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Abstract: Volumetric scattering prevents imaging modalities in biomedical optics from imaging deep
inside tissue. The optimization of the incident wavefront has the potential to improve these imaging
modalities. To investigate the optimization and light propagation of such beams inside scattering
media rigorously, full-vectorial simulations based on solutions of Maxwell’s equations are necessary.
In this publication, we present a versatile two-step beam synthesis method to efficiently simulate the
scanning and phase optimization of a focused beam inside a static scattering medium. We present
four different approaches to the phase optimization of the energy density and the absolute value of
the Poynting vector. We find that these quantities have two regions with different, almost exponential
decays over depth for a non-optimized beam. Optimization by conjugating the phase of the projected
electric field in various directions at the focus shows an improvement below a certain penetration
depth. Seeking global solutions to the optimization problems reveals an even better enhancement in
the energy density and the absolute value of the Poynting vector in the focus. For Poynting vector
optimization, the differences between the presented optimization approaches are more significant
than for the energy density. With the presented method, it is possible to efficiently simulate different
imaging methods improved by wavefront shaping to investigate their possible penetration depths.

Keywords: scattering; light propagation; Maxwell’s equations; wavefront shaping; phase modulation

1. Introduction

The scattering of light is one of the greatest obstacles preventing optical imaging
modalities from imaging deep inside scattering media such as biological tissue. To reduce
the amount of unwanted scattered light in the resulting image, different methods have
been developed, such as confocal scanning microscopy and optical coherence tomography.
Most of these techniques try to effectively reject the multiply scattered light. Therefore,
this has led to the sole use of ballistic light for imaging results in the limitation of the
penetration depth due to the Beer–Lambert law. Another way to reduce the scattering
of light is optical clearing, which modifies the optical properties of the specimen to an
almost homogeneous refractive index distribution [1]. This approach is impractical in many
applications. Common approaches, which also use scattered light for imaging in the optical
spectrum, such as diffuse tomography [2], have a reduced resolution compared to common
microscopy techniques [3].

With the advent of spatial light modulators, the manipulation of the incident light to
regain a focus inside or behind a scattering medium became possible [4,5]. Spatial light
modulators are high-resolution modulators that use liquid crystal display technology, de-
formable mirrors, or microelectromechanical systems [6–8]. All of these technologies have
successfully been applied to correct aberrations or focus behind a scattering medium [9–11].
Wavefront shaping methods have since been shown to be able to improve imaging in
multiple scattering media with imaging resolutions similar to state-of-the-art microscopy
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techniques [12]. Frequently used methods to optimize the incident wavefront are via
feedback [13], phase conjugation [14], and using the transmission matrix [15,16]. To find
the optimal wavefront, one needs access to the electromagnetic field at the point of in-
terest, which is feasible outside the scattering medium but inside the medium requires,
for example, a guide star [17]. If the refractive index distribution of a specimen is known,
it is theoretically possible to calculate the scattering of the incident light and optimize it
via simulation.

To investigate how the electromagnetic field behaves when optimizing the incident
wavefront, full-vectorial electromagnetic field simulations are an invaluable tool. Common
methods to model light propagation inside diffuse media based on the radiative transfer
equation are not applicable in this case because they do not describe interference effects [18].
Therefore, methods to investigate light optimization by manipulating the incident wave-
front must describe interference effects. Often, these types of simulations are carried out in a
waveguide geometry [19] or in two-dimensional scattering media, where only out-of-plane
polarization is considered [20,21]. Other simulation approaches for wavefront shaping
scenarios have used approximations of wave propagation, such as the beam propagation
method [22,23].

To cover all aspects of the electromagnetic field, such as polarization and phase, full-
vectorial electromagnetic field simulations based on Maxwell’s equations are needed, which
is a computationally demanding task for a large medium. In this publication, we describe
in Section 2 how to efficiently simulate the full-vectorial light propagation of focused beams
inside static scattering media by a two-step beam synthesis method. This approach makes
it possible to optimize the incident beam to enhance the energy density or the absolute
value of the Poynting vector in the focus. Additionally, average values of the mentioned
quantities can be obtained with our proposed method. Results for a focused beam scanned
into a scattering medium and optimized via phase modulation are presented in Section 3.
We conclude this study with Section 4, where we also discuss the main results.

2. Simulation Method
2.1. Two-Step Beam Synthesis Method

We use the Debye–Wolf theory [24,25] for an aplanatic optical system to simulate the
scanning and optimization of a monochromatic focused beam inside a scattering static
medium. A sketch of the focusing system is depicted in Figure 1. As we are interested in
the simulation of a spatial light modulator in the back focal plane of the imaging system, it
is convenient to model the incident beams with their angular spectrum representation.

