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Abstract: Liquid-assisted laser processing (LALP) is implemented using a 10.6 µm continuous-
wave (CW) CO2 laser to drill holes in 1.1 mm thick soda-lime glass substrates fully immersed in
a nanoliquid bath. The nanoliquid bath consisted of de-ionized water and carbon nano-particles
(CNPs) of different wt.%. The study focuses on the influence of exposure time (TE, [s]), laser beam
power (P, [W]) and number of pulses (NP) on resulting geometrical features, namely, crack length
(CL, [mm]), inlet diameter (DINLET, [mm]) and exit diameter (DEXIT, [mm]). The processed samples
were characterized using an optical microscope. Findings show that LALP with investigated ranges
of control parameters TE (0.5–1.5 s), P (20–40 W) and NP (1–6 pulses) led to successful production
of drilled holes having CL range (0.141 to 0.428 mm), DINLET range (0.406 to 1.452 mm) and DEXIT

range (0.247 to 1.039 mm). It was concluded that increasing TE alone leads to increasing CL, DINLET

and DEXIT, while keeping a good balance among the control parameters, especially TE and NP, will
result in reduced CL values. Moreover, process statistical models were developed using statistical
analysis of variance (ANOVA). These models can be used to further understand and control the
process within the investigated ranges of control and response parameters.

Keywords: laser drilling; soda-lime glass; nanoliquid; liquid-assisted laser processing; CO2 laser;
ANOVA; Box–Behnken design

1. Introduction

Glass and transparent dielectric substances have been commonly used for the pro-
duction of microfluidic, optical, optoelectronic devices and tools. CO2 lasers have proven
to be effective in processing transparent and dielectric materials with Si-O bonds such
as soda-lime glass. This is due to the high absorbance of laser energy by these materials
at the emitting wavelengths of CO2 lasers [1–3]. Previous studies reported that ablation
using CO2 lasers in such materials was obtained using relatively lower power intensities
compared to other laser sources [4,5]. The latter makes CO2 lasers more cost-effective than
short-wavelength lasers, plasma etching or wet chemical etching techniques when utilized
for micromachining of transparent dielectrics [6,7]. Consequently, and more specifically
in the industrial domain, investigative and process statistical modeling studies can be
highly beneficial in enhancing process controllability and optimization [8]. Drilling or
micro-drilling is one of the fabrication processes aimed to create holes that can serve as
couplings, entrance, exit or joining zones in Micro-Electro-Mechanical Systems (MEMS).

