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Abstract: We study the sharp focusing of the input structured light field that has a non-uniform
elliptical polarization: the parameters of the ellipse depend on the position in the input plane (we
limited ourselves to the dependence only on the angular variable). Two types of non-uniformity
were considered. The first type corresponds to the situation when the semi-axes of the polarization
ellipse are fixed while the slope of the major semi-axis changes. The second type is determined by
the situation when the slope of the major semi-axis of the polarization ellipse is constant, and the
ratio between the semi-axis changes (we limited ourselves to the trigonometric dependence of this
ratio on the polar angle). Theoretical and numerical calculations show that in the case of the first
type of non-uniformity, if the tilt angle is a multiple of the polar angle with an integer coefficient,
then the intensity distribution has rotational symmetry, and the energy flow is radially symmetric
and has the negative direction near the optical axis. In this second case, the intensity symmetry is
not very pronounced, but with an odd dependence of the ratio of the semi-axes of the polarization
ellipse, the focused field at each point has a local linear polarization, despite the rather complex form
of the input field. In addition, we investigate the distribution of the longitudinal component of the
Poynting vector. The obtained results may be used for the formation of focused light fields with the
desired distributions of polarization, Poynting vector density, or spin angular momentum density in
the field of laser manipulation and laser matter interaction.

Keywords: laser beam shaping; structured laser beams; elliptical polarization; focusing; vector beams

1. Introduction

The development of various techniques and devices for modulating such characteris-
tics of laser radiation as its amplitude, phase, and polarization distributions [1–3] led to
the widespread use of structured laser beams in various areas of science and technology.
Structured laser beams are indispensable in such areas as advanced optical trapping and
manipulation of nano- and micro-objects in various media, mode division multiplexing
(MDM) optical communication systems, quantum communication, optical microscopy,
laser material processing, and many others [4–15]. The most popular approaches for the
shaping of structured light are the use of diffractive optical elements (DOEs), metasurfaces,
structured screens, or spatial light modulators (SLMs) [16–25]. These elements and devices
can be used to control individual characteristics of laser beams or to control some of them
in parallel—for example, amplitude and phase or phase and polarization. Recently, in-
creasingly complex combinations of phase distributions [26–30] and hybrid polarization
states [31–36] have been used to generate structured laser beams in order to increase the
number of degrees of freedom, which can be used, for example, in MDM optical commu-
nication or high-performance precision laser processing of materials [37–43]. It should
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be noted that the combination of a vortex phase singularity and cylindrical polarization
states of various orders are very popular for this [10,31,34,37,40]. This is due both to the
influence of this type of polarization on the amplification of the longitudinal component of
the electric field during sharp focusing [10,44,45] and to the specifics of the effect of such
laser radiation on matter [46–50]. In addition, the interaction of a phase singularity with a
cylindrical polarization type is also a reason for various effects [51–54]. For example, the
high numerical aperture (NA) focusing leads to the conversion of cylindrically polarized
laser beams from a radial to an azimuthal polarization, or vice versa, by introducing a
higher-order vortex phase singularity [53].

However, not only cylindrical polarization but also other types of inhomogeneous
polarization, including hybrid polarization states [55], are also increasingly attracting the
attention of researchers [14,32,35,40,56,57], since they can be used for the generation of
complex distributions of spin angular momentum (SAM) [14,58], the implementation of
spin-orbit interaction [40,59–64], and generation of polarization singularities of various
types [65–69]. Hybrid polarized vector fields have completely different properties from the
reported scalar and vector fields.

Elliptical polarization is the most general type of polarization that can be characterized
by the polarization ellipse, which can be specified by its ellipticity and orientation angle. In
this work, we investigate the possibilities of controlling these parameters of elliptical polar-
ization at different points of the generated hybrid polarized light field through high-NA
focusing laser fields with the predetermined transverse components of the electromag-
netic field. Such control provides tools for the generation of structured light fields with
the desired distribution of Poynting vector density or spin angular momentum density.
Moreover, light fields with non-uniform distribution of polarization are widely used for
the fabrication of laser-induced periodic surface structures (LIPSSs) with unconventional
morphology [20,48,70]. Such structures can provide basic units that replicate over larger
areas allowing fabricating complex surfaces with novel or extended functionality. The
proposed approach for the generation of non-uniform elliptical polarization is based on the
use of high-NA focused structured laser fields. This allows one to control such parameters
of the generated polarization distributions as the ellipticity of the formed polarization
ellipse, its orientation, and the rotation direction of the polarization vector at each point of
the focused light field.

