
Citation: Arriaga-Hernández, J.;

Cuevas-Otahola, B.; Oliveros-Oliveros,

J.; Morín-Castillo, M.; Martínez-Laguna,

Y.; Cedillo-Ramírez, L. Simulated

LCSLM with Inducible Diffractive

Theory to Display Super-Gaussian

Arrays Applying the Transport-of-

Intensity Equation. Photonics 2023, 10,

39. https://doi.org/10.3390/

photonics10010039

Received: 23 November 2022

Revised: 20 December 2022

Accepted: 21 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Simulated LCSLM with Inducible Diffractive Theory to
Display Super-Gaussian Arrays Applying the
Transport-of-Intensity Equation
Jesus Arriaga-Hernandez 1,* , Bolivia Cuevas-Otahola 2,* , Jacobo Oliveros-Oliveros 1 ,
María Morín-Castillo 3 , Ygnacio Martínez-Laguna 4 and Lilia Cedillo-Ramírez 4

1 Facultad de Ciencias Físico Matemáticas (FCFM), Benemérita Universidad Autónoma de Puebla (BUAP),
Av. San Claudio y 18 Sur, Col. San Manuel, Puebla C.P. 72570, PUE, Mexico

2 Instituto de Radioastronomía y Astrofísica (IRyA), Universidad Nacional Autónoma de México (UNAM),
Antigua Carretera a Pátzcuaro, Morelia C.P. 58089, MICH, Mexico

3 Facultad de Ciencias de la Electrónica (FCE), BUAP, Av. San Claudio y 18 Sur, Col. San Manuel,
Puebla C.P. 72570, PUE, Mexico

4 Instituto de Ciencias de la Universidad Autónoma de Puebla (ICUAP), BUAP, IC 10 San Claudio Av. Cd
Universitaria, Jardines de San Manuel, Puebla C.P. 72572, PUE, Mexico

* Correspondence: jesus.arriagahdz@correo.buap.mx (J.A.-H.); b.cuevas@irya.unam.mx (B.C.-O.)

Abstract: We simulate a liquid crystal spatial light modulator (LCSLM), previously validated by
Fraunhofer diffraction to observe super-Gaussian periodic profiles and analyze the wavefront of
optical surfaces applying the transport-of-intensity equation (TIE). The LCSLM represents an al-
ternative to the Ronchi Rulings, allowing to avoid all the related issues regarding diffractive and
refractive properties, and noise. To this aim, we developed and numerically simulated a LCSLM
resembling a fractal from a generating base. Such a base is constituted by an active square (values
equal to one) and surrounded by eight switched-off pixels (zero-valued). We replicate the base in
order to form 1 × N-pixels and the successive rows to build the 1024× 1024 LCSLM of active pixels.
We visually test the LCSLM with calibration images as a diffractive object that is mathematically
inducible, using mathematical induction over the N×N-shape (1× 1, 2× 2, 3× 3, . . . , n× n pixels
for the generalization). Finally, we experimentally generate periodic super-Gaussian profiles to be
visualized in the LCSLM (transmission SLM, 1024 × 768-pixels LC 2012 Translucent SLM), modifying
the TIE as an optical test in order to analyze the optical elements by comparing the results with
ZYGO/APEX.

Keywords: super-Gaussian patterns; inducible patterns; irradiance transport equation; Fraunhofer
diffraction; patterns in geometric series; wavefront sensing