Several research works in the literature have been conducted to study the optimal
laser drilling process characteristics, control parameters, response parameters and the
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produced structures’ geometrical identifiers. Uno et al. used a longitudinally excited CO2
laser to produce crack-free holes in silica glass. The researchers investigated the effects of
laser beam power, short laser pulses, pulse energy and gas medium on the drilled hole’s
characteristics [9]. The drilling of large-aspect-ratio holes in glass is important for the
operation of micro-systems. In general, these holes can be used for the inlet/outlet contact
of micro-fluidic instruments for biological examination or anodic-bonded silicon-glass.
Standard glass drilling by mechanical tools or by laser processing in the air will create
many types of defects like bulges, debris cracks and scorch. The liquid-assisted laser
processing (LALP) technique has been used to decrease temperature gradient, bulge and
heat affected area (HAZ) to produce crack-free glass machined holes [10]. The performance
of laser-drilled holes in composite materials is dependent on the thermoset substrate. One
of the main factors in laser-drilled polymer composite holes is the heat-affected zone.
Consequently, one of the effective ways to minimize the temperature-affected zone is to
distribute thermally conductive nanofillers in polymer composites to enhance the heat
transfer properties through laser drilling. Some research works showed that by using
carbon black, both the heat-affected zone and the taper angle of drilled holes decreased
significantly [11]. On the other hand, it is widely accepted that there are various advantages
of the LALP drilling process, including minimized/no heat-affected zone, no friction with
the machine, high quality, versatility, flexibility, low processing time and low cost [12,13].
Baasandash et al. conducted a study to investigate the laser machinability of three glass
types: synthetic quartz, Pyrex glass and soda-lime glass. The researchers investigated
the hole production using single-laser-pulse (SLP) drilling and multiple-laser-pulse (MLP)
drilling. It was found that the taper angle of a thru-hole can be adjusted with the MLP hole-
shaping method, whereby the size coefficient of the pileup around the hole was minimized
in synthetic quartz, as compared with SLP drilling [14]. Brusberg et al. used glass as a
substrate in interposer applications, which they explain had some advantages compared to
traditional packaging materials such as silicon ceramic and polymer founded laminates
due to its better insulation and translucent characteristics. The researchers used a CO2
laser to drill holes that had diameters below 100 µm. They further implemented thermal
post-treatment on the substrates to minimize tensile stress and increase reliability. The
researchers concluded that it was not possible to obtain a complete crack-free drilling [15].
In another research work, the laser helical drilling technique is applied on aluminum-
silicate glass substrates. A femtosecond laser beam with a wavelength of 1552 nm was
used to drill holes from the rear side of the substrate to decrease the taper angle. Based on
this newly proposed drilling technique, thru-holes were generated with a high roundness
quality (<20 µm), a minimal taper angle, low sidewall surface roughness and with small
cracks [16]. Synthetic quartz, soda-lime glass and Pyrex glass substrates were drilled using
a CO2 slab waveguide laser centered at a spot size of 130 µm. The researchers used the
multiple-pulse hole forming method and it was found to be effective in reducing the height
ratio of the pile-up area and the slope angle. Moreover, with single-pulse hole drilling there
was a constraint on the exact structure of the hole due to the liquid-phase residual in the
hole after the pulse. Furthermore, an optimal number of pulses occurred in the multi-pulse
hole cooling and led to precise creation of holes [17]. It was recorded in the literature that
mechanical drilling is cost-efficient, simple and potentially suitable for fast manufacturing
as it is a mask-less operation. Nevertheless, the thrusting force of the drill acting on the
base of the sample easily leads to cracks because of deformation of the glass [18,19]. In
general, the glass micro-drilling technology is selected based on the type of the material,
and the required hole specifications and equipment properties for a certain device [20–22].

In this paper, it is aimed to study the influence of laser drilling process (control)
parameters on the drilled hole’s geometrical (response) parameters. The LALP drilling
process will be implemented on soda-lime glass sheets immersed in a nanoliquid bath,
which is hypothesized to result in improvements on the results obtained from a previous
study by the authors using only a water bath [23]. Additionally, initial results of the LALP
drilling technique were reported by the authors in a previous study [24]. However, more
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focus in this study is given to explaining the effects of all process parameters and relating
them to obtained results. Thus far, microscopic inspection of produced holes is performed
to measure process response parameters. Furthermore, statistical ANOVA analysis and
modeling of results is performed in order to further understand the effects of process
control parameters on response parameters.

2. Materials and Methods

The nanoliquid used in this work contained a mixture of carbon nano-particles (CNPs)
that had (particle size < 50 nm, assay ≥ 99% trace metals basis and surface area > 100 m2/g)
and de-ionized water. The nanoliquid was used immediately after its preparation so as
to avoid any agglomeration problems. Furthermore, the wt.% (0.05, 0.075 and 0.1 wt.%)
of CNPs was varied as an experimental control parameter. Figure 1 shows the schematic
of the laser drilling setup, which includes a laser source, a reflective mirror, a focal lens
and a container to hold immersed glass samples in the nanoliquid bath. The processed
samples were sheets of soda-lime glass that had a thickness of 1.1 mm. The samples were
affixed 6 mm above the base of the container to avoid inverse reflection of the laser beam,
while the samples were also submerged by 1 mm from the top level of the nanoliquid. The
nanoliquid was kept at a temperature of 19.7 ◦C. The laser drilling process was performed
using a CA-1500 CW-CO2 laser work station that has a laser beam source that emits at a
wavelength of 10.6 µm and a maximum power of 100 W. The system also included an X-Y
sample translation stage carrying the nanoliquid container. The incident CO2 laser beam
was focused to a diameter of 0.25 mm centered on the top surface of the samples using a
lens with f = 55 mm.
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Figure 1. Schematic diagram of the nanoliquid-assisted laser drilling process.

