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Abstract: In atmosphere free-space optical communication (FSO) systems, the scintillation effect
produced by turbulence effects increases the bit error rate (BER) of the communication system and
reduces the system’s performance. However, a high correlation of turbulent noise occurs in the
two transmission channels when a signal transmitted in the bidirectional atmospheric channel with
channel reciprocity. The performance of the FSO system can be increased by extracting channel
state information (CSI) in forward transmission and using adaptive power technology to reduce
turbulence in inverse transmission. In this research, we propose a bidirectional atmospheric channel
reciprocity-based adaptive power transmission (CR-APT) technique that lowers the bit error rate
of the transmitted signal by using the CSI of the relevant channel. To verify the effectiveness of the
technique, a bidirectional atmospheric channel with various turbulence intensities is built in the
simulation program, along with various background sounds to vary the channel reciprocity, and the
impact of reciprocity on signal transmission is examined. The simulation findings demonstrate that
adaptive power transmission with high reciprocity is excellent under the weak turbulence condition,
and its future development is promising.

Keywords: free-space optical communications; bidirectional atmospheric channel; atmospheric
turbulence; channel reciprocity; adaptive transmission techniques

1. Introduction

Free-space optical communication has received a lot of interest recently due to the
prevalence of data-traffic issues and its benefits of a small antenna size, no requirements of
authorization, and high bandwidth [1]. The turbulence effect and background noise are
the two primary features of the noise impact brought by the atmospheric channel in actual
FSO communication system implementations. Due to atmospheric turbulence brought
on by temperature, humidity, and other factors, a wireless optical signal sent over the
atmosphere would have undesirable consequences such as beam expansion, beam drift,
light-intensity flicker, and more [2]. The optical signal will be distorted by the background
noise that solar radiation produces [3,4]. Due to the turbulence effect and background
radiation noise, the received signal has a high bit error rate [5], and the FSO communication
system’s performance is below optimal [6].

Researchers have investigated a variety of effective communication techniques to
deal with the adverse impacts brought on by atmospheric turbulence. Multibeam light
was proposed to be used for information transmission in FSO links in the literature [7,8],
However, multibeam means multichannel, and the pointing inaccuracy is not insignificant.
Multimode aperture diversity reception was studied in the literature [9,10] to minimize tur-
bulence damage. This method was more effective, but the system was less stable. According
to the literature [11], optical phase conjugation (OPC) was used in FSO communication to
mitigate the turbulence effect and correct for signal distortion. This technique could effec-
tively improve the performance of FSO communication, but it might cause inter-channel
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crosstalk and channel power imbalance. To decrease the system’s emissive power and
the likelihood of a system failure, ref. [12] proposed using statistical estimation of the
approximate misalignment angle of multiple incident light beams. However, this method
was less frequently used in weak turbulence scenarios. Ref. [13] came with a technique for
high-dimensional coded communication employing polarization differential phase shift
keying with the use of turbulence-resistant vector beams, but this method had not yet
been used in practice. Refs. [14,15] provided an in-depth study of compensation schemes
using orbital angular momentum (OAM) in atmospheric turbulence, but OAM links are
less effective in long-range communication.

Additionally, the adaptive transmission method works well as a turbulence effect chan-
nel compensating technique. The rate adaptive transmission strategy, which had excellent
results in communication transmission but was more challenging to implement, had been
proposed in the literature [16]. The authors of ref. [17] replaced channel state information
with the adaptive threshold decision (ATD) by using the low-pass characteristics of atmo-
spheric turbulence to extract the instantaneous intensity. The quantization voltage of the
judgment signal was used in ref. [18] as the judgment threshold for an adaptive threshold
decision system. Ref. [19] utilized an adaptive linear prediction filter for CSI prediction
and ATD using predicted CSI. Although FSO systems of refs. [17–19] based on adaptive
approaches had higher performance and reduced loss, they all disregard the impact of
background noise. Most studies have concentrated on unidirectional atmospheric channel
transmission, although bidirectional atmospheric channel transmission has also drawn
more interest since the introduction of Shapiro’s original concept of channel reciprocity [20].
Bidirectional atmospheric channel transmission consists of two transmitters placed at the
ends of the link with the same axial symmetry emitting beams. This method can send,
receive, and send information in a very short period of time, which can be approximated
by the same channel turbulence state. To lessen the negative effects of the turbulence effect
and enhance the performance of the transmission system, the channel state information in
instantaneous transmission may be measured and extracted in transmission [21]. Then, the
channel compensation scheme can be employed. Since there are currently fewer methods
that combine adaptive transmission and reciprocity [22], the bidirectional atmospheric
channel that uses adaptive transmission needs further study.