2. Theoretical Background

With elliptical polarization, the electric field vector describes the contour of an ellipse
(see Figure 1). The complex amplitudes of the components of the elliptically polarized field
(eliminating the time-space componentωt − kz) are described in terms of the Jones vector
as follows: (

Ex
Ey

)
=

(
Ax exp(iδx)
Ay exp(iδy)

)
'
(

Ax
Ay exp(i∆)

)
, (1)

where Ax, Ay are amplitudes and δx, δy are phases of corresponding components, and
∆ = δy − δx.

The polarization ellipse is also defined by the orientation or tilt angle α (0 ≤ α ≤ π):

tan(2α) =
2Ax Ay cos(∆)

Ax2 − Ay2 . (2)

Next, in this work, we will be interested in the following parameters:

• the ratio of the semi-axes (which depends on amplitudes Ax and Ay);
• inclination of the semi-major axis (i.e., angle α);
• vector rotation direction.



Photonics 2023, 10, 1112 3 of 20Photonics 2023, 10, x FOR PEER REVIEW 3 of 22 
 

 

 
Figure 1. The polarization ellipse. 

The polarization ellipse is also defined by the orientation or tilt angle α (0 ≤ α ≤ π): 

( ) ( )
2 2

2 cos
tan 2 x y

x y

A A
A A

Δ
α =

−
. (2)

Next, in this work, we will be interested in the following parameters: 
- the ratio of the semi-axes (which depends on amplitudes Ax and Ay); 
- inclination of the semi-major axis (i.e., angle α); 
- vector rotation direction. 

In order to control the parameters of the polarization ellipse in different regions of 
the focal plane, as a rule, it is necessary to consider the situation in which the initial field 
also has a non-uniform polarization. 

To calculate the components of the electric and magnetic field vectors in the focal 
region, we use the following formulas [71–73]: 

[ ]
2

0
0 0

( , , )
( , , )

( , )
( , ) ( ) exp ( sin cos( ) cos ) sin ,

( , )
E

H

r z
r z

if T ik r z d d
Θ π

υ 
= υ 

θ ϕ 
= − θ ϕ θ θ ϕ − υ + θ θ θ ϕ θ ϕλ  

 

E
H

P
E

P

 (3)

where 

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) , ( , ) ( , ) ( , ) ,

( , ) ( , ) ( , ) ( , )
E H

A C C A
C B B C
D E E D

θ ϕ θ ϕ θ ϕ − θ ϕ   
   θ ϕ = θ ϕ θ ϕ θ ϕ = θ ϕ − θ ϕ   
   − θ ϕ − θ ϕ − θ ϕ θ ϕ   

P P  (4)

2 2( , ) 1 cos (cos 1), ( , ) 1 sin (cos 1),
( , ) sin cos (cos 1), ( , ) cos sin , ( , ) sin sin .
A B
C D E

θ ϕ = + ϕ θ − θ ϕ = + ϕ θ −
θ ϕ = ϕ ϕ θ − θ ϕ = ϕ θ θ ϕ = ϕ θ

 (5)

Here, (r, υ, z) are the cylindrical coordinates in the focal region, (θ, φ) are the spherical 
angular coordinates of the focusing system�s output pupil (see Figure 2), Θ is the maxi-
mum value of the azimuthal angle θ related to the system�s numerical aperture NA = sinΘ, 
k = 2π/λ is the wavenumber and λ is the radiation wavelength, f is a focal length of an 

optical system, T(θ) is the apodization function; 0
0

0

( , )
( , )

( , )
x

y

E
E

θ ϕ 
θ ϕ =  θ ϕ 

E  is the transverse 

components of the electric vector of the input field. The focal plane corresponds to z = 0. 

Figure 1. The polarization ellipse.

In order to control the parameters of the polarization ellipse in different regions of the
focal plane, as a rule, it is necessary to consider the situation in which the initial field also
has a non-uniform polarization.

To calculate the components of the electric and magnetic field vectors in the focal
region, we use the following formulas [71–73]:[

E(r,υ, z)
H(r,υ, z)

]
=

= − i f
λ

Θ∫
0

2π∫
0

[
PE(θ,ϕ)
PH(θ,ϕ)

]
E0(θ,ϕ)T(θ) exp[ik(r sin θ cos(ϕ− υ) + z cos θ)] sin θdθdϕ,

(3)

where

PE(θ,ϕ) =

 A(θ,ϕ) C(θ,ϕ)
C(θ,ϕ) B(θ,ϕ)
−D(θ,ϕ) −E(θ,ϕ)

, PH(θ,ϕ) =

 C(θ,ϕ) −A(θ,ϕ)
B(θ,ϕ) −C(θ,ϕ)
−E(θ,ϕ) D(θ,ϕ)

, (4)

A(θ,ϕ) = 1 + cos2ϕ(cos θ− 1), B(θ,ϕ) = 1 + sin2ϕ(cos θ− 1),
C(θ,ϕ) = sinϕ cosϕ(cos θ− 1), D(θ,ϕ) = cosϕ sin θ, E(θ,ϕ) = sinϕ sin θ.