SLP and MLP drilling modes were used to produce holes at various positions on the
soda-lime glass sheets. In addition to the wt.% of CNPs, the laser exposure parameters
or the experimental control parameters were: laser power (P) varied between 20, 30 and
40 W, exposure time (TE) of the sample to the incident CW laser beam varied between
0.5, 1 and 1.5 s, and the number of pulses (NP) delivered to the sample varied between
1, 2, 3, 4, 5 and 6 pulses, these pulses were separated by an idling time of 1 s. The latter
parameter does not imply the existence of actual laser pulses, it rather means the number of
times the sample is exposed to the CW laser beam. A Genex optical microscope equipped
with a digital camera was used to inspect the resulting drilled holes and measure their
dimensional features using ImageJ software version 1.52a. The drilled holes’ dimensional
parameters or experimental response parameters from this work were identified as the
crack length (CL, mm) measured at the top surface of the sample, inlet diameter (DINLET,
mm) measured at the top surface of the sample and exit diameter (DEXIT, mm) measured at
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the bottom surface of the sample. Figure 2 includes microscopic images of some samples
showing the measured parameters. It can be seen that CL is measured as the length of the
crack extending from the perimeter of DINLET towards the boundaries of the HAZ.
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Figure 2. Microscopic images of drilled holes and measured parameters: (a) CL = 0.287 mm and
DINLET = 0.971 mm obtained at 0.075 wt.% CNPs, TE = 0.5 s, P = 20 W and NP = 6 pulses, and
(b) DEXIT = 0.247 mm obtained at 0.1 wt.% CNPs, TE = 0.5 s, P = 20 W and NP = 3 pulses.

3. Experimental Results

The dimensional features (CL, DINLET and DEXIT) of the drilled holes are presented in
the subsections that follow. This presentation is aimed to show the effect of TE in combi-
nation with different CNPs wt.%, P and NP values on the resulting dimensional features.
It is worth noting that some combinations of process control parameters did not produce
measurable hole features; therefore, these data-points were not presented/included in
the subsequent figures. However, an explanation of these occurrences is presented in the
respective sections that follow.

3.1. Crack Length

This subsection presents the effect of TE on CL for variable values of P and NP, and is
categorized based on different CNPs wt.% of the nanoliquid bath.

3.1.1. CL Results at 0.1 wt.% CNPs

Figure 3 illustrates CL variation as a result of various TE and NP values for each set
value of P. The process parameters combination that produces the minimum CL value can
be depicted from these results. This minimum CL was recorded at TE = 0.5 s, NP = 6 pulses
and P = 20 W. In general, it appears that the increase in TE for all laser beam powers lead to
an increase in CL, which can be explained as a direct result of increased impact of induced
thermal stresses on the sample surface. Furthermore, increasing NP is observed to decrease
CL for given values of TE and P, which can be concluded due to the melting of the cracked
area with each subsequent laser pulse.

3.1.2. CL Results at 0.075 wt.% CNPs

Figure 4 shows trends and effects similar to those observed for 0.1 wt.% CNPs. It is
also apparent that increasing TE leads to increasing the value of CL for all set values of
laser beam power. Furthermore, increasing NP for fixed TE and P values causes a decrease
in CL values due to further melting of the cracked zone with subsequent laser pulses. The
minimum CL value was recorded for TE = 0.5 s, NP = 6 pulses and P = 20 W.
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3.1.3. CL Results at 0.05 wt.% CNPs

Figure 5 shows trends and effects similar to those observed for 0.1 wt.% and 0.075 wt.%
CNPs. It can be seen that increasing TE leads to increasing the value of CL for all set values
of laser beam power. Furthermore, increasing NP for given TE and P values decreases CL
due to further melting of the cracked zone with subsequent laser pulses. The minimum CL
value was recorded for TE = 0.5 s, NP = 6 pulses and P = 20 W.
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3.2. Inlet Diameter

This subsection presents the effect of TE on DINLET for variable values of P and NP,
and is categorized based on different CNPs wt.% of the nanoliquid bath.
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3.2.1. DINLET Results at 0.1 wt.% CNPs

Figure 6 shows the variations in DINLET for different values of TE and NP and is
grouped for each set value of P. The processing parameters combined to produce the
minimum DINLET can be observed at TE = 0.5 s, NP = 1 pulse and P = 20 W. It is easy to
depict that increasing TE causes increased DINLET for a given value of P, which can be
explained as a result of more energy deposited in the glass sample and, consequently, larger
HAZ and ablated mass. Furthermore, it is natural to conclude that increasing NP for a
given TE and P value will also lead to increasing DINLET.
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Figure 6. Influence of TE and NP on DINLET for 0.1 wt.% of CNPs and (a) P = 20 W, (b) P = 30 W and
(c) P = 40 W.