In this paper, we propose a bidirectional atmospheric channel reciprocity-based adap-
tive power transmission technique. According to the reciprocity property of a bidirectional
atmospheric channel, while CSI estimation is performed at the receiving end of forward
transmission using the received signal, adaptive power transmission is used at the trans-
mitting end of inverse transmission in order to lower the BER of the transmitted signal.
To test the usefulness of the technique, a bidirectional atmospheric channel with various
turbulence strengths is built in the simulation software, and various background sounds
are introduced to the channel to vary the channel reciprocity. Based on experimental data
gleaned via simulation, the impact of reciprocity on adaptive power transfer is researched,
and the effectiveness of adaptive power transfer technology is assessed. In order to ex-
amine the viability of this technique in various contexts, Fixed threshold decision (FTD)
and conventional ATD techniques are included in the simulation studies for horizontal
comparison.

2. Theoretical Analysis

We break down the theoretical analysis into two sections in this paragraph. In
Section 2.1, we provide a comprehensive formulation of the mathematical model of the
modeling using the bidirectional atmospheric turbulence transmission channel, and in
Section 2.2, we meticulously describe the flow of the proposed adaptive power transmission
technique based on the reciprocity of bidirectional atmospheric channels.
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2.1. Bidirectional Atmospheric Transmission Channel Model

The two transceivers a and b are allocated to receive a signal when they goes through
a bidirectional optical wireless channel with atmospheric turbulence in the bidirectional
atmospheric channel model utilized in this work. At the same end of the link are the two
transceivers, a and b. In a short period of time, the send–receive–send transmission process
may be completed by the transceivers situated at the two ends of the connection with the
same axis symmetry, as schematically depicted in Figure 1.
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Figure 1. Schematic of bidirectional atmospheric channel model. 
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We refer to process of transmitting a symbol that go from point a to point b and from
point b to point a, respectively, as forward transmission and inverse transmission. The
received signal of RF at the receiving end in forward transmission may be expressed as the
following under the assumption of intensity modulation and direct detection [23]:

RF = PLTSF + N, (1)

PL denotes the optical power of transmitting terminal, T denotes channel fading due to
turbulence effects, SF is the transmitted symbol, and N is the independent zero-mean unit-
variance Gaussian noise, where the intensity of the turbulent channel fading is represented
by the scintillation index of σ2, which is defined as follows [24]:

σ2
F =

E[T2]

E2[T]
− 1, (2)

and the subscript F in Equation (2) denotes the forward transmitted scintillation intensity,
and E[·] denotes the mathematical variance operation. The outgoing signals are not subject
to the same background noise because of the various heights of the transceivers a and
b, which might be reflected in the modeling as a high background noise in the inverse-
transmission channel. Thus, according to Equation (1), the received signal of RI that is sent
in the other way may be represented as

RI = PLCSI + N, (3)

where C tabulates the channel fading strength due to turbulent noise and background noise;
meanwhile, SI denotes the transmitted symbol of inverse transmission. In additional, the
channel reciprocity of ρ can be evaluated by the fading strength of the two channels [25],
and it is defined as

ρ =
cov(C, T)

σIσF
=

E[CT]− 1√
(1 + σ2

I )(1 + σ2
F)

, (4)
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where σ2
n(n = F, I) denotes the channel-fading variance in Equation (4) and cov(·) repre-

sents the covariance function. In contrast, the atmospheric turbulence channel simulation of
the channel applied in this paper approximates a lognormal distribution; so, the correlation
coefficient and scintillation index can be redefined [26]:

ρ̃ =
log(1 + ρσ2)

log(1 + σ2)
(5)

2.2. Adaptive Power Transfer System

In this research, we present an adaptive power transfer technique based on bidirec-
tional atmospheric channel reciprocity. We discuss a point-to-point FSO communication
system employing intensity modulation/direct detection On–Off Keying (OOK) modu-
lation across turbulent channels in this approach due to the high complexity of phase or
frequency modulation.