1. Introduction

Nowadays, spatial light modulators (SLMs) [1] are of significant relevance in the devel-
opment of several techniques and applications, namely, in diverse sciences, medicine [2–6],
lithography [7], quantum optics [8], optical trapping [9], etc., being holography among the
disciplines where SLM are more widely used along with diffractive and interferometric
elements [10,11]. In the literature, it is possible to find a significant number of SLM, as in
the liquid crystal displays (LCDs), the twist nematic-LCD (TNLCD), nematic and smectic
thermotropic SLM, parallel-aligned nematic-liquid-crystal SLM (PAL-SLM), etc. [1,10,12].
Hence, the SLM is an optoelectronic instrument [1,10,11] that provides multiple benefits,
allowing to generate and observe a large number of patterns on a surface, as well as con-
trolling certain states of polarization [11,13], considering the resolution and manufacturing
process [1,10]. Moreover, the SLM diffractive properties have been studied, for exam-
ple, in the work by Davis et al. [14], where in addition, the transmission and refractive
properties of the LCSLM (liquid crystal SLM) have been addressed, or in the work by
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Pérez-Cabré et al. [15], where they study high-order diffractive processes using diverse
elements and an LCoS-SLM (liquid crystal on silicon). In this work, we consider diffractive
Fraunhofer phenomena and we address them as in previous works by Katz et al. [16]
and Agour et al. [17] in order to analyze the effects in the SLM. Considering the previous
arguments related to the SLM in this work, as a first step, we build an algorithm to simulate
an LCSLM (LCD in the following) without considering its chemistry or all the polarization
elements inherent to the arrays involving the SLM [1,10–12,14–17]. We build the LCD
resembling a fractal [18–20] from a base constituted by a square with a transmission equal
to 1 surrounded by 0-transmission squares. Subsequently, we validated the LCD from its
diffractive properties (following a prescription similar to that in the work by Agour [17]
and Pérez-Cabré et al. [15]), proposing a high-order diffractive process mathematically
inducible [21], to validate the resolution of the N×N simulated LCD. As a third step, we
built super-Gaussian (SG) periodic patterns to visualize them in the LCD. Subsequently,
we generate the SG pattern in the LCD to use them in the transport-of-intensity equation
(TIE) to test optical elements, solving it as a differential equation to obtain the wave-
front W(x, y) [22,23]. Finally, we consider W(x, y) in terms of the Zernike aberrations
polynomial [24–26] to compare our results with ZYGO/APEX (as a combination between
ZYGO [27] and APEX), and also with the conventional TIE [23,28] for three optical ele-
ments (L1, L2, and L3). Furthermore, we created a repository (Matlab codes repository
https://github.com/umbramortem/SG_profile_LCLSM_inductible_diffractive, accessed
on 24 December 2022) containing all the software tools used to build the simulations and
obtain the results along with the images required to execute the tools using the Zernike
coefficients. The repository sections follow the structure of this paper. We include as well
Supplementary Materials, with all the calculations to show that the simulated LCSLM
represents a mathematically inducible diffractive object.

2. LCD Design and Construction

In order to design the LCD, we did not simulate the polarization effects since, nu-
merically speaking, the wavefront can be built and visualized straightforwardly. We stress
the previous argument given that often the polarizer is placed before and after the LC-
SLM [15,17]. We recall that fractals are generated from a base, subsequently multiplied,
added, or joined in specific points, as required, given the desired fractal features (auto similar-
ity) [18–20]. The base (constructed in Section I in the code LCD_LCSLM_DiffPattern_SGR.m
in the repository) is constituted by nine squares, eight black ones surrounding a white
square (square-shaped window) [29]. Such a base represents the active value of our sim-
ulated LCD (Figure S1a in Supplementary Materials), considering that the base squares
are pixels or array entries, in Matlab®, in the particular case of this work. The latter
implies that the minimum value for an entry or pixel should be 1 (considering a square
matrix), avoiding problems with the Whittaker–Nyquist–Kotelnikov–Shannon sampling
theorem (Nyquist theorem) [30–32]. We consider the base and integrate more elements to
it, with the same features on the right side, up to a 1×N-size pixels array (according to
Supplementary Materials), in order to generate all the LCD pixels (as in Section II in the
code LCD_LCSLM_DiffPattern_SGR.m). Subsequently, we replicate row 1×N, N times,
placing each replica immediately below the previous one, with each constituting pixel
abiding by the base and order of the 0 and 1 squares, resulting in our N×N-pixels LCD,
built from the base (Figure S1a in Supplementary Materials), resembling a fractal [18–20].

LCD Validation

In order to validate the simulated LCD, we consider its construction process and
Fraunhofer diffraction [33–35], such as the diffraction patterns simulating the LCDs, consti-
tuting an inducible process [21] (we include the detailed calculations as Supplementary
Materials). We consider the diffractive field U(x, y) from the following expression:

U(x, y) =
eikz

ikz
ei k

2z (x2+y2)
∫∫ ∞

−∞
Ũ0(ξ, η)e−i 2π

zλ (xξ+yη)dξdη, (1)

https://github.com/umbramortem/SG_profile_LCLSM_inductible_diffractive
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with Ũ0(ξ, η) representing the diffractive object considering the wavelength λ (HeNe laser
with λ = 632 nm), where z is the distance between the LCD (z = 100 mm, Figure S1a in
Supplementary Materials) [33–35]. Experimentally, we consider the LCD case with side
a = 36 µm (LCSLM transmissive HOLOEYE LC 2012), modeled by rect(ξ/a) functions, and
the intensity value given by the square modulus function I(x, y) = |U(x, y)|2. Moreover, we
obtain the Fraunhofer diffraction by recalling the required relation, where z > 2 a2