3.2.2. DINLET Results at 0.075 wt.% CNPs

Figure 7 illustrate values and behaviors similar to those observed for 0.1 wt.% CNPs. It
is also evident that increasing TE leads to increasing the value of DINLET for all set values of
laser beam power. Furthermore, increasing NP for fixed TE and P values causes an increase
in DINLET values due to further ablation with subsequent laser pulses. The minimum
DINLET value was recorded for TE = 0.5 s, NP = 1 pulse and P = 20 W.
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and (c) P = 40 W.

3.2.3. DINLET Results at 0.05 wt.% CNPs

Figure 8 shows trends and effects similar to those observed for 0.1 wt.% and 0.075 wt.%
CNPs. It can be seen that increasing TE leads to increasing the value of DINLET for all set
values of laser beam power. Furthermore, increasing NP for given TE and P values increases
DINLET due to further ablation of material with subsequent laser pulses. The minimum
DINLET value was recorded for TE = 0.5 s, NP = 1 pulse and P = 20 W.
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Figure 8. Influence of TE and NP on DINLET for 0.05 wt.% of CNPs and (a) P = 20 W, (b) P = 30 W and
(c) P = 40 W.

It is worth mentioning that in the preceding two sections some CL and DINLET values
were not measurable and could not be presented. These incidences were either due to
insufficient laser power to initiate ablation (e.g., low TE combined with low P and/or low
NP) or due to excessive incident laser power that caused sample damage (e.g., high TE
combined with high P and/or high NP).

3.3. Exit Diameter

This subsection presents the effect of TE on DEXIT for variable values of P and NP, and
is categorized based on different CNPs wt.% of the nanoliquid bath.

3.3.1. DEXIT Results at 0.1 wt.% CNPs

Figure 9 shows the effects of TE and NP on DEXIT grouped for each set value of P. The
combinations of processing parameters that result in the minimum DEXIT can be observed
at TE = 0.5 s, NP = 3 pulses and P = 20 W. It is obvious that increasing TE causes increased
DEXIT for a given value of P, which can be explained as a result of more energy deposited
in the glass sample and, consequently, larger HAZ and ablated mass. Furthermore, it
is natural to conclude that increasing NP for a given TE and P value will also lead to
increasing DEXIT.
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(c) P = 40 W.

3.3.2. DEXIT Results at 0.075 wt.% CNPs

Figure 10 illustrates values and behaviors similar to those observed for 0.1 wt.% CNPs.
It is also evident that increasing TE leads to increasing the value of DEXIT for all set values of
laser beam power. Furthermore, increasing NP for fixed TE and P values causes an increase
in DEXIT values due to further ablation with subsequent laser pulses. The minimum DEXIT
value was recorded for TE = 0.5 s, NP = 6 pulses and P = 20 W.
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Figure 10. Influence of TE and NP on DEXIT for 0.1 wt.% of CNPs and (a) P = 20 W, (b) P = 30 W and
(c) P = 40 W.

3.3.3. DEXIT Results at 0.05 wt.% CNPs

Figure 11 shows trends and effects similar to those observed for 0.1 wt.% and 0.075 wt.%
CNPs. It can be seen that increasing TE leads to increasing the value of DEXIT for all set
values of laser beam power. Furthermore, increasing NP for given TE and P values increases
DEXIT due to further ablation of the material with subsequent laser pulses. The minimum
DEXIT value was recorded for TE = 0.5 s, NP = 5 pulses and P = 20 W.
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Figure 11. Influence of TE and NP on DEXIT for 0.05 wt.% of CNPs and (a) P = 20 W, (b) P = 30 W and
(c) P = 40 W.

It is worthy to note from the results presented in this section that some samples did
not exhibit a measurable DEXIT. This observation implies that low values of power, TE or
NP were delivered, either individually or in combination, which was not sufficient to create
a thru-hole.