The incident geometrical ray with an electric field Einc(s) propagating parallel to
the optical axis (z-axis) refracts at the Gaussian reference sphere, where s = (sx, sy, sz)
denotes the normalized wavevector k/k, which is fully characterized by the two coordinates
sx and sy in k-space. The wavevector is denoted by k and the absolute value of the
wavevector by k = 2πnm/λ with the vacuum wavelength λ and the refractive index of
the surrounding medium nm. For a monochromatic beam, the third component of the
normalized wavevector can be calculated by sz = (1− s2

x − s2
y)

1/2. The refracted ray has
an electric field E∞(s), which is the electrical field vector of a plane wave propagating in
the direction s to the focus region. To obtain the electric field distribution E(r) in the focal
region, we must integrate over the whole numerical aperture, each point in k-space. This
results in the representation of the focusing field with the so-called Debye–Wolf integral [24]

E(r) = − ik f
2π

∫∫
s2

x+s2
y≤1

E∞(s) exp(iks · r) 1
sz

dsx dsy , (1)

where r denotes the position vector and f is the focal length of the imaging system. To obtain
E∞(s) from Einc(s), we follow the approach presented in [26]. The incident electric field
for a specific ray is decomposed into a component that is perpendicular to the meridional
plane Einc(s) · nφ and a component that is parallel to the meridional plane Einc(s) · nρ.
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Figure 1. Illustration of the focusing system with the optical axis along the z direction. The incident
light is characterized in k-space by the normalized coordinates sx and sy with its angular spectrum
Einc(s). The in- and out-of-plane polarizations of Einc(s) with respect to the meridional plane
(plane rotated by φ around the optical axis) can be calculated with the normal vectors nφ and nρ.
The aplanatic lens refracts the incident light at the Gaussian reference sphere. The resulting electric
field vector E∞(s) for the plane wave propagating in direction s is calculated with the normal
vectors nφ and nθ. The refracted light then propagates with angle θ relative to the optical axis to the
focus region.

The unit vector nφ = (− sin φ, cos φ, 0) is perpendicular to the meridional plane
and nρ = (cos φ, sin φ, 0), the corresponding parallel unit vector. The angle φ describes
the rotation of the meridional plane around the z-axis. The electric field components are
also perpendicular to the propagation direction that is parallel to the optical axis. After the
geometrical ray is refracted from the Gaussian reference sphere, the propagation direction
changes to s. The perpendicular part of the electric field vector remains the same after the
Gaussian reference sphere but the parallel part has to change as the electric field has to
be perpendicular to s. Therefore, the electric field vector for a plane wave in the angular
spectrum representation can be calculated by [26]

E∞(s) =
√

sz
[[

Einc(s) · nφ

]
nφ +

[
Einc(s) · nρ

]
nθ

]
. (2)

The unit vector nθ = (cos θ cos φ, cos θ sin φ,− sin θ) is perpendicular to the propaga-
tion direction s and the factor

√
sz is due to energy conservation. The angle θ describes the

angle between the refracted ray direction s and the z-axis, as shown in Figure 1. We further
assume that the aplanatic optical system has a polarization-independent transmission of
unity. Therefore, we can write the electric field distribution at the focus with Equation (1)
in terms of the angular spectrum of the incident field generated by a fully illuminated
aperture as
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E(r) =
∫∫

s2
x+s2

y≤1

[[
Einc(s) · nφ

]
nφ +

[
Einc(s) · nρ

]
nθ

]
exp(iks · r) 1√

sz
dsx dsy ,

(3)

where we omit the constant factors outside the integral.
For a given incident field distribution in k-space, Equation (3) can be calculated

numerically to obtain the field distribution around the focus in free space. The incident
field to the focus region can be used as the input for a numerical Maxwell’s equations
solver, such as the FDTD method [27], to calculate the scattering of a beam incident on a
turbid medium. Scanning the incident beam to many positions relative to the scattering
medium is computationally expensive as Maxwell’s equations have to be solved for each
position. In this study, we use a two-step beam synthesis method, which we already have
applied for beam propagation in two-dimensional scattering media [21]. We first discretize
the double integral in Equation (3) with a sum over equidistant points in k-space