λ [33–35],

for which it holds z = 0.004 m and 2 a2

λ = 114µm. We notice a certain series expansion in
the terms Sa,b(x) and Sa,b(y). The latter implies that the diffraction field in an LCD with
identical, periodical equidistant pixels follows a certain expansion pattern regarding the
number of pixels. Such a series expansion is the so-called geometric series [36–38], widely
used for real and complex numbers. This series has several salient features, among which
stands out its capability to be reduced to a ratio involving (N + 1)-th terms and the first
one (with its convergence depending on the limiting value of the N-th term). Moreover,
the geometric series is inducible [21]; hence, it is straightforward (from a significant number
of calculations) to test that UN×N is inducible, considering the dependence on terms Sa,b(x).
Hence, as shown in the Supplementary Materials, the diffractive field and its intensity are
inducible and follow

UN×N(x, y) = a2 Aa(x)Aa(y)
[
Sinc

(
a

π

zλ
x
)][

Sinc
(

a
π

zλ
y
)]
× . . .

×
{

N−1

∑
i=0

[Sa,b(x)]i
}{

N−1

∑
i=0

[Sa,b(y)]
i

}
,

(2)

IN×N(x, y) =
a4λ2

4π2z2 Sinc2
(

a
π

zλ
x
)

Sinc2
(

a
π

zλ
y
)
× . . .

×
∣∣∣∣∣N−1

∑
i=0

[Sa,b(x)]i
∣∣∣∣∣
2∣∣∣∣∣N−1

∑
i=0

[Sa,b(y)]
i

∣∣∣∣∣
2

.
(3)

3. TIE as an Optical Test

The transport-of-intensity equation has been widely used in the literature since it
constitutes a simple and accurate technique for optical testing in several examples as in
flat surfaces [39], using Michelson interferometers [40] and for reconstructing the spatial
parameters of a laser beam [41].

The transport-of-intensity equation (TIE) was deduced in 1983 by Teague [28], assum-
ing an electromagnetic perturbation satisfying the wave equation [42]. Teague [28] built a
hypothesis, where such a perturbation uz(r) satisfied the parabolic approximation of the
wave equation i

∂

∂z
+

−→
5T

2

2k
+ k

uz(r) = 0, (4)

with r = (x, y) a vector, i denoting the imaginary unity, k = 2π/λ, and
−→
5T = (∂/∂x, ∂/∂y)

the nabla transversal operator. We assume the existence of an intensity term I satisfying
Iz(r) = uz(r)uz

∗(r) (with uz
∗ the conjugate complex of uz), and a phase term φz(r), sat-

isfying uz(r) =
√

Ieiφz(r). Hence, from Equation (4), we obtain the TIE by Teague [28]
(Equation (5)):

−→
5T

[
I
(−→
5Tφz

)]
= I
(−→
5T

2
φz

)
+
(−→
5Tφz

)
·
(−→
5T I

)
= −k

∂I
∂z

. (5)

Thus, from Equation (5) and since the wavefront W(x, y) follows kW(x, y) = φz(x, y),
we obtain the elliptic equation coupled by the term kW(x, y) = φz(x, y). However, Ichikawa
et al. [23] proposed a numerical form to decouple the differential equation, modifying the
term ∂I/∂z with intensity measurements in two separate planes at a distance of 0.7 mm in
∆I/∆z = (I2 − I1)/(0.7 mm)) (the distance choice comes from the instrumental limitations
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in the works by Ichiwaka et al. [23] and Arriaga et al. [26]). The latter reduces the TIE
complexity to a second-order partial differential equation, from which we can solve W(x, y)
from the intensity measurements and with a suitable numerical method [26]. Moreover,
the use of additional elements such as the Ronchi rulings (RR), inducing periodicity in
the irradiance captures, allows the application of Fourier analysis both in its transform
and series to filter several elements (noise, Fourier orders, and frequencies), making the
technique by Ichikawa an optimal tool in surface sensing, using small shifts between
different irradiance captures to obtain wavefront measurements. We focus on the latter for
our proposal since the experimental RR noise issues are involved, having scarce control
in the fringes period. In our proposal, we substitute the RR with spatial light modulators
(SLMs), which, in addition to providing more control in the fringes period, allows the
simulation of additional patterns, different from fringes.