(5)

Here, (r, υ, z) are the cylindrical coordinates in the focal region, (θ, ϕ) are the spherical
angular coordinates of the focusing system’s output pupil (see Figure 2), Θ is the maximum
value of the azimuthal angle θ related to the system’s numerical aperture NA = sinΘ,
k = 2π/λ is the wavenumber and λ is the radiation wavelength, f is a focal length of an

optical system, T(θ) is the apodization function; E0(θ,ϕ) =
(

E0x(θ,ϕ)
E0y(θ,ϕ)

)
is the transverse

components of the electric vector of the input field. The focal plane corresponds to z = 0.
We also consider the Umov-Poynting vector:

S =
c

8π
(E∗ ×H), (6)

in particular, its longitudinal component, which, up to a constant coefficient, is equal to:

Sz =
(

E∗x Hy − E∗y Hx

)
. (7)

In the classical definition, one needs to take the real part of Equation (6) or Equation (7), but
we regard the full values since the imaginary part may also have a physical meaning [74–76].
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Figure 2. Vector Debye theory of focusing an optical beam through a focusing system with a focal
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3. Results

In this section, we analyze analytically and illustrate numerically some special cases
of focusing vector fields with inhomogeneous elliptical polarization. Numerical simulation
was performed using Equations (3)–(5) without any approximations under full aperture
conditions at NA = 0.99 (Θ ≈ 82◦), T(θ) =

√
cos θ. The radius of the input fields is 100λ,

and the output field size is 2λ × 2λ.

3.1. Variable Tilt Angle of the Polarization Ellipse

First, we consider the possibility of controlling the angle of inclination of the ellipse α.
We fix the amplitudes Ax and Ay and consider an arbitrary function for a variable slope
angle α(θ, ϕ). Then, the components of the electric field are expressed by the following
formulas:

E0x(θ,ϕ) = F(θ) ·
{

Ax cos[α(θ,ϕ)] + iAy sin[α(θ,ϕ)]
}

,
E0y(θ,ϕ) = F(θ) ·

{
Ax sin[α(θ,ϕ)]− iAy cos[α(θ,ϕ)]

}
,

(8)

where F(θ) is an arbitrary function depending on the azimuth angle θ.
Let us consider special examples of the dependence α(θ, ϕ), only on the polar angle ϕ.

3.1.1. The Tilt Angle of the Polarization Ellipse Is Equal to the Polar Angle

First, we consider the simplest and visually symmetrical case when the slope angle is
equal to the direction angle of the radius vector:

α(θ,ϕ) = α(ϕ) = ϕ. (9)

Substituting this expression in Equation (8), we obtain the expression for the initial field:

E0x(θ,ϕ) = F(θ) ·
{

Ax cosϕ+ iAy sinϕ
}

,
E0y(θ,ϕ) = F(θ) ·

{
Ax sinϕ− iAy cosϕ

}
.

(10)

The field in Equation (10) can be represented in another form:

E0(θ,ϕ) = F(θ) ·
{

Ax

(
cosϕ
sinϕ

)
− iAy

(
− sinϕ
cosϕ

)}
(11)

This is a combination of radial and azimuthal polarizations with different weights,
with one of the weights real and the other purely imaginary.

Let us calculate the field components in the focal plane if the field in the initial plane
is given by Equation (10). To do this, we use Equations (3)–(5):
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 Ex
Ey
Ez

 = − i f
λ

Θ∫
0

T(θ)F(θ) sin θ

 Ax cos θ · S1,0 + iAy · S0,1
Ax cos θ · S0,1 − iAy · S1,0
−Ax sin θ · S0,0

dθ, (12)

 Hx
Hy
Hz

 = − i f
λ

Θ∫
0

T(θ)F(θ) sin θ

 −Ax · S0,1 + iAy cos θ · S1,0
Ax · S1,0 + iAy cos θ · S0,1
−iAy sin θ · S0,0

dθ, (13)

where we use the following notation:

Sp,q =

2π∫
0

cospϕ · sinqϕ · exp(ia cos(ϕ− υ))dϕ, a = kr sin θ (14)

We give explicit expressions for Sp,q for p + q ≤ 3 (these will be needed here and below):