E(r) ≈∑
i

∑
j

[[
Einc,i,j · nφ

]
nφ +

[
Einc,i,j · nρ

]
nθ

]
exp

(
iksi,j · r

) 1√sz,i,j
∆sx∆sy ,

(4)

where ∆sx and ∆sy denote the spacing between the equidistant points in k-space. Each
term in the sum corresponds to a plane wave propagating in the direction si,j to the focus
region with a polarization vector calculated by Equation (2). For a given scattering medium,
Maxwell’s equations are solved for each plane wave with si,j, which results in a set of N
near-field solutions. In this publication, we are interested in monochromatic beams that
are scattered by a dielectric medium. Therefore, we solve Maxwell’s equations on a grid
with a modified Born series approach similar to the one described in [28]. Because we
only examine phase modulation in this study, we restrict ourselves to incident fields with
the polarization Einc = (E0, 0, 0) and constant amplitude E0 in the back focal plane. The
calculation of the set of N near fields is the most time-consuming part, where the bottleneck
is a single plane wave simulation. Discretization of the double integral in Equation (3)
leads to the repetition of the fields in the x- and y-planes. To avoid aliasing, we have to
consider the Whittaker–Shannon sampling theorem [29]. Therefore, the spacing between
neighboring k-vectors has to be

∆si ≤
2π

Lik
, i ∈ {x, y} , (5)

where Li is the lateral height and width of the simulation region.
In the second step of the two-step beam synthesis method, all N near fields are added

according to the angular spectrum in k-space to numerically approximate the integral in
Equation (3). Thus, the plane wave part in Equation (4) is replaced by the field distribution
over the simulation grid Ei,j(r) to obtain the scattered electric field distribution inside
the medium

E(r) ≈∑
i

∑
j

Ei,j(r)
1√sz,i,j

∆sx∆sy . (6)

The summation is also done for the magnetic field distribution and results in the
corresponding total magnetic field H(r) due to the linearity of Maxwell’s equations. The
magnetic field has to be computed in order to calculate the energy density distribution w(r)
and the complex Poynting vector S(r) inside the medium.
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Scanning the incident beam by ∆r only requires a phase shift for each plane wave in
the angular spectrum of exp(− iks · ∆r). Therefore, the term exp

(
− iksi,j · ∆r

)
needs to be

added in Equation (6) under the double sum. In addition, the angular spectrum can also be
altered to optimize the focused incident beam to increase the energy density or the Poynting
vector at a specific position. In this publication, we consider only phase modulation in
the angular spectrum, although polarization and amplitude modulation are also possible
with this method. For each optimization channel, a phase factor of exp(− iφopti,i,k) can
be applied to spatially modulate the phase of the incident beam in the back focal plane.
There are different ways to optimize a certain observable, such as the energy density or
the Poynting vector, with the knowledge of the electromagnetic field distribution from the
plane wave set but, in general, this is a global optimization problem.

2.2. Phase Optimization Techniques

The optimization of the incident electromagnetic field to obtain, for example, a focus
inside a scattering medium requires either a feedback signal [13] or information about
the electromagnetic field [30] at the region of interest. The total number of optimization
channels Nch is usually given by the experiment setup. Often, a spatial light modulator
is used, where each pixel or a group of pixels equals one optimization channel. In a full-
vectorial light simulation, it is possible to access the electromagnetic field anywhere in
the simulation region. Therefore, the information for optimization is easily accessible. In
general, the incident light can be optimized for any objective function. Here, we focus
on the energy density w(r) and the absolute value of the Poynting vector |<(S(r))|. <()
denotes the real part. The energy density is calculated as w(r) = 1

4 (ε(r)E(r) · E∗(r) +
µ0H(r) · H∗(r)) and the complex Poynting vector as S(r) = 1

2 E(r)× H∗(r). Each channel
has an electromagnetic field denoted by Ẽn(r), H̃n(r), which can be calculated by summing
up the electromagnetic fields Ei,j(r) and Hi,j(r) over the corresponding region of the n-th
channel in k-space.

One of the most common attempts to optimize the energy density or intensity of the
electromagnetic field inside or behind a scattering medium is to use phase conjugation. This
technique results in the maximum constructive interference of the electric fields, but only
if light can be modeled as a scalar or all incident channels have the same polarization
state in the focus position. For phase conjugation, looking only at the x component of
the electric field Ẽn,x(rfoc) at the optimization position rfoc, we apply a phase change of
exp(− i arg{Ẽn,x(rfoc)}) to each channel. This phase shift is also applied to the magnetic
fields. The energy density and the Poynting vector are then calculated with these fields
and are further denoted by “x-pc”.