4. Setups
4.1. Experimental

We implemented an experimental setup based in the experimental setups in Ar-
riaga et al. [22,26], and Ichikawa et al. [23], using a 3.3 mW power He-Ne laser with
λ = 632 nm, a 40× microscope objective, a numerical aperture of 0.65, a pinhole with a
diameter of 5µm, a 2-inches diameter collimating lens (master), a focal distance of 50 mm,
and a Ronchi ruling [43] (RR) with 50 lines per inch. Finally, we tested three 1-inches
diameter lenses with focal distances of 150 mm, 100 mm, and 125 mm (L1, L2, and L3
respectively), previously tested and analyzed with ZYGO [27] and APEX (to validate the
wavefronts obtained in our results). For the intensity captures, we use a Reflex (CCD)
camera of 5184× 3456 with a pixel size of 4.29µm [22,23,26], which allows us to decrease
the value of ∆z (the CCD is placed on a mount with movement in z and shift controlled by
a micrometric screw with a resolution of 0.1µm, allowing to take intensity or irradiance
captures in several z positions to obtain different intensities in ∆z). The CCD is placed
on a mount with XY movements, controlled by micrometric screws with a resolution of
10 nm. Roughly speaking, the aim of our proposal is to substitute the RR with an LCSLM,
considering the experimental freedom and control that it offers, along with the solution
methods, as we will address in the following.

4.2. Simulations

We simulate the TIE (as an optical test) [22,23], using our LCSLM (LCD) with the
super-Gaussian (SG), instead of the Ronchi ruling (RR) [43], resembling the experimental
setups in [17,20,44]. We replace the RR with fringes with SG profiles in the LCSLM (LCD).
The size of the simulated LCD is 2 inches2 with 1024× 1024 pixels and a pixel size of 5µm
(the code is in the Github repository), despite that experimentally, it is a common practice
to use a 1.45× 1.09, inches2 (36.9× 27.6 mm2; 1.8 inches2) and a pixel size of 36µm LCSLM
after a simple polarizer of 2 inches in diameter (Figure 1). We illustrate the latter in Figure 1
and show the laser, collimating lens (master), LCD (HOLOEYE transmission SLM, LC
2012 Translucent Spatial Light Modulator) with a polarizer at a distance of 1 cm (placed
after the LCD). The collimating lens is placed in a fixed position until a flat wavefront is
obtained, irradiating the polarizer and the SLM in the same axis, and continuing with the
propagation. The optical element under test is placed next to the polarizer, capturing its
intensity with the CCD in the exit pupil.
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Figure 1. TIE simulation considering the laser illumination sources, pinhole objective, collimating
lens (master), LCD (LC 2012 SLM, LCSLM) followed by a polarizer at 1 cm, the position of the object
under test (L1, L2 and L3) and CCD. We replace the Ronchi ruling in the traditional TIE [23] with an
LCSLM (along with a polarizer).

5. Early Results
5.1. Diffraction Patterns

Our results demonstrate that the LCD is an object resembling a fractal, in a periodic
array with identical, equidistant apertures, as well as a diffractive object that is mathemati-
cally inducible. The tests in Equations (2) and (3), corresponding to detailed computations,
are in the document Supplementary Materials. In such a document, we show that the
simulated LCD produces a diffraction pattern, which is inducible [21] since the diffraction
orders expansion follows the geometric series [36–38]. The latter can be experimentally
tested by generating certain diffractive patterns [17,34,35,45,46]. We validate it, simulating
the LCD with the code in Section IV in LCD_LCSLM_DiffPattern_SGR.m for 2× 2, 3× 3,
4× 4 and 512× 512 pixels, showing the intensity plots (Equation (3)) in Figure 2a–d, respec-
tively, considering the 512× 512-pixels LCD case (Section V), as the proof of the LCD as an
inducible diffractive object (Supplementary Materials).

Figure 2. Intensity plots of the diffraction patterns for 2× 2, 3× 3, 4× 4 and 512× 512 pixels cases in
(a), (b), (c), and (d) respectively. We include color bars of the intensity [W/m2] on the right side of
each panel.