S0,0 = 2π J0(a),
S1,0 = cosυ · 2πi J1(a), S0,1 = sinυ · 2πi J1(a),
S2,0 = π J0(a)− cos 2υ · π J2(a), S0,2 = π J0(a) + cos 2υ · π J2(a),
S1,1 = − sin 2υ · π J2(a),
S3,0 = cosυ · 1.5πi J1(a)− cos 3υ · 0.5πi J3(a), S0,3 = sinυ · 1.5πi J1(a) + sin 3υ · 0.5πi J3(a),
S2,1 = sinυ · 0.5πi J1(a)− sin 3υ · 0.5πi J3(a), S1,2 = cosυ · 0.5πi J1(a) + cos 3υ · 0.5πi J3(a).

(15)

Explicit analytical expressions for Equations (12) and (13) can be obtained approxi-
mately in the case of a narrow annular aperture [44,77,78], i.e., when

F(θ) =
{

1, θ0 − ∆/2 ≤ θ ≤ θ0 + ∆/2,
0, else.

.

Then for the components of the electric and magnetic vectors we can write:

Ex = k f · ∆ · T(θ0)F(θ0) sin θ0 J1(a)
(

Ax cos θ0 cosυ+ iAy sinυ
)
,

Ey = k f · ∆ · T(θ0)F(θ0) sin θ0 J1(a)
(

Ax cos θ0 sinυ− iAy cosυ
)
,

Ez = k f · ∆ · T(θ0)F(θ0) sin θ0 J0(a)(iAx sin θ0).
(16)

Hx = k f · ∆ · T(θ0)F(θ0) sin θ0 J1(a)
(
−Ax sinυ+ iAy cos θ0 cosυ

)
,

Hy = k f · ∆ · T(θ0)F(θ0) sin θ0 J1(a)
(

Ax cosυ+ iAy cos θ0 sinυ
)
,

Hz = k f · ∆ · T(θ0)F(θ0) sin θ0 J0(a)
(
−Ay sin θ0

)
.

(17)

Note that the longitudinal component of the electric field is purely imaginary, while
that of the magnetic field is real.

Using the resulting expressions, we can find other characteristics. In particular, the
total intensity is:

Itot = (k f · ∆ · T(θ0)F(θ0) sin θ0)
2
[

J2
0 (a) · A2

x sin2 θ0 + J2
1 (a)

(
A2

x cos2 θ0 + A2
y

)]
, (18)

and the longitudinal component of the Umov-Poynting vector:

Sz = (k f · ∆ · T(θ0)F(θ0) sin θ0)
2
[

J2
1 (a) cos θ0

(
A2

x + A2
y

)]
. (19)

Note that for the considered case α(ϕ) = ϕ, the intensity I in Equation (18) depends on
the ratio Ax and Ay, but Sz in Equation (19) does not have such a dependence and takes
everywhere real positive values.

Figure 3 shows the calculated results of the formation of fields with inhomogeneous
elliptical polarization (red color corresponds to the x-component, green color is for the
y-component, and blue color is for the z-component) at α(ϕ) = ϕ.
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As can be seen from the results shown in Figure 3, the equality of the amplitudes
Ax = Ay provides a completely uniform distribution of the polarization of the input field;
however, in the focal plane, the polarization state becomes inhomogeneous (Figure 3a,b).
The inequality Ax 6= Ay leads to inhomogeneity of the polarization distribution both in
the input and in the focused field. In the example Ax > Ay (Figure 3c,d), according to
Equation (16), there is an increase in the proportion of the longitudinal component.

The formation of fields close to those shown in Figure 3 was considered in Ref. [33] on
the basis of a combination of structured beams with left and right circular polarization, as
well as in Ref. [20] on the basis of a modification of the radially polarized field.

Next, we consider initial fields with a more complex polarization structure.

3.1.2. The Tilt Angle of the Polarization Ellipse Is a Multiple of the Polar Angle

Let us consider a multiple increase in the angle of inclination of the ellipse, i.e., instead
of expression (9), a more general one:

α(ϕ) = pϕ. (20)

In the case when p is an integer, one can obtain explicit analytical expressions for the
field in the focal plane, similar to those given in the previous section.