The system block diagram of the proposed adaptive power transfer approach is shown
in Figure 2. In the bidirectional atmospheric channel, because the forward-transmission
and reverse-transmission channel turbulence intensity are related, the CSI of the forward
transmission channel can be extracted, and the signal power can be adjusted according to
the known CSI in the reverse transmission, so as to achieve the purpose of suppressing
turbulence and enhancing the communication quality. The specific process is as follows:
at the transmitting end of the forward transmission, an amplitude 0 or 1 random pulse
sequence is generated and sent into the turbulent channel after OOK modulation. At the
receiving end, the state information of the channel is estimated based on the received signal,
and the CSI reflecting the noise level of the channel is obtained; at this time, the receiving
end of the forward transmission becomes the transmitting end of the reverse transmission.
The OOK signal power is changed according to the known CSI, increasing the signal power
at the poorer channel quality and decreasing the signal power at the better channel quality.
After receiving the signal at the receiving end of the reverse transmission, the CSI estimation
is performed again and the result is fed back to the transceiver. This can form a closed-loop
control system so that the power of the transmitted signal can be dynamically adjusted
according to the actual communication situation to improve communication quality.
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While in the communication process, the received optical signals are converted into
electrical signals under the influence of the noise generated during the detection process,
which consists of thermal noise, dark current, and scattered particle noise. The noise
produced by the photodetector can be characterized in the FSO communication system
simulation engineering as additive white Gaussian noise (AWGN), whose noise amplitude
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is expressed in terms of the signal-to-noise ratio (SNR). The formula for SNR can be
expressed as Equation (6), where Ps and Pn represent the effective power of the signal and
noise, respectively.

SNR = 10lg(
Ps

Pn
) (6)

An analog-to-digital converter subsequently transforms the signal from current to
digital signal. In order to acquire the digital received signal, the current is sampled at kT
moments at k-bit intervals. The signal is split into two parts after sampling is complete,
and the first portion can be used to determine the CSI of the forward transmission channel
based on the amplitude shift brought on by turbulence. The second stage completes
the demodulation before completing the CSI-based signal power modification. At this
time, OOK signal has had their power adjusted, and the transmitting end serves as the
receiving end for forward transmission while the receiving end serves as the transmitting
end for inverse transmission. To demonstrate the effectiveness of the adaptive transmission
technique in terms of the magnitude of the BER, the OOK signals are transmitted into
the turbulent channel with background noise and are identified at the receiving end. The
formula for BER is as follows [27]:

BER =

∞∫
0

f (r)Q(
r√

2(NC + NPD)
)dr (7)

where f (r) is the probability density function (PDF) that obeys a normal distribution under
turbulent conditions, Q(·) denotes the Gaussian function, NC denotes the noise present in
the channel, and NPD denotes the noise generated by the photodetector in Equation (7). In
summary, the adaptive power technique proposed in this paper can effectively mitigate the
effects of noise in bidirectional atmospheric channels.

3. Simulation and Investigation

This section compares the performance of the FTD technique to the traditional ATD
technique first. The BER performance was then presented and assesses after the adaptive
power transfer system simulation occurs in the ideal scenario ρ = 1 of channel reciprocity
without interference from background noise. Finally, to examine the impact of channel
reciprocity on the adaptive power approach suggested in this research, the FSO system
was simulated in the noisy state with various background noises. This simulation was
conducted in MATLAB R2020b.