4. ANOVA Modeling

The statistical analysis of variance (ANOVA) is presented in this section for the ob-
tained dataset/results from the experiments conducted in this work. To perform ANOVA,
the process control parameters were chosen to be TE, P and NP. Furthermore, each wt.% of
CNPs was treated as a separate block of experiments. Therefore, three sets of experimental
designs were built in order to derive a regression model of the drilling process. These
models can be used to relate the process control parameters to the process response pa-
rameters, CL and DINLET. Moreover, the models can be used to predict the response value
for a certain combination of control parameter values that were not actually tested. To
achieve the aforementioned models, a Box–Behnken experimental design was implemented
using the StatEase DesignExpert software v.11. This software has capabilities of building
regression models using Response Surface Methodology (RSM). The following subsections
present the obtained ANOVA mathematical model and 3D response surfaces relating con-
trol parameters to response parameters for each wt.% of CNPs. Each 3D response surface in
the subsequent sections indicates the effects of TE and P as control parameters at a certain
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value of NP. Moreover, each mathematical model can be used to predict the values of CL
and DINLET using different combinations of TE, P and NP values. Furthermore, plots of
normal residuals for each model are presented to show the model fitness and adequacy in
representing the experimental data.

4.1. ANOVA for 0.1 wt.% CNPs
4.1.1. Crack Length

Figure 12a shows the 3D response surface relating CL to TE and P for NP = 2.48.
Figure 12b displays the normal residuals for the CL model. The mathematical model found
as a result of ANOVA in terms of the actual control parameters is given by

CL = 0.195 + 0.0152 × TE + 0.015 × P − 7.80 × 10−3 × NP − 2.1954 × 10−3 × TE × P + 2.876 × 10−3 × TE×
NP + 4.848 × 10−4 × P × NP + 0.0 × T2

E + 5.797 × 10−3 × P2 + 1.411 × 10−3 × N2
P

(1)
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Figure 12. ANOVA model results for CL at 0.1 wt.% CNPs: (a) 3D response surface and (b) normal
residuals plot.

4.1.2. Inlet Diameter

Figure 13a shows the 3D response surface relating DINLET to TE and P for NP = 1.51.
Figure 13b displays the normal residuals for the DINLET model. The mathematical model
found as a result of ANOVA in terms of the actual control parameters is given by

DINLET = 0.564 + 0.079 × TE + 0.064 × P + 0.028 × NP − 0.023 × TE × P − 0.0148 × TE × NP + 0.022 × P×
NP + 0.0 × T2

E + 0.019 × P2 − 6.85 × 10−4 × N2
P

(2)

Photonics 2023, 10, x FOR PEER REVIEW 9 of 15 
 

 

parameters at a certain value of NP. Moreover, each mathematical model can be used to 

predict the values of CL and DINLET using different combinations of TE, P and NP values. 

Furthermore, plots of normal residuals for each model are presented to show the model 

fitness and adequacy in representing the experimental data. 

4.1. ANOVA for 0.1 wt.% CNPs 

4.1.1. Crack Length 

Figure 12a shows the 3D response surface relating CL to TE and P for NP = 2.48. Figure 

12b displays the normal residuals for the CL model. The mathematical model found as a 

result of ANOVA in terms of the actual control parameters is given by 

𝑪𝑳 = 0.195 + 0.0152 × 𝑇𝐸 + 0.015 × 𝑃 − 7.80 × 10−3 × 𝑁𝑃 − 2.1954 × 10−3 × 𝑇𝐸 × 𝑃 + 2.876 × 10−3 × 𝑇𝐸 ×

𝑁𝑃 + 4.848 × 10−4 × 𝑃 × 𝑁𝑃 + 0.0 × 𝑇𝐸
2 + 5.797 × 10−3 × 𝑃2 + 1.411 × 10−3 × 𝑁𝑃

2  
(1) 

 

  

(a) (b) 

Figure 12. ANOVA model results for CL at 0.1 wt.% CNPs: (a) 3D response surface and (b) normal 

residuals plot. 

4.1.2. Inlet Diameter 

Figure 13a shows the 3D response surface relating DINLET to TE and P for NP = 1.51. 