For further calculations, Equation (12) can be conveniently written as: Ex
Ey
Ez

 = − i f
λ

Θ∫
0

T(θ)F(θ) sin θ

 Êx
Êy
Êz

dθ. (21)

Using the basic Equations (4) and (5) and the following formula:

2π∫
0

exp[ia cos(ϕ− υ)]
{

cos mϕ
sin mϕ

}
dϕ =

{
cos mυ
sin mυ

}
2πim Jm(a), (22)

we obtain the following expressions included in Equation (21):

Êx = πip
[

(1 + cos θ)Jp(a) ·
(

Ax cos pυ + iAy sin pυ
)
+

+(1− cos θ)Jp−2(a) ·
(

Ax cos(p− 2)υ+ iAy sin(p− 2)υ
) ],

Êy = πip
[

(1 + cos θ)Jp(a) ·
(

Ax sin pυ− iAy cos pυ
)
−

−(1− cos θ)Jp−2(a) ·
(

Ax sin(p− 2)υ− iAy cos(p− 2)υ
) ],

Êz = sin θ · 2πip+1 Jp−1(a) ·
(

Ax cos(p− 1)υ+ iAy sin(p− 1)υ
)
.

(23)

Note that for p = 1 Equation (23) will correspond to Equations (12) and (15). Assuming
a narrow annular aperture with a medium radius θ0, one can obtain an explicit expression
for the total intensity (a = kr sin θ0):
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Itot ∝ 4π2 sin2 θ0 · J2
p−1(a) ·

(
A2

x cos2(p− 1)υ+ A2
y sin2(p− 1)υ

)
+

+π2 ·

 (1 + cos θ0)
2 J2

p(a) ·
(

A2
x + A2

y

)
+ (1− cos θ0)

2 J2
p−2(a) ·

(
A2

x + A2
y

)
+

+2 sin2 θ0 · Jp(a)Jp−2(a) ·
(

A2
x − A2

y

)
cos(2p− 2)υ

.
(24)

In addition, for p = 1, Equation (24) corresponds to Equation (18).
Note that for p 6= 1, Equation (24) has terms that depend on the polar angle υ (for

p = 1, there is axial symmetry), which is more clearly seen if we rewrite Equation (24) in the
following form:

Itot ∝ π2
[
(1 + cos θ0)

2 J2
p(a) + (1− cos θ0)

2 J2
p−2(a) + 2 sin2 θ0 · J2

p−1(a)
]
·
(

A2
x + A2

y

)
+

+2π2 sin2 θ0 ·
(

J2
p−1(a) + Jp(a)Jp−2(a)

)(
A2

x − A2
y

)
cos[(2p− 2)υ].

(25)

As can be seen from Equation (25), the dependence on the angle in the intensity of the
focused field disappears when Ax = Ay. The inequality Ax 6= Ay leads to a situation when
the intensity will have (2p − 2) maxima and (2p − 2) minima (except for circles where
J2
p−1(a) + Jp(a)Jp−2(a) = 0).

If p is a non-integer, it is difficult to represent the generated field in an analytical form,
but it is quite possible to perform a simulation. Figures 4 and 5 show calculations of the
formation of fields with inhomogeneous elliptical polarization at α(ϕ) = pϕ for integer
values p = 2, 3, and Figure 6 shows results for the fractional value p = 0.5.
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Figures 4 and 5 clearly show what happens when the amplitude ratio changes from
Ax = 2Ay to Ax = 0.5Ay. When p = 2, there is practically a rotation of the entire distribution
in the focal plane by 90 degrees (compare the last two lines in Figure 4). The case p = 2 is a
special one since in this case some terms in Equation (23) are set to zero, so the structure
is pretty simple. At p = 3, only the intensity distribution rotates by 45 degrees, and the
polarization state changes in a more complex way (compare the last two lines in Figure 5).

In the general case, in accordance with Equation (25), there will be a rotation of the
intensity by 90/(p − 1) degrees, and the polarization transformation will be quite complex.

Figure 6 shows an example with a fractional p value. Since p = 1.5 is half-integer, the
input field still has an integer (third-order) rotational symmetry. In contrast to the integer
p, when the amplitude ratio changes from Ax = 2Ay to Ax = 0.5Ay, a qualitative change
occurs not only in the distribution of the polarization state but also in the distribution of
the total intensity.
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Figure 7 shows the results of calculating the longitudinal component of the Poynting
vector using Equation (7) for the functions α(ϕ) = pϕ for various values of p. Note that
there is no dependence of the distribution on the ratio of Ax and Ay, which was analytically
shown for p = 1 in Equation (19).

Although in this work we pay main attention to the longitudinal component of the
Poynting vector, the input hybrid polarization can induce a strong transverse energy
flow [79,80]. Therefore, Figure 7 also shows the corresponding pictures of the real parts
of the transverse components of the Poynting vector. As can be seen, for integer values of
p there is an annular transverse energy flow, which is similar to the situation considered
in [79,80]. For fractional values of p, the flow is more complex and does not have a
closed trajectory.