Photonics 2023, 10, 39 6 of 15

5.2. Validating the LCSLM

In this step, we validate our simulation of the LCD and the rest of the SLM objects.
Hence, according to Section 2, we use two test images or test charts to observe them using
the LCD (Sections II and III in LCD_LCSLM_DiffPattern_SGR.m) in Figure 3a (Image
obtained from “hwalworks” in https://www.hwalworks.com/The-Year-of-Resolution-
Test-Chart, accessed on 24 December 2022) and Figure 3c (Image obtained from “ThorLabs”
in https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4338, accessed on
24th December 2022). In Figure 3, we show the test charts in a 512× 512 pixels LCD to
observe the distributions using the LCD only. We do not show the 1024× 1024 pixels
LCD (used to obtain the final optimal results) since, due to the resolution of the images,
there are no noticeable differences visually, resembling the absence of an LCD. The latter
can be verified in the simulation code (previously mentioned) by modifying the variables
AcPix = 1024 (or 512) and TT = 1200 (560), leading us to conclude that our LCD is
capable of reproducing the desired patterns straightforwardly, providing reliable results.
Subsequently, we show a zoom-in to the red squares placed on the right side of each chart
in Figure 3b,d respectively.

Figure 3. Visualization of two reference images or test charts in (a,c), observed using the 512× 512-
pixels simulated LCD. We perform a zoom-in to the red square in each image and show it in the right
panels in (b,d), respectively.

5.3. Super-Gaussian Profiles

This result joins the previous tests of the simulated LCD, required to ensure that the
desired patterns (super-Gaussians) are observed in the LCD (SLM) due to its periodicity
and structure. We recall the inducible property of the diffraction patterns, inherited from
the pixels’ periodic layout, having both fractal geometry and series expansion features.
The latter allows us to create the super-Gaussian profiles as a series, as we will see here-
inafter. Hence, we recall in the first place that the Ronchi rulings (RRs) [43] are patterns
constituted by parallel straight periodic fringes following a sinusoidal or cosine profile [47]
that can be built in different materials, such as glass. However, some details appear in
general during the printing procedure, introducing noise in the fringes, hindering the
observation of the desired pattern (Figure 4c). With the aim of reducing this error in the RR
in this work, we create a pattern resembling an RR with parallel periodic fringes, following,
in this case, profiles similar to binary values (zeroes and ones) with super-Gaussian (SG)
profiles according to the works developed in [48,49], described by the following expression:

https://www.hwalworks.com/The-Year-of-Resolution-Test-Chart
https://www.hwalworks.com/The-Year-of-Resolution-Test-Chart
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4338
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SG0 = IGe
−
(
|r−r0|2

2σ2

)γ

, (6)

with 2σ2 the relation between the SG spot size and width, and IG the SG intensity centered
in the vector r0. Hence, to build the SG pattern with parallel vertical fringes, we consider
the vector r = x and modify the SG center, replicating the process in order to obtain the
complete desired fringes number. Such process is parameterized in terms of the width t in
pixels, for each fringe and multiplied according to the LCD pixels number. The fringes can
be either vertical or horizontal when considering the vector y instead of x. In our case, t
has a value of 10.24 for each 1024× 1024-matrix with 50 fringes since t is the ratio between
twice the fringes number (transparent and opaque fringes) and the matrix pixel numbers
(1024). Subsequently, we consider the value σ, regarding the fringe width, to account
for the inter-fringes space, to ensure that the whole LCD is completely covered and all
the fringes observed, as we illustrate in the repository (super-Gaussian fringes pattern in
Section VI in LCD_LCSLM_DiffPattern_SGR.m). Hence, we build a periodic array with
vertical parallel super-Gaussian (SG) fringes or super-Gaussian ruling (SGR). We describe
the SGR construction observed in the LCD in the following expression:

SGR =
k−1

∑
m=0

IGe−
(

x−[(2m+1)t+T]
2σ2

)γ

, (7)

with T the symmetry parameter of the LCD in pixels (for example, if we consider the
center T = −(N/2)), k is the number of fringes, t = N/(2k), with N the number of pixels
and γ = 80. The choice of γ depends on the spatial modulator features (manufacturer,
resolution, and the experimental conditions and the object under test). In our case, the SGR
profiles were optimal for γ = 74. However, we recommend to replicate our results, and to
fit other tests, γ = 80.

Figure 4. Experimental setups. In (a), intensity distribution cuts, considering a 25-lines per inch RR,
in (b) longitudinal cut in (a), which we refer to as the intensity profile, and, in (c), zoom-in to (b).

6. Experimental Results
6.1. Fringes Error Reduction

As we mentioned in Sections 1 and 3, in order to test the optical elements applying the
TIE, we require two intensity captures, which are obtained with the CCD [23,26] resulting
in images similar to those in Figure 4a, (experimental intensity L1 lense) with the error
mentioned in Section 5.3 (Figure 4c). In general, in this work, we measured the wavefronts
from three different surfaces (L1, L2, L3), using three different procedures (ZYGO, TIE from
Ichikawa et al. [23] and our proposal, validated and supported by the previously stressed
arguments (our LCSLM proposal, see Figure 1), as we will mention hereinafter.