Scattering randomizes the phase and polarization state of light for each channel. Thus,
it can be expected that phase conjugation with respect to a random direction nrand inside
strongly scattering media can also enhance the energy density or absolute value of the
Poynting vector. Phase conjugation along a random direction is obtained by projecting the
electric field at rfoc of each optimization channel along nrand and applying this phase shift
of exp

(
− i arg{Ẽn(rfoc) · nrand}

)
to the electromagnetic field of each channel. We further

denote the optimized quantities obtained by this method as “n-rand-pc”.
It is known that the electric field vector can only oscillate in a plane [31], even inside

a strongly scattering medium. Therefore, the optimized electric field vector oscillates
also in a plane. One option to optimize the incident field is to find the best direction
nopti(φ, θ) = (cos φ sin θ, sin φ sin θ, cos θ) in which to project the electric fields of each
channel to find the optimal phase shift. To find the optimal direction, we must solve the
following optimization problem for the energy density wfoc = 〈w〉t(rfoc) at the focus rfoc
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maximize
φ,θ

∣∣∣∣∣Nch

∑
n=1

Ẽn(rfoc)e
− i arg{nopti(φ,θ)·Ẽn(rfoc)}

∣∣∣∣∣
2

+

∣∣∣∣∣Nch

∑
n=1

H̃n(rfoc)e
− i arg{nopti(φ,θ)·Ẽn(rfoc)}

∣∣∣∣∣
2

subject to 0 < φ ≤ 2π,

0 < θ ≤ π.

(7)

Here, it should be noted that we are using the electric field to project along the optimal
direction nopti to find the optimal angles for φ and θ. This could also be done with the
magnetic field. In the same way, we can write the optimization problem for the average
value of the Poynting vector <(S(rfoc)) as

maximize
φ,θ

<
[(

Nch

∑
n=1

Ẽn(rfoc)e
− i arg{nopti(φ,θ)·Ẽn(rfoc)}

)
×
(

Nch

∑
n=1

H̃∗n(rfoc)e
i arg{nopti(φ,θ)·Ẽn(rfoc)}

)]
subject to 0 < φ ≤ 2π,

0 < θ ≤ π.

(8)

Solving Equations (7) and (8) involves only the variables φ and θ. We further denote
this optimization scheme as “n-opti”.

The maximal number of variables that can be optimized is the number of channels
Nch if each channel can be phase modulated. Therefore, the optimization problem for the
energy density in the focus point can be written as

maximize
φ,θ

∣∣∣∣∣Nch

∑
n=1

Ẽn(rfoc)e− i∆φn

∣∣∣∣∣
2

+

∣∣∣∣∣Nch

∑
n=1

H̃n(rfoc)e− i∆φn

∣∣∣∣∣
2

subject to 0 < ∆φn ≤ 2π, n = 1, 2, 3...Nch .

(9)

Furthermore, the optimization problem for the average value of the Poynting vector
in the focus position is

maximize
φ,θ

[(
Nch

∑
n=1

Ẽn(rfoc)e− i∆φn

)
×
(

Nch

∑
n=1

H̃∗n(rfoc)ei∆φn

)]
subject to 0 < ∆φi ≤ 2π, n = 1, 2, 3...Nch .

(10)

In further sections, we denote quantities optimized with all the possible Nch channels
as “g-opti”. To find optimal solutions for Equations (7)–(10), we use the Julia packages
Optim.jl [32] and Blackboxoptim.jl [33].

2.3. Scattering Medium and System Specifications

In Figure 2, the turbid medium that is used in this study is shown. The scattering
medium is built up by cubic scatterers randomly positioned in a host medium with refrac-
tive index nm = 1. We choose to use cubic scatterers with the same orientation because it is
easy to randomly position them without overlapping with a large concentration. Each cubic
scatterer has a side length of 0.7λ and a real refractive index of 1.5. Hence, the medium is
non-absorbing. The scatterers are randomly distributed inside a rectangular volume with
side lengths Lx = 41.7λ, Ly = 41.7λ, and Lz = 20λ. The volume fraction occupied inside
the rectangular volume is fV = 0.3. The concentration and refractive index of the scatterers
were determined by test simulations in such a way that the medium scatters relatively
strongly. This medium is similar, for example, to a thin powder layer of silica particles of
similar size and concentration. The refractive index distribution of the randomly positioned
cubic scatterer was transferred into a simulation grid that had a resolution of λ/6.
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Figure 2. (a) Scattering medium composed of cubic scatterers (this plot and all subsequent three-
dimensional plots were produced with Makie [34]) with fV = 0.3 and normalized dimensions
Lx = 41.7λ, Ly = 41.7λ, and Lz = 20λ. The x-, y-, and z-axis are normalized by the wavelength λ.
(b) Determination of ` by the decay of the coherent intensity (blue line) and collimated transmission
simulations (orange markers). The black line shows the obtained exponential law with ` = 1.05λ and
the gray shaded area shows the region of the medium.