As can be seen from Figure 7, for integer values of p, the imaginary part of Sz is absent.
However, there are negative values in the central part of the field. This fact was noted
earlier for vortex beams with circular polarization [81], but we show for the first time the
presence of such regions for fields with inhomogeneous elliptical polarization. Note that
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for fractional p (in the 3rd column in Figure 7), there are non-zero values of the imaginary
part of Sz, although the total value is zero since the areas with positive and negative values
are symmetric.
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3.2. Variable Ratio of the Semi-Axes of the Polarization Ellipse

In this section, we consider a different situation, namely, we fix the inclination angle of
the ellipse and introduce variations in the semi-axis ratio. Notably, at an angle of inclination
equal to 0 or 90 degrees, the semi-axes ratio is equal to the amplitudes Ax and Ay ratio.

For definiteness, let us assume that the major semi-axis is located vertically (the angle
of inclination is 90 degrees), and we denote its value by A. In this case, the minor semi-axis
varies depending on the position in accordance with some function β(θ, ϕ) and is equal to
Aβ(θ, ϕ). Let us assume that β(θ, ϕ) is a real function with |β(θ,ϕ)| ≤ 1. In this case, the
components of the electric field are expressed by the formulas:

E0x = Aβ(θ,ϕ),
E0y = iA.

(26)

For convenience, we regard dependence just on the polar angle: β(θ, ϕ) = β(ϕ). Next,
we consider specific examples of the dependence β(ϕ).

3.2.1. Simple Trigonometric Dependence on the Polar Angle

Here, we consider a simple trigonometric dependence on the angle:

β(ϕ) = cos(ϕ). (27)
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Then, the input field will take the form:

E0x = A cosϕ,
E0y = iA.

(28)

Similar to the analytical calculations from Section 3.1.1, we obtain: Ex
Ey
Ez

 = − i f
λ

A
Θ∫

0

T(θ)F(θ) sin θ

 S1,0 − (1− cos θ)[S3,0 + iS1,1]
iS0,0 − (1− cos θ)[S2,1 + iS0,2]
− sin θ[S2,0 + iS0,1]

dθ (29)

 Hx
Hy
Hz

 = − i f
λ

A
Θ∫

0

T(θ)F(θ) sin θ

 −iS0,0 − (1− cos θ)[S2,1 − iS2,0]
S1,0 − (1− cos θ)[S1,2 − iS1,1]
− sin θ[S1,1 − iS1,0]

dθ (30)

The Sp,q expressions are given in Equation (14).
After substituting expressions (14) into Equations (29) and (30) for a narrow annular

aperture, we obtain approximate analytical expressions:

Ex = k f
2 A · ∆ · T(θ0)F(θ0) sin θ0×

×{0.5(1 + 3 cos θ0)J1(a) cosυ+ (1− cos θ0)J2(a) sin 2υ+ 0.5(1− cos θ0)J3(a) cos 3υ},
Ey = k f

2 A · ∆ · T(θ0)F(θ0) sin θ0×
×{(1 + cos θ0)J0(a)− (1− cos θ0)J2(a) cos 2υ+ 0.5(1− cos θ0)[J3(a) sin 3υ− J1(a) sinυ]},
Ez = − ik f

2 A · ∆ · T(θ0)F(θ0) sin2 θ0[−J0(a) + 2J1(a) sinυ+ J2(a) cos 2υ].

(31)

Hx = k f
2 A · ∆ · T(θ0)F(θ0) sin θ0×

×{−(1 + cos θ0)J0(a)− (1− cos θ0)J2(a) cos 2υ− 0.5(1− cos θ0)[J1(a) sinυ− J3(a) sin 3υ]},
Hy = k f

2 A · ∆ · T(θ0)F(θ0) sin θ0×
×{0.5(3 + cos θ0)J1(a) cosυ− (1− cos θ0)J2(a) sin 2υ− 0.5(1− cos θ0)J3(a) cos 3υ},
Hz = − ik f

2 A · ∆ · T(θ0)F(θ0) sin2 θ0[−2J1(a) cosυ+ J2(a) sin 2υ].

(32)

As follows from Equations (31) and (32), the transverse components of the electric and
magnetic field are real, while the longitudinal components are purely imaginary.