Figure 13b displays the normal residuals for the DINLET model. The mathematical model 

found as a result of ANOVA in terms of the actual control parameters is given by 

𝑫𝑰𝑵𝑳𝑬𝑻 = 0.564 + 0.079 × 𝑇𝐸 + 0.064 × 𝑃 + 0.028 × 𝑁𝑃 − 0.023 × 𝑇𝐸 × 𝑃 − 0.0148 × 𝑇𝐸 × 𝑁𝑃 + 0.022 × 𝑃 ×

𝑁𝑃 + 0.0 × 𝑇𝐸
2 + 0.019 × 𝑃2 − 6.85 × 10−4 × 𝑁𝑃

2  
(2) 

 

  

(a) (b) 

Figure 13. ANOVA model results for DINLET at 0.1 wt.% CNPs: (a) 3D response surface and (b) normal
residuals plot.
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4.2. ANOVA for 0.075 wt.% CNPs
4.2.1. Crack Length

Figure 14a shows the 3D response surface relating CL to TE and P for NP = 2.37.
Figure 14b displays the normal residuals for the CL model. The mathematical model found
as a result of ANOVA in terms of the actual control parameters is given by

CL = 0.36897 + 0.027 × TE + 0.0241152 × P − 0.016524 × NP + 7.50001 × 10−4 × TE × P − 2.250×
10−3 × TE × NP − 1.6121724 × 10−3 × P × NP + 1.50517 × 10−3 × T2

E + 6.20 × 10−3 × P2 + 6.143 × 10−3×
N2

P

(3)
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Figure 14. ANOVA model results for CL at 0.075 wt.% CNPs: (a) 3D response surface and (b) normal
residuals plot.

4.2.2. Inlet Diameter

Figure 15a shows the 3D response surface relating DINLET to TE and P for NP = 1.94.
Figure 15b displays the normal residuals for the DINLET model. The mathematical model
found as a result of ANOVA in terms of the actual control parameters is given by

DINLET = 0.973 − 0.207 × TE − 0.014 × P − 0.075 × NP + 0.012 × TE × P + 1.664 × 10−3 × TE × NP+
5.172 × 10−3 × P × NP + 0.0306 × T2

E + 1.1469 × 10−4 × P2 + 1.409 × 10−3 × N2
P

(4)
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4.3. ANOVA for 0.05 wt.% CNPs
4.3.1. Crack Length

Figure 16a shows the 3D response surface relating CL to TE and P for NP = 2.48.
Figure 16b displays the normal residuals for the CL model. The mathematical model found
as a result of ANOVA in terms of the actual control parameters is given by

CL = 0.335 + 0.0362 × TE + 0.0314 × P − 0.016 × NP − 3.750 × 10−3 × TE × P − 4.750 × 10−3 × TE × NP+
2.284 × 10−3 × P × NP − 6.310 × 10−3 × T2

E + 6.258 × 10−3 × P2 − 3.275 × 10−3 × N2
P

(5)
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4.3.2. Inlet Diameter

Figure 17a shows the 3D response surface relating DINLET to TE and P for NP = 1.64.
Figure 17b displays the normal residuals for the DINLET model. The mathematical model
found as a result of ANOVA in terms of the actual control parameters is given by

DINLET = 0.755 + 0.0643 × TE + 0.043 × P + 0.0381 × NP + 0.0132 × TE × P − 4.0 × 10−3 × TE × NP+
0.01618 × P × NP + 0.039 × T2

E + 0.0260 × P2 + 0.0159 × N2
P

(6)
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Following the statistical analysis of results and models, it can be seen that there is
an agreement in the effects of TE, P and NP on resulting CL and DINLET presented in
the previous section. Looking at the ANOVA model Equations (1) to (6), the numeric



Photonics 2023, 10, 89 12 of 14

coefficient values of the control parameters TE, P and NP, in their pure forms, depict they
have the most significant impacts on the response parameters CL and DINLET. The model
equations also include less significant terms such as TE × P and (NP)2, which account for
the interactive/combined effects of the control parameters on the response parameters.
The model equations and 3D response surfaces for CL and DINLET were validated by using
them to predict certain response values, then conducting the experiment and measuring the
actual response value. The validation experiment results shown in Table 1 were conducted
for combinations of process control parameters that were not used in the derivation of
the models. It can be seen from the results in Table 1 that the models are very accurate in
fitting the experimental data and consequently in predicting response parameters within
the investigated range of control parameters.