To quantify the scattering mean free path ` of the turbid medium, we performed a
simulation, where a plane wave was scattered by the turbid medium. The propagation
of the plane wave was in the z-direction and we applied periodic boundary conditions in
the x- and y-direction to avoid artifacts from the finite size of the medium. Furthermore,
the polarization of the incident plane wave was in the x-direction. The coherent intensity,
which is often defined as 〈Ex〉2x,y(z), can be used as an estimator for ` [35]. The averaging of
Ex(r) was performed over the x- and y-direction of the simulation volume. The normalized
coherent intensity 〈Ex〉2x,y(z)/〈E0〉2 is shown in Figure 2b, where 〈E0〉2 is the absolute
square of the amplitude of the incident plane wave. A different approach to obtaining an
estimate of ` is to mimic a collimated transmission experiment by performing the plane
wave simulation, as described before, for different widths Lz of the medium. Calculating
the two-dimensional Fourier transform of Ex at a transverse plane behind the medium
gives the far field. The normalized intensity from the collimated transmission simulations
is shown with orange markers in Figure 2b. Both approaches give similar estimates of the
coherent (unscattered) intensity. A fit of an exponential function gives a scattering mean
free path of ` = 1.05λ. The scattering mean free path is often estimated with the scattering
efficiency of a single scatterer and the concentration of the scatterers [36]. If we assume a
medium with the spherical scatterers but the same volume as a single scatterer, as in this
study, we find that this approach would give an estimation of ` = 0.62λ, which is a ≈40 %
relative difference from the numerical approaches. A concentration of fV = 0.1 would
give a relative difference of ≈4.6 % between the different approaches. It is known that
this linear dependency between the inverse of the scattering mean free path and scatterer
concentration is only valid for small concentrations. Therefore, we used the decay of the
coherent intensity and the collimated transmission simulations to estimate the scattering
mean free path.

The simulated incident focused beam is defined by the imaging system described in
the previous section. In this study, we choose a numerical aperture of NA = 0.45, which
results in a maximum angle of θmax = 26.74° relative to the optical axis for the allowed
k-vectors. The numerical aperture limits the area in k-space as depicted in Figure 1. In order
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to use the two-step beam synthesis method, we have to simulate each k-vector in a separate
simulation; therefore, we have to sample the aperture. We choose an equidistant spacing of
∆sx = ∆sy = 0.025 according to Equation (5) to avoid artifacts coming from the repetition
of the incident beams in the lateral direction. The sampling of the aperture in normalized
k-space is shown in Figure 3.

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

sx

s y
Sampling Points

Figure 3. Equidistant distribution of the 1009 sampling points over the numerical aperture with
NA = 0.45 (gray region).

In total, we simulated N = 1009 plane waves for the uniform illumination of the back
focal plane and polarization of Einc = (E0, 0, 0) .

3. Results

The described vectorial two-step beam synthesis method is capable of simulating the
scanning and optimization of arbitrary electromagnetic beams inside turbid media. In
this section, we present results obtained with this simulation approach to scan inside a
scattering medium and visualize the energy density distribution and the absolute value
of the Poynting vector. Afterward, we investigate the impact of phase optimization for
different numbers of optimization channels for these quantities.

3.1. Scattering of a Focused Beam by the Turbid Medium

Scanning a focused beam into a scattering medium results in the redistribution of the
incident light. If the scattering mean free path ` is much smaller than the scanning depth,
the focus completely deteriorates, which makes the focused beam unusable for imaging
modalities such as confocal microscopy. To illustrate the scattering of a focused beam inside
a highly scattering slab, we scanned the focus to a depth of z = 15λ inside the scattering
medium. The normalized energy density distribution of the beam in vacuum w(r)/w0 is
shown in Figure 4a. A clear focus at the position rfoc = (0, 0, 15λ) with w(r)/w0 = 1 can
be seen. w0 denotes the energy density at the focus position in vacuum. The full width
at half maximum of the focus in vacuum is ≈8.5λ in the axial direction and ≈1.1λ in the
lateral direction. Scanning the focused beam to the same position in the presence of the
scattering medium results in the energy density distribution shown in Figure 4b. The effect
of scattering reduces the energy density inside the medium because a lower amount of light
enters the scattering medium and also the energy is distributed over a larger volume. The
maximum normalized energy density inside the scattering medium is 0.35 and its location
is about a distance of λ from the entrance surface. At the original focus, the energy density
drops by around two orders of magnitude to w(rfoc)/w0 = 0.003.
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(a) (b)

Figure 4. Energy density distribution of a beam focused at z = 15λ. Panel (a) shows w(r)/w0 of the
focused beam in vacuum and panel (b) when the scattering medium is present. The color for energy
density values <0.01 is made transparent for better visibility.

In the same way, the Poynting vector can be investigated. In Figure 5a, the absolute
value of the Poynting vector is shown, which is normalized by the peak value in vacuum at
the focus position further denoted by |<(S0)|. The largest value can be found in the focus
as expected. The full width at half maximum of the focus for |<(Sfoc(r))|/|<(S0)| is ≈8.5λ
in the axial direction and ≈1.1λ in the lateral direction. These are the same values as for the
focus size of the energy density. Introducing the scattering medium leads to the redirection
of the flow of light, as can be seen in Figure 5b. Furthermore, a reduction in the intensity
of the Poynting vector is additionally caused by the backscattered light, which leads to a
counterpropagating flow of light, reducing the overall Poynting vector.