The total intensity is

Itot =
(

k f
2 A · ∆ · T(θ0)F(θ0) sin θ0

)2
×

×



J2
0 (a)(2 + 2 cos θ0) + J2

1 (a)
[
4 sin2 θ0 sin2 υ+ 0.25(1− cos θ0)

2 +
(
2 cos θ0 + 2 cos2 θ0

)
cos2 υ

]
+

+J2
2 (a)

[
sin2 θ0 cos2 2υ+ (1− cos θ0)

2
]
+ J2

3 (a) · 0.25(1− cos θ0)
2 − J0(a)J1(a) · 5 sin2 θ0 sinυ−

−J0(a)J2(a) · 4 sin2 θ0 cos 2υ+ J0(a)J3(a) · sin2 θ0 sin 3υ+
+J1(a)J2(a)

[
4 sin2 θ0 sinυ cos 2υ+ 2 sin2 θ0 cosυ sin 2υ− (1− cos θ0)

2 sinυ
]
+

+J1(a)J3(a)
[
sin2 θ0 cosυ cos 3υ− 0.5(1− cos θ0)

2 cos 2υ
]
− J2(a)J3(a) · (1− cos θ0)

2 sinυ


. (33)

It can be seen that this expression is much more complex compared with Equation (18).
Since the smallest dependence of the polar angle is cos(υ)/sin(υ), the rotational sym-

metry should not be observed, but Equation (33) is the same for the angles υ = 90◦ ± υ1, so
there will be symmetry about the vertical axis (it is seen in the first line of Figure 8).
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About the Poynting vector, even before calculations, we can say that its longitudinal
component is real, and the transverse components are purely imaginary. The expression
for the longitudinal component is as follows:

Sz = A2
(

k f
2 ∆ · T(θ0)F(θ0) sin θ0

)2
×

×


J2
0 (a)(1 + cos θ0)

2 + J2
1 (a) · 0.25

[
(1 + 3 cos θ0)(3 + cos θ0) cos2 υ− (1− cos θ0)

2 sin2 υ
]
−

−J2
2 (a)(1− cos θ0)

2 − J2
3 (a) · 0.25(1− cos θ0)

2 + J1(a)J2(a)(1− cos θ0)
2 sinυ+

+J1(a)J3(a) · 0.5(1− cos θ0)
2 cos 2υ+ J2(a)J3(a)(1− cos θ0)

2 sinυ


(34)
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It can be seen that expression (34) is simpler than Equation (33) for the intensity.
Obviously, similar results can be obtained if we assume that the axis of the ellipse is

horizontal, then the input field is presented in the following form:

E0x = A,
E0y = iA cosϕ.

(35)

In addition, one can change the dependency to a function β(ϕ) = sin(ϕ).
Figure 8 shows the calculations of the formation of fields with inhomogeneous el-

liptical polarization at β(ϕ) =

{
cos(ϕ)
sin(ϕ)

}
for various positions of the polarization axis

corresponding to Equations (28) and (35).
Several remarks can be made on the results in Figure 8. It can be seen that the rotation

of the polarization ellipse or the change of the trigonometric function leads to a qualitative
change in the intensity pattern: comparing rows 1 and 2, 3 and 4, 1 and 3, or 2 and 4.
However, if we do both transformations, there will only be a rotation of the distribution of
all components (not just the total intensity) by 90 degrees: comparing rows 1 and 4 or 2 and
3. It is also clearly seen that in the focal plane at all local points, the polarization is linear.
This happens because both transverse components are either real (Equation (28), and for
β(ϕ) = cos(ϕ) Equation (31)) or purely imaginary (Equation (35)) (in fact, they are also
real with the same additional phase). In both cases, linear polarization is obtained. Note
that this situation takes place not only for a narrow annular aperture since the transverse
components do not change during integration.

3.2.2. Multiple and Power Trigonometric Dependence on the Polar Angle

An obvious generalization of function in Equation (27), which specifies variations in
the ratio of the semi-axes of the polarization ellipse, is a multiple trigonometric dependence
on the polar angle:

β(ϕ) =

{
cos(mϕ)
sin(mϕ)

}
, (36)

as well as the power dependence:

β(ϕ) =

{
cosp(ϕ)
sinp(ϕ)

}
. (37)

Note that for positive integer p, Equation (37) can be reduced to a superposition of
functions in the form of Equation (36).

An analytical representation in these cases (for integer m and positive integer p) can
also be obtained, but it will be even more cumbersome, so we present only the results of
numerical simulation.

Figure 9 shows calculations of the formation of fields with non-uniform elliptical po-

larization at β(ϕ) =

{
cos(mϕ)
sin(mϕ)

}
, and Figure 10 shows the results for β(ϕ) =

{
cosp(ϕ)
sinp(ϕ)

}
.

As can be seen from Figure 9, if m is odd, then the polarization is linear in all local
points of the focal plane. This can be explained by the fact that for both types of input field
(Equation (28) or Equation (35)) the transverse components are of the same type when m is
odd: both real (for Equation (28)), or both are purely imaginary (for Equation (35)).