3.1. The BER Performance of Conventional FTD and ATD

Fixed threshold decision is frequently used in traditional communication technology
because it has benefits like simple operation and intuitive results. In the FSO communica-
tion system, the FTD technique is to take the average fixed threshold for judgment after
acquiring the channel state, as the name implies. Figure 3a shows the performance of the
FTD under six-channel settings and various turbulence intensities. With the exception of
channel circumstances σ2 = 0.0596, the BER performs nearly linearly across a range of
SNRs. In other turbulent channel circumstances, the curve progressively reduced out at
SNR > 16 dB, the BER gradually hit the lower limit, and as the severity of the turbulence
rose, so did the BER’s lower limit. The BER was roughly 0.2, especially when the turbulence
intensity reached 0.5250. The FTD approach cannot be used to transfer the signal properly
in this situation. The reason for this is that the fixed threshold for averaging is no longer
able to send the signal adequately when the turbulence is high since the optimal judgment
threshold for signal transmission is changing over time.
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When the turbulence intensity was significant, the FTD technique was unable to suc-
cessfully transmit information. In order to complete transmission, adaptive transmission
technology was created that modifies the judgment threshold in accordance with the signal
that was influenced by turbulence. Additionally, Figure 3b illustrates how well the ATD
approach performs in turbulent channels of varying intensities. As seen in Figure 3b, the
ATD technology performed better than the FTD technology at transmitting signals in vari-
ous turbulence scenarios, and the BER performance of the ATD transmission technology
had increased by several orders of magnitude to 1 × 10−7. The BER curves of ATD tech-
nology under various turbulence circumstances were comparable; as an illustration, in the
turbulent channel of σ2 = 0.1896, the BER gradually declined as the SNR rose. Although
conventional ATD performed better than FTD, the good BER at σ2 = 0.5250 was only
1.5 × 10−5, which still has room for improvement.

The OOK signal is utilized by the transmitter to control the optical signal transmission
by switching the sinusoidal carrier on and off using a series of unipolar non-return-to-zero
codes. To examine the performance of the signal over various turbulent channels, Figure 4
displayed the time domain performance of the real transmitted OOK signal. The MATLAB
simulation software used the mean square error (MSE) function to calculate the error
generated between the sent signal and the received signal more precisely. Figure 4 displayed
the OOK signal’s time-domain performance as it moved through several turbulent channels.

In Figure 4, it could be observed that as the signal passed through the channel with
higher turbulence intensity, the more intense the fluctuation of the time domain profile
and the more severe the signal distortion. As shown in Figure 4b,c, the fluctuation of the
time-domain curves embodied by the signal passing through the turbulence intensity and
σ2 = 0.0684 channels were minor, and it could be seen that the optical signal l was less
affected by the turbulence noise. The numerical values of MSE were 0.047 and 0.051, along
with the original signals that might be easily recuperated. As shown in Figure 4d,e, the time-
domain curve produced distortion. For channels with scintillation intensity σ2 = 0.1002,
the MSE value was 0.067, while for channels with σ2 = 0.1896, it was 0.114. Anti-noise
measures must be used during communication in such channels in order to recover the
signal transmission’s original content. As turbulence intensity rises, the signal ups and
downs became more pronounced, and MSE values rose as a result. As for Figure 4e,f, when
the signal passed through the turbulence channel, the amplitude fluctuated greatly, and
when its MSE > 0.2, the signal distortion was serious.
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3.2. The BER Performance of Proposed Adaptive Power Transfer Technique

In the actual application of FSO communication systems, adaptive systems that change
power based on the bidirectional atmospheric channel state information differ from FTD
and ATD techniques in that they are sensitive to background noise produced by sunlight as
well as other background light in addition to being affected by turbulence effects produced
by the atmosphere. The AWGN function can be used to incorporate noise into system
modeling, and in the following, Nb will be used in place of background noise to highlight
how it differs from the thermal noise produced by the photographic detectors.

In a bidirectional atmospheric channel without the interference of background noise,
it is ideal to utilize the same channel for forward and inverse transmissions, and the chan-
nel reciprocity is ρ = 1. The performance of the FTD, ATD, and CR-APT transmission
mechanisms was tested under these circumstances. In the meantime, two channels with
turbulence intensities of σ2 = 0.0596 and σ2 = 0.5250 were chosen for simulated com-
munication in order to compare the performance of each technique in various channels
more succinctly and intuitively. As observed in Figure 5a, the CR-APT technique, under
the ideal channel reciprocity of ρ = 1, obtained the BER of 1 × 10−7 when SNR = 18 dB.
CR-APT outperformed FTD and ATD while delivering better performance at lower SNR.
In channels with a turbulence intensity of σ2 = 0.5250, the CR-APT technique had good
performance and obtained a better BER at a lower SNR, in contrast to the FTD technique,
which had failed and ATD technique that had produced a high BER. Figure 5 demonstrates
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that, under ideal circumstances, the CR-APT technique still performed well regardless of
the kind of turbulence that the signal is delivered over.
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Due to their varying heights and reception orientations, forward and inverse broad-
casts in the FSO transmission system’s bidirectional atmospheric channel have various
effects on the transmission channel when background noise is present. When the signal’s
effective power is known, the background noise is assessed in terms of SNR, which can
be learned from Equation (6) in Part II. The lesser the noise power, the bigger the SNR,
and therefore, the larger the Nb. Consequently, the BER of the received signal and the
turbulence channel reciprocity for forward transmission and inverse transmission were
examined in six cases where the background noise was, from small to large, Nb = 30 dB,
Nb = 25 dB, Nb = 20 dB, Nb = 15 dB, Nb = 10 dB, and Nb = 5 dB in order to investigate the
effect of background noise on the adaptive method of bidirectional channel reciprocity.