Table 1. ANOVA models validation: predicted and experimental response values for different
combinations of process control parameters.

wt.% TE (s) P (W) NP
(Pulses)

CL (mm)
Predicted

CL (mm)
Experimental

Sample 1 0.1 0.5 20 6 0.1538 0.141
Sample 2 0.1 1 40 2 0.217 0.218
Sample 3 0.075 1.5 20 5 0.356 0.358
Sample 4 0.075 0.5 40 2 0.361 0.368

wt.% TE (s) P (W) NP
(Pulses)

DINLET (mm)
Predicted

DINLET (mm)
Experimental

Sample 5 0.1 0.5 20 4 0.476 0.473
Sample 6 0.1 1 40 3 0.735 0.732
Sample 7 0.075 0.5 20 6 0.983 0.971
Sample 8 0.075 1.5 40 2 1.396 1.432

5. Overall Discussion of Findings

Based on results presented in previous sections, it can be seen that increasing TE for
given values of P or NP tends to increase the values of CL, DINLET and DEXIT. This is
directly understood to be the effect of more time allowed for thermal stresses to create crack
zones as well as more time allowed for depositing more laser power to increase HAZ and,
consequently, ablation zones. Furthermore, close examination of the results reveals that
increasing P or NP also led to increasing the response parameters CL, DINLET and DEXIT for
given TE or wt.% values. Moreover, the change in wt.% of CNPs does not seem to have
a great impact on the resulting CL, DINLET or DEXIT as compared to the influence of the
other control parameters TE, P and NP. However, there is a general increase in the values
of CL, DINLET and DEXIT as wt.% is altered from 0.1% to 0.075%, followed by a decrease
in these response values as wt.% is further reduced from 0.075% to 0.05%. This can be
observed by looking across all blocks of the experimental results. Nevertheless, and more
importantly, it is worth noting that the nanoliquid bath with CNPs was very essential for
producing acceptable and finely drilled holes as compared with initial results obtained
from drilling holes in dry air conditions, which mostly resulted in fractured samples as
shown in Figure 18.
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As compared to observations in a previous study performed by the authors [23], the
use of a nanoliquid bath and the incorporation of CNPs resulted in decreased levels of TE
needed to perform underwater drilling of holes. TE values ranged from 5 s to 10 s in [23],
as compared to 0.5 s to 1.5 s in this study. This means that there is a significant decrease in
power consumption and a reduction of cost as a direct effect. Furthermore, from quality
and accuracy perspectives, CL values can be seen to have reduced, in general, comparing
the two studies. The latter can be explained as a direct benefit of CNPs in decreasing
the temperature gradients surrounding the drilled holes by effectively cooling the molten
surface and, consequently, decreasing the HAZ. Therefore, the utilization of a nanoliquid
bath with CNPs can be concluded to have enhanced the surface performance by decreasing
the induced micro-crack lengths. The latter can be physically explained by envisioning
CNPs to act as a factor limiting the thermal damage around the drilled holes by enhancing
the effective thermal conductivity of the medium.

6. Conclusions

Following the discussion of the results and findings of this research work, it can be
concluded that the nanoliquid bath and MLP drilling paradigm implemented reduces
the crack lengths (CL) in the processed samples due to effective heat dissipation into the
nanoliquid bath and further melting and vaporization of the cracked zone with successive
laser pulses. Furthermore, increasing the exposure time (TE) alone leads to increasing the
crack length (CL) as well as increasing the hole inlet and exit diameters (DINLET and DEXIT).
Keeping in mind that CL is not a desirable feature to increase, maintaining a good balance
among the control parameters, especially TE and NP, will result in reduced CL values.

The experimental results and investigated range of control parameter combinations
produced promising results with CL range (0.141 to 0.428 mm), DINLET range (0.406 to
1.452 mm) and DEXIT range (0.247 to 1.039 mm). These results can be further tested and
verified to develop reliable and repeatable laser drilling guidelines in soda-lime glass using
the nanoliquid bath technique and the CO2 laser setup at hand. The latter can be very
beneficial in conducting studies to investigate other response parameters such as hole taper
angle, roundness and surface roughness. This will allow for drilling holes with controlled
feathers and specifications to suit certain applications such as microfluidic devices and
microdevices for light coupling or transmission. Future studies will include thermal
simulation of the process to further understand the physical interactions of the material,
laser irradiation and the nanoliquid bath leading to deeper explanation of the results.

Finally, the statistical models developed using ANOVA analysis for the investigated
ranges of control and response parameters can be used to further understand, optimize
and control the process, especially when there is a demand to scale up the results to suit
industrial implementation. The derived models are capable of introducing the possibility
to predict certain response values or derive certain control parameter values based on
desirable process outcomes.
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