(a) (b)

Figure 5. The absolute value of the Poynting vector of a beam focused at z = 15λ. Panel (a) shows
|<(Sfoc(r))|/|<(S0)| of the focused beam in vacuum and panel (b) when the scattering medium is
present. For values <0.01, the color is transparent for better visibility.

3.2. Phase Optimization to Enhance the Focus Energy Density

By scanning a focused beam into a scattering medium, the focus inevitably deteriorates,
as shown in the previous Section 3.1. Phase optimization can lead to an increase in the
energy density at the desired focus location.
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In Figure 6, two simulations of phase-optimized beams are shown. The non-optimized
focused light beams were first scanned to a depth of z = 15λ and afterward optimized
with Nch = 137 (Figure 6a) and Nch = 1009 (Figure 6b) equally sized channels. Equally
sized channels refer to the channels with the largest rectangular area in k-space that is
modulated. There are additional channels with smaller areas at the edge of the circular
region in k-space that are modulated, but we do not count them here as full optimization
channels. For these examples, an optimal solution according to Equation (9) was sought.
The phase distributions applied in k-space are shown in the left plots and the resulting
energy density distribution of the optimized incident beams are shown in the right plots.

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

sx

s y

−π

0

π
∆

ϕ
ch

(a)

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

sx

s y

−π

0

π

∆
ϕ

ch

(b)

Figure 6. Energy density distribution of phase-optimized beams at z = 15λ. Panel (a) shows the
optimized phase pattern depicted in the left plot for 137 optimization channels and the resulting
normalized energy density distribution w(r)/w0 after applying the optimized phase pattern. Panel
(b) shows the optimized phase pattern depicted in the left plot for 1009 optimization channels and
w(r)/w0 after applying the optimized phase pattern in the right plot. Values of w(r)/w0 < 0.003 (a)
and <0.008 (b) are transparent for better visibility.

After phase optimization with Nch = 137, a distinct speckle-sized focus is regained at
z = 15λ. It can also be noticed that in the volume close to the incident surface, the energy
density has a larger value as in the desired focus. Optimization with Nch = 1009 results
also in a speckle-sized focus but with a greater value of the energy density in the focus than
in any other region of the scattering medium. The reason for this is that as the number of
channels increases, the electromagnetic fields constructively interfere only in the focus, and,
in other regions, the field results in a random interference pattern. The axial and lateral full
width at half maximum of the focus is ≈0.6λ for Nch = 137 and Nch = 1009.
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To obtain the quantitative behavior of the energy density in the focus, we scanned the
non-optimized and optimized beams into the medium to obtain the energy density in the
focus over depth. Different optimization schemes and different numbers of optimization
channels were used to obtain an enhancement in the energy density in the focus. Here, we
define the enhancement as the quotient of the optimized and the non-optimized quantity.
The non-optimized quantity is denoted by “scan”. In Figure 7 (top), the averaged energy
density 〈wfoc(z)〉 over depth normalized by the energy density in the focus in vacuum w0
for non-optimized (“scan”) and optimized (“x-pc”, “n-rand-pc”, “n-opti”, and “g-opti”)
beams is shown. The results from the optimized beams are shown with different line styles
and the colors denote the different numbers of optimization channels. The averaging was
performed over 49 lateral positions between the area of−6λ and 6λ in the x and y-direction,
where each lateral position was separated by at least a distance of 2λ. By using only a
small limited lateral area, we aimed to avoid boundary effects due to the finite size of the
medium. The enhancement over depth is shown in Figure 7 (bottom). The shaded areas
show the expected enhancement, where the maximum value for a specific Nch is obtained
by the scalar theory [4] from the formula η(Nch) = π/4(Nch − 1) + 1. The minimum value
is obtained by η(Nch)/3. This can be justified by the consideration that the polarization of
a general electromagnetic field has three spatial degrees of freedom and these orthogonal
polarization states cannot interfere.
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Figure 7. (Top): Average focus energy density for the non-optimized beam scanned over depth z and
phase-optimized beams obtained for different optimization methods (line style) and with different
numbers of optimization channels (colors). The gray lines depict exponential decays. (Bottom):
Enhancement between the scanned and phase-optimized average energy density in the focus over
depth. The shaded areas show the interval between the expected enhancement from the scalar theory
and one third of it.