In order to easily visualize the turbulent channel situation under different background
noises, the turbulent channel at a scintillation factor of σ2 = 0.0596 was taken as an exam-
ple. Figure 6 illustrates the time-domain performance of the signal passing through the
turbulent channel with a scintillation coefficient of σ2 = 0.0596 when various background
disturbances are introduced to the turbulent channel. As shown in Figure 6a–d, the time
domain curve became distorted when noise was added. For one thing, the numerical values
of MSE took 0.529, 0.530, 0.540, and 0.562. As the amount of noise added rose, the signal
distortion was more severe and the MSE value was higher. However, when noise was
added, as in Figure 6e,f, the channel was nearly completely overrun with noise, and noise
was thus present in this situation. The signal was severely distorted, with MSE values as
high as 0.634 and 0.863. In this channel situation, it was challenging to transmit signals
even with effective anti-noise measures.

The three techniques’ performances for two turbulent transmission channels with
background noise Nb = 30 dB added are shown in Figure 7. In the turbulence transmis-
sion channel of σ2 = 0.0596, the channel reciprocity value was ρ = 0.9912, while in the
turbulence transmission channel of σ2 = 0.5250, it was ρ = 0.9986. From Figure 7, it was
evident that the channel was less impacted by background noise, the channel reciprocity
was powerful, and the CR-APT technique’s performance in the two channels was very
nearly optimal. In Figure 7a, the ATD and CR-APT transmission performances were out-
standing, while the BER of the FTD approach was high when traveling through the channel
of σ2 = 0.0596. When going via the channel of σ2 = 0.5250 in Figure 7b, the FTD approach
entirely lost its impact. The ATD technique, on the other hand, achieved 1.5 × 10−4 at
SNR = 30 dB. The CR-APT approach achieved a BER of 5.8 × 10−5 at SNR = 20 dB, and
after that, with a rise in the SNR, the BER was maintained at about 2.3 × 10−5, which was
a respectable performance.
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Figure 7. BER performance of the three techniques in different turbulent channels when Nb = 30 dB.
(a) σ2 = 0.0596, (b) σ2 = 0.5250.

The measured channel reciprocity value in the turbulent transmission channel of
σ2 = 0.0596 was ρ = 0.9730 and in the turbulent transmission channel of σ2 = 0.5250 was
ρ = 0.9954, respectively, when Nb = 25 dB. The CR-APT technique tended to be closer to
the ATD technique than Figure 8a, although overall performance was marginally better.
It is foreseeable that when background noise levels rise, channel reciprocity would fall
and CR-APT’s BER performance will decline. It was demonstrated in Figure 8b that the
CR-APT technique had the same BER as the FTD technique at SNR = 30 dB in the turbulent
transmission channel of σ2 = 0.5250.
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(a) σ2 = 0.0596, (b) σ2 = 0.5250.

At Nb = 20 dB, Figure 9a showed that the BER performance of CR-APT technique
was delimited by SNR = 18 dB. At SNR < 18 dB, the CR-APT technique outperformed
the ATD and FTD techniques; at SNR ≥ 18 dB, the ATD technique performed better and
achieved the BER of 1 × 10−7 at SNR = 22 dB. Reciprocity ρ = 0.9214 in the channel of
σ2 = 0.0596 and reciprocity ρ = 0.9857 in the channel of σ2 = 0.5250 at Nb = 20 dB. At
Nb = 15 dB, Figure 10a shows that the performance of the CR-APT technique was similar
to that of the FTD technique with SNR = 20 dB as the demarcation, and the BER was much
higher than that of the ATD technique. At SNR < 20 dB, the FTD technique outperformed
the CR-APT; at SNR ≥ 22 dB, the CR-APT technique performed better. And in turbulent
channel σ2 = 0.0596, ρ = 0.8; in turbulent channel of σ2 = 0.5250, ρ = 0.9570. The channel
reciprocity dropped to 0.8 in a mildly turbulent channel when the added background noise
went from Nb = 20 dB to Nb = 15 dB, and the performance of the CR-APT technique suffered.
Although channel reciprocity gradually declined in channels with increased turbulence
intensity, the performance of signal transmission was also influenced by the quantity of
noise present in the channel.
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Figure 9. BER performance of the three techniques in different turbulent channels when Nb = 20 dB.
(a) σ2 = 0.0596, (b) σ2 = 0.5250.

Under different background noise conditions, the reciprocity of the turbulent channel
was also attenuated to different degrees. The values of the three tests under the experi-
mental conditions were specifically shown in Table 1, where the channel reciprocity for the
turbulence channel of σ2 = 0.0596 was ρ ≤ 0.5998 for Nb ≤ 10 dB, and ρ ≤ 0.8803 for the
turbulence channel of σ2 = 0.5250. Based on Figures 11 and 12, it was not difficult to see
that the CR-APT technique lost its ability to suppress the effects of fading from atmospheric
turbulence only when larger background noise was added to the turbulence channel.
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Table 1. Three channel reciprocity measurements with different background noise added for two
turbulent channels.

σ2 Nb(dB) ρ1 ρ2 ρ3

0.0596

30 0.9912 0.9912 0.9912
25 0.9730 0.9730 0.9730
20 0.9214 0.9215 0.9214
15 0.8000 0.8000 0.8001
10 0.5996 0.6000 0.5999
5 0.3886 0.3887 0.3882

0.5250

30 0.9986 0.9986 0.9986
25 0.9954 0.9954 0.9954
20 0.9858 0.9858 0.9856
15 0.9570 0.9570 0.9570
10 0.8803 0.8802 0.8803
5 0.7220 0.7219 0.7219

ρ1, ρ2, and ρ3 represent three channel reciprocity measurements. The ρ used within the article was the average of
the three times.
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(a) σ2 = 0.0596, (b) σ2 = 0.5250.

Combining the aforementioned tests demonstrates how susceptible to background
noise the CR-APT method is. The performance was dependent on the channel’s turbulence
intensity in the situation of low background noise; the higher the performance, which
outexecuted both the ATD and FTD approaches, the smaller the channel’s turbulence
intensity. The ultimate performance was influenced by the interaction of turbulence strength
and background noise, which resulted in a drop in channel correlation as background noise
levels rose. When the turbulence channel reciprocity was ρ ≥ 0.8 and the background
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noise Nb ≥ 10 dB, the CR-APT approach provided great BER with little SNR. However, the
CR-APT approach could only be used with very little background noise when there was
considerable turbulence intensity.
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4. Conclusions

In summary, the FSO system based on bidirectional atmospheric communication was
investigated theoretically and cumulatively. The transmission mechanism used the adaptive
power transmission technique based on the reciprocity of the bidirectional atmospheric
channel with OOK modulation. The CSI was extracted at the receiving end of the forward
transmission in accordance with the reciprocity of the bidirectional atmospheric channel,
and the adaptive power transmission was carried out at the transmitting end of the inverse
transmission based on the extracted CSI to reduce the channel’s fading response. In
MATLAB simulation software, the adaptive transmission method was represented with
various levels of background noise. The adaptive power transfer approach based on two-
way atmospheric channel reciprocity had its BER performance and reciprocity magnitude
tested. According to the simulation results, the technique’s performance is significantly
influenced by the size of background noise and the degree of air turbulence. In weakly
turbulent channels with low background noise, the channel reciprocity was high and
the performance of the proposed technique was outstanding, which was crucial for the
construction of effective and practical FSO systems in the future.
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