An example in Figure 8 is a special case (m = 1). This follows from Equation (3), for-
mulas for converting the product of trigonometric functions into a sum, and Equation (22).

One can also be sure that at Equation (35) and β(ϕ) = sin(2ϕ) the y-component is equal
to zero in those regions where sin(2υ) = 0, i.e., along the vertical and horizontal lines (this
is clearly seen in the first line in Figure 9).

The results in Figure 10 are similar to those shown in Figure 9. It can be seen that
if p is odd, the polarization is linear in all local points of the focal plane. The proof is
based on a reduction to the previous case based on degree reduction: sinp(ϕ) for odd p is
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expressed through sin(qnϕ) where all qn are odd, and for even p, it is expressed through
cos(qnϕ) where all qn are even. Similarly, cosp(ϕ) is expressed in terms of cos(qnϕ) where
all qn have the same parity as p. Therefore, the power dependence provides a locally linear
polarization in similar situations as for the multiple ones.
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Figure 11 shows the results of calculating the longitudinal component of the Poynting
vector by Equation (7) for the functions β(ϕ) = cos(mϕ) at different values of m (for the
Equation (35) variant).
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Note that for odd integer values of m, there is no imaginary part (in this case, the
situation is similar to that considered in Section 3.1), but the regions with negative values
are not observed in the real part. For integer even m, the imaginary part contains the
symmetric areas with positive and negative values ( in the 2nd column in Figure 11), so the
total value is zero. For fractional m, the situation is different (in the 3rd column in Figure 11)
in terms of symmetry breaking.

Figure 11 also shows the corresponding pictures of the real parts of the transverse
components of the Poynting vector. As can be seen, at m = 1, the real parts of the transverse
components are missing, and for m = 2 and m = 1.5, the flow is sufficiently complex.
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4. Discussion and Conclusions

Summing up, in this work, we presented the results of the shaping of focused struc-
tured laser beams with controlled locally inhomogeneous parameters of elliptical polariza-
tion. It is possible to control the ellipticity of the formed polarization ellipse at each point of
the focused light field, the orientation, and the rotation direction of the polarization vector.
For example, we can create a focused annular light field with radial polarization in the
inner part of the formed ring and elliptical polarization with a rotated orientation in the
outer part of the ring. It is also possible to create a light field with a continuous change in
the ellipticity and orientation of the polarization ellipse across the focused light ring.

To implement such full control of the polarization parameters, we used high-NA
focusing, structured laser beams with a predetermined structure of the transverse com-
ponents of the electromagnetic field. However, when the NA is reduced, some of the
properties of the generated beams will remain the same. In particular, the distribution of
transverse components that determine the polarization state of the formed beam will be
preserved (up to scale). As NA decreases, the contribution of the longitudinal component
will also diminish. The area and magnitude of the reverse energy flow will also decrease,
as indicated earlier [78].

Currently, there are various methods for shaping such structured laser beams—the use
of subwavelength gratings, patterned micro-retarder arrays, polarization sector plates, or
spatial light modulators [14,23,31–33,35,40]. In our opinion, the use of single or two spatial
light modulators for the implementation of an interferometric approach for the summation
of two orthogonally polarized laser modes is the most convenient method [31–33]. In this
case, we can dynamically change the distributions of each component of the formed modes
and fine-tune the parameters of the inhomogeneous elliptical polarization distribution
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of the generated fields for laser material processing and laser manipulation applications.
Previously, such methods were used to generate different types of vector beams.

Unlike other studies devoted to the formation of vector laser beams with hybrid
polarization states, we investigated the formation of vector laser beams by focusing on
such beams. The generation of focused vector laser beams is of crucial importance in
modern advanced optical tweezers and laser material processing. Controlling not only the
amplitude and phase but also the polarization distribution of the shaped optical tweezers
can be used to control the density of SAM and OAM of the light fields, as well as to
implement spin-orbit conversion and generate light fields with reverse energy flow. The
formation of sharply focused laser beams with a non-uniform distribution of elliptical
polarization is one of the possible ways to control the morphology of LIPSSs, which mainly
determines the functional properties of the treated materials and the spectrum of their
potential applications [20,47,48]. Thus, the development of simple and effective methods
for generating laser beams with the possibility to control their complex structure is the key
to further development of laser processing technology. The ability to manipulate complex
polarization distributions in a focused structured laser beam will provide feedback that can
control the nanomorphology of the laser-treated surface, such as enhancing or suppressing
the formation of LIPSSs at a given point on the surface during laser processing.
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