For the scanned non-optimized beam, the normalized energy density in the focus first
increases for shallow depths up to a distance 2λ inside the medium. This can be explained
by the backscattered light from larger depths enhancing the focus energy density on average.
For depths z > 2λ, 〈wfoc(z)〉/w0 decreases exponentially with a factor ≈1/1.5λ, which is
lower than predicted by the Beer–Lambert law. This deviation can be explained due to
the presence of scattered light in the focus. The behavior of the energy density changes
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for depths larger than 10λ to an exponential decay with ≈1/4.8λ. This phenomenon
is also present in two-dimensional, strongly scattering media [21]. Behind the medium,
〈wfoc(z)〉/w0 drops abruptly due to the absence of backscattered light from larger depths.

In Figure 7 (top), we see that applying the conjugate phase of the electric field of each
channel at the focus in the x-direction (“x-pc”) or a random direction (“n-rand-pc”) leads
to no enhancement or even a decrease in the energy density in the focus for depths up to
2λ. As the electric field of the incident beam is predominantly polarized in the x-direction,
conjugating the phase in this direction leads to almost no enhancement before the scattering
medium and at shallow depths because all the electromagnetic fields of the channels are
already in phase at the focus. For larger depths, modulating the incident beam with the two
different phase conjugation approaches leads also to a significant enhancement. The results
of the approaches “n-opti” and “g-opti”, which utilize global optimization algorithms to
find an optimal solution of the phase patterns, show similar behavior before the scattering
medium and at shallow depths with a small or no enhancement compared to the non-
optimized beam. For larger depths, the enhancement is always greater for these types of
optimization approaches. Furthermore, optimization according to the “g-opti” approach
gives always a greater energy density in the focus than “n-opti”, but one has to keep in
mind that “g-opti” uses Nch variables in the optimization problems, whereas “n-opti” only
uses two. The enhancement with all optimization approaches shows a steep increase until
a depth of z = 8λ. This effect can be explained by the fact that the focused incident beam is
itself optimized for a vacuum and deteriorates when scanned into the scattering medium.
After a depth of z > 8λ, the focus is practically lost, and therefore the enhancements
for different numbers of incident channels stagnate or have a decreased slope. For the
energy density enhancement, only the results for Nch = 9 reach the theoretically expected
enhancement between η(9)/3 = 2.4 and η(9) = 7.3. For more optimization channels,
the different electromagnetic fields might not be completely randomized for the scanned
non-optimized beam and the consulted scalar theory might not be fully applicable to
vectorial light propagation.

3.3. Phase Optimization to Enhance the Absolute Value of the Focus Poynting Vector

In addition, it is often of interest to investigate the flow of light described by the
Poynting vector and how it can be increased by the phase modulation of the incident
beam. As seen in Figure 5, a scattering medium reduces the absolute value of the Poynting
vector in the focus compared to the value in vacuum S0. Phase optimization according to
Equation (10) enhances the absolute value of the Poynting vector at the desired focus. This
can be seen for a scanning position at z = 15λ in Figure 8 for two different numbers of
optimization channels. We find that in the case of Nch = 137, a distinct focus is regained at
the desired focus position, although |<(S(rfoc))|/|<(S0))| can have greater values in the
scattering medium at shallow depths. For Nch = 1009, the maximum absolute value of the
Poynting vector is in the desired focus and also larger as for the simulation with Nch = 137.
In both cases, the full width at half maximum in the lateral direction is ≈0.7λ and in the
axial direction ≈0.3λ.

Examining the average absolute value of the Poynting vector for a non-optimized
beam over the scanning depth shows a decrease with penetration depth, as can be seen in
Figure 9. Averaging was performed in the same way as for the energy density. Furthermore,
the absolute value of the Poynting vector does not show an increase in value at shallow
depths compared to the energy density in the previous section. This can be explained
by the counter-propagating waves from the scattering medium, which lead to a resulting
average decrease in the Poynting vector. We also find two regions within the medium with
different exponential decays, at first with an exponential of ≈1/1.4λ until z = 8λ and with
≈1/4.5λ until the end of the medium. Both exponential behaviors have a slightly lower
decay rate compared to the Beer–Lambert law.
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Figure 8. Distribution of the absolute values of the Poynting vector of phase-optimized beams at
z = 15λ. Panel (a) shows the optimized phase pattern depicted in the left plot for 137 optimization
channels and the resulting |<(S(rfoc))|/|<(S0))| after applying the optimized phase pattern. Panel
(b) shows the optimized phase pattern depicted in the left plot for 1009 optimization channels and the
resulting |<(S(rfoc))|/|<(S0))| after applying the optimized phase pattern. The applied phase shifts
are shown in the inset. Values of the normalized absolute value of the Poynting vector <0.002 (a) and
<0.004 (b) are transparent for better visibility.