We bear in mind that originally, the TIE uses an RR [43] (Figure 4) [23,28]. For this
reason, we propose a procedure analogous to the mentioned in [22,23,26], modified by a
high-quality lens (master) and using an LCD (SLM) as we show in Figure 1. Subsequently,
we can observe the intensity captures resulting from such modification in Figure 5, differing
in their profiles since the fringes follow a super-Gaussian (SG) profile, despite looking
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similar to those in Figure 4a. After the SGR simulation (Figure 5a), such captures are
analyzed in gray tones [0, 255] to remove any other wavelength as well as chromatic
errors [47] (Figure 5d). In order to validate the SG profiles, we perform transversal cuts
to the profiles observed in the LCD with the SGR (Figure 5c). The error observed in the
fringes using the RR in Figure 4c is no longer observed in Figure 5e. In order to accomplish
our goal of applying the LCSLM with SGR in the TIE, we remove this error in the fringes,
which subsequently propagates up to the resulting wavefront [26,47].

Figure 5. In (a) 50-fringes per inch SGR. In (b), the pattern in (a) is observed through the LCD,
simulating the screen and the LCSLM width. In (c), we show the profile in (d). In (b), the 512× 512-
pixels LCD for illustrative purposes. In (d), we show the simulation of Figure 4a, considering the L1
pupil. In (e), the ideal profile of (d), whereas in (f), the simulations of the aberrations and deformations
in the experimental intensity in Figure 4a and we show the corresponding profile. In (f,g,h), we show
the intensities profile of L1, L2 and L3 (respectively), considering the LCSLM simulating the SGR.

We emphasize that our proposal to implement the SGR modelled in an LCD (LCSLM)
can be used in several cases as an alternative to reduce the noise or error (Figure 4c).
For instance, in Figure 4c, we show the errors in the RR implementation, in the conventional
TIE in red and blue circles, with the blue ones showing the errors changing the peak location,
which should be centered, whereas the red circles have several peaks in given fringes, where
a single peak is expected. Both errors represent deformations in the centroid position and,
its interpretation, affecting the aberrations calculations [47]. Moreover, in Figure 4a,b, we
notice that the fringe widths are not symmetrical, which could be due to the RR material
quality and certain unwanted rotation. Our proposal to implement the LCD or LCSLM is
suitable to correct some of the previously mentioned errors, such as the chromatic ones,
diffractive and refractive errors, and several unwanted reflections [33–35,47]. The peak bias
errors can be removed due to the SGR uniformity, and the continuity of the transmittance
distribution super-Gaussian (SG) functions [48,49].

6.2. Intensity Captures

Since the LCD efficiency was validated, we can simulate a pupil function, considering
a uniform intensity distribution passing through the SGR in the LCD (Figure 5d), master
and the surface under test (L1, L2 or L3, Figure 1). In Figure 5f–h, we show the intensity
distributions for the surfaces under test L1, L2, and L3 (respectively), with the SGR patterns
in the SLM (we show one capture or intensity distribution I(x, y) only since the following
at 0.5µm [26] does not display visually significant differences). Unlike the ideal intensity
profile (Figure 5e) the experimental profiles (even in the spheric lenses case of the elements
under test (L1, L2, and L3) differ significantly from the ideal one (Figure 5f–h) due to
their aberrations. Subsequently, we consider all the peaks to build a curve joining all the
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points, resembling a point cloud inside a curve [22,26], by performing a polynomial fit.
The fitting curve contains the experimental profile of the intensity distribution, which
allows us to fit the 3D profile of the intensity distribution, considering its propagation,
the exit pupil of the optical system, edge errors [47] and the deformations due to the system
itself (Figure 5f–h). From the simulations in Figure 5d,f, we show a technique enabling
us to control an LCSLM in optical tests (TIE [23,26,28]), offering the possibility to modify
or implement numerical patterns and using unknown patterns in the LCD since we can
numerically control some elements, commonly containing errors, by removing them from
the results, and experimentally, we can remove chromatic and polarization errors.

Given that the wavefront W is obtained from the TIE solution (Equation (5)), manip-
ulating the intensity captures I(x, y) as described in the previous paragraph, we obtain a
periodic pattern SGR (in the LCD), which minimizes the errors. Subsequently, in order to
optimize our proposal, we