. To determine the source of the problem, we
ran a series of simulations. One of the SMI signals (Sig1) (denoted by the blue traces in
Figure 9a,c) was simulated based on the numerical solution of the transcendental equation
of the SMI signal phase and the target vibration phase (Equation (15)). The other SMI signal
(Sig2) (denoted by the red traces in Figure 9a,c) was obtained by adding a π/2 phase shift
to Sig1 to ensure that Sig1 and Sig2 corresponded to a quadrature. The feedback level
was set to C = 0.8, and the linewidth enhancement factor was set to α = 3.1. Then, we
ran the arctangent demodulation algorithm to rebuild the vibration information from Sig1
and Sig2.

The simulation results presented in Figure 9b (red trace) reveal that a reconstructed
displacement with a correctable amplitude attenuation has been obtained, in which the
amplitude of target vibration has been set to 40 nm away from λ/4. Figure 9a presents the
simulation of SMI signals.

Under the condition where the vibration amplitude was set near to λ/4, Figure 9c
shows the simulated SMI signals, and Figure 9d shows the distortion mentioned above.
In Figure 9b,d, the blue traces show the defined target vibration, while red traces are the
simulation results of the reconstructed displacement based on simulated SMI signals.
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Figure 9. The simulation results of small amplitude vibrations. (a) The pair of simulated quadrature
SMI signals with a 40 nm vibration; (b) the given target vibration and the rebuilt displacement based
on SMI signals in (a); (c) the pair of simulated quadrature SMI signals of vibration with an amplitude
near λ/4 (160 nm); (d) the given target vibration and the rebuilt displacement based on SMI signals
in (c).

SMI signals generated by the simulations are strictly quadrature, hence proving that
the distortion was introduced by the arctangent demodulation algorithm. In Equation (6),
we can notice that the jump points of phase ϕ(t) are in different positions when the target
moves forward and backward. This behavior causes the aforementioned phenomenon.

Figure 10 shows a partial reconstruction result of a 1000 Hz vibration measurement.
The vibration amplitude of the target is near λ/4, and the entire sampling time is 10 s.
A 1000 Hz sinusoidal-like wave can be seen in the zoomed-in map in the upper right-
hand corner of the figure. A sinusoidal vibration with an amplitude close to 1/4 of the
wavelength of the LD produced a certain distortion, which is consistent with the simulation
results. The FFT analysis result is shown in Figure 11, in which a component of a 1000 Hz
vibration is clearly depicted.
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3.4. Relationship between SMI Signal Phase Difference and LCPS Drive Voltage

To confirm that the generation of the pair of final quadrature SMI signals is introduced
and constrained by the total optical phase retardance at the front arm, which is controlled
by the LCPS, a series of experiments and analyses were conducted.

In contrast to Equation (15), which has a typical form for SMI, Equation (16) contains
an additional constant term, namely κ2

κ1
C· sin

(
ϕ2 + tan−1 α

)
. We defined ∆ϕ = ϕPD1(t)−

ϕPD2(t) as the phase shift between the pair of SMI signals. It is obvious that ∆ϕ is triggered
by the additional term. In the additional term, as mentioned in Section 2.2, κ1 and κ2
are constant coefficients that only depend on the effective field reflection coefficients and
effective field transmittance coefficients of the surfaces of the LD, the NPBS, the polarizer,
the LCPS, and the target. Similarly, constant coefficient C represents the feedback level, and
α represents the linewidth enhancement factor of the LD; they will become constant once
the system and drive are pre-fixed. Significantly, ϕ2 = 2πυτext2 is the only tunable variable,
which describes the optical phase retardance caused by the roundtrip journey of the optical
wave at the front arm. τext2 = 2OPL/c is the roundtrip transit time, where c denotes light
velocity. As the other optical devices are untunable and pre-fixed, the optical path length
(OPL) at the front arm is only controlled by the LCPS.

In order to determine the relationship between the phase shift ∆ϕ and the additional
term, a numerical simulation was introduced, in which we simulated how ∆ϕ changes with
the additional term. The simulated phase ϕPD1(t) of the signal from PD1 was obtained by
calculating Equation (15) with any given target vibration, while ϕPD2(t) is the numerical
solution of Equation (16) in the domain [−2, 2] (radian) of the additional term. Then, ∆ϕ
can be calculated. The simulation result is shown in Figure 12, where the horizontal axis
represents the variation of the additional term, and the longitudinal axis represents the
variation in the dependent variable ∆ϕ. Obviously, there is a strict positive correlation
between ∆ϕ and the additional term. It is easy to determine that ∆ϕ = π/2 (90◦) when
the value of the additional term is 1.471 rad, and it becomes ∆ϕ = −π/2 (−90◦) when the
value of the additional term becomes −1.497 rad.
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Figure 12. The simulation results of the relationship between the phase shift ∆ϕ and the addi-
tional term.

According to the simulation above, the optical path length (OPL) at the front arm is
only controlled by the LCPS.

At this stage, experiments with other identical conditions were introduced. We tuned
the amplitude of the LCPS drive voltage to verify that the LCPS in this system leads to
a controllable SMI signal phase modulation. The different drive voltages tune the phase
retardance between the two SMI signals from PD1 and PD2. The two SMI signals were
preprocessed using a normalization algorithm, and they have the same frequency. Hence,
the phase shift ∆ϕ was calculated from the ellipticity of the Lissajous figures formed by the
two normalized SMI signals from PD1 and PD2 in each period.

As shown in Figure 13, 1200 sets of data were acquired for each drive voltage of
the LCPS. The bottom and top edges of the box indicate the 25th and 75th percentiles,
and the red line is the median position. Except for some abnormal points, most of the
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phase retardance is concentrated within ±5◦ of the median. The phase shift has a linear
relationship with the drive voltage of the LCPS, as shown in Figure 14, and there is an
approximately linear range with an R-square of 0.9707 and an RMSE of 1.9677. For other
vibration measurements in this work, we set the LCPS drive voltage to 2.51 Vpp to obtain
two sets of photocurrent signals with approximate phase quadrature.
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4. Discussion

The feasibility of our proposed method was verified by the simulation and experimen-
tal results. The proposed method allows one to construct quadrature SMI signals based on
the principle of the superposition of the crossed optical field occurring at the LD’s built-in
monitor PD1. In contrast to the methods outlined by the authors of [13,21], who constructed
quadrature SMI signals or a multidimensional displacement measurement system using
polarization multiplexing (PM) or wavelength division multiplexing (WDM) techniques,
in this method, SMI signals with a desired phase shift are obtained by modulating the
total light intensity, including both P light and S light, received by PD1 using an LCPS in
the front arm. Inspired by the work on quadrature detection for self-mixing interferome-
try [27], we have explained and demonstrated a method for constructing quadrature SMI
signals without using PM or WDM techniques. Therefore, it has a more concise structure
and a lower cost. It is worth noting that phase retardance between the two ‘quadrature’
SMI signals is disturbed by environmental disturbance such as variations in temperature
and local vibrations. The influence of environmental disturbance will be investigated in
future works.

5. Conclusions

In conclusion, we have proposed a novel method for quadrature signal construction in
SMI. Theoretical explanations were provided. Furthermore, simulations and experiments
were carried out to verify the feasibility of the proposed method. Using this method, it
is possible to reconstruct the displacement of vibrating objects using a quadrature de-
tection technique. In this work, quadrature detection also cancels any reference signals
such as normal IQ demodulation. It simplifies the calculation process of SMI signal de-
modulation. This technique can be applied to several SMI measurements for online and
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real-time micro vibration monitoring such as surface deviation measurements and residual
vibration measurements.
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