Phase optimization to enhance the absolute value of the Poynting vector has been
done for three different numbers of optimization channels Nch ∈ {9, 137, 1009}. The four
different optimization approaches described in Section 2.2 were used for optimization.
The results are shown in Figure 9 in different colors and line styles. For scanning positions
in front of the medium, all optimization techniques besides “g-opti” deteriorate the focus
compared to the non-optimized beam and result in a lower value of 〈|<(Sfoc(z))|〉/|<(S0)|.
For a scanning depth greater than 4λ, all optimization techniques lead to an increase in
the absolute value of the Poynting vector in the focus. At scanning positions inside the
medium, we find that the differences between the global optimization technique “g-opti”
and the other approaches increase with an increase in the number of optimization channels.
Behind the medium, the “n-opti” and “g-opti” approaches lead to similar values of the
average absolute value of the Poynting vector in the focus. The enhancement with the
different techniques increases with the scanning depth for all approaches and is shown in
Figure 9 in the bottom plot.
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Figure 9. Top plot: Average absolute value of the Poynting vector in the focus for the non-optimized
beam scanned over depth z and phase-optimized beams obtained for different optimization methods
(linestyle) and with different numbers of optimization channels (colors). The gray lines depict
exponential decays. Bottom plot: Enhancement between the scanned and phase-optimized average
absolute value of the Poynting vector in the focus over depth.

4. Discussion and Conclusions

In this study, we extended the two-step beam synthesis approach already used to in-
vestigate light propagation and optimization in two-dimensional media [21,37] to be able to
model full-vectorial light propagation and optimization in three dimensions. The presented
method is split into two main steps. First, a set of plane wave near-field solutions for a
static medium is obtained by numerically solving Maxwell’s equations, where the incident
polarization and the propagation direction of the plane waves are determined through the
Debye–Wolf theory. In the second step, the near fields of arbitrary incident beams scattered
by the medium can be computed by adding the plane wave near-field solutions according
to the angular spectrum of the incident beam. The separation of the calculation of the plane
wave solutions and the synthesis of a complex beam makes it possible to reuse the plane
wave solutions. Thus, with this method, the scattering of different incident beams can be
efficiently calculated for the static medium under consideration. This includes scanning
and optimizing the incident beam. Common methods would have to perform the complete
numerical calculation again for each change in the incident beam.

We used this approach to simulate the scanning and phase optimization of a focused
beam with a numerical aperture of NA = 0.45 inside a strongly scattering medium with
a scattering mean free path of ` = 1.05λ and thickness 20λ. We examined the energy
density and absolute value of the Poynting vector at the intended focus position over depth
ranging from −2.5λ to 22λ, where 0λ was the location of the front surface of the scattering
medium. The optimization of the incident beam was investigated for a different number of
optimization channels Nch ∈ {9, 137, 1009} and different optimization schemes. To find an
optimal phase pattern to regain a focus, we used the knowledge of the electromagnetic field
at the intended focus position. The energy density and the absolute value of the Poynting
vector in the focus showed two regions over depth, with first a steep and afterward a flatter,
exponential-like decay. This can also be found in two-dimensional scattering media [21] but



Photonics 2023, 10, 1068 15 of 16

is not present in thin media or scattering media with a larger `. For example, the absence
of the two regions can be found in simulations for a scattering medium with ` = 1.95λ
(not presented in this publication) and two-dimensional media [38]. Phase optimization by
modulating the phase in k-space and applying the conjugate phase of the electric field in x
or a random direction in the focus for each optimization channel can lead to a significant
enhancement inside the scattering medium. An increased enhancement can be obtained by
seeking a solution to the optimization problem to find the best direction in which to project
the electric field to obtain the phase for phase conjugation. This requires two optimization
variables. The best performance was always achieved when a solution for the “g-opti”
was sought, but with the drawback that the Nch variables have to be optimized for the
given objective function. An additional drawback of the presented simulation approach
is that one near-field simulation takes around 30 min, and, for a larger volume and a
larger numerical aperture, the number of required near-field solutions increases drastically.
However, with increasing computing power and a larger number of parallel simulations,
this approach can be accelerated.

The versatility of the presented method makes it possible to model arbitrary vectorial
light beams. Possible applications of the approach are the investigation of different elec-
tromagnetic quantities inside turbid media, as shown in this study for the energy density
and the Poynting vector. This can be of importance to quantify the performance of imaging
modalities. Another possible use case is the calculation of optimal phase patterns compu-
tationally for real turbid media with a measured refractive index distribution to improve
imaging modalities [23]. For large turbid media, the numerical solutions of Maxwell’s
equations are often too time-consuming to obtain. Therefore, it is also possible to use our
proposed method but with plane wave solutions obtained with approximations such as the
beam propagation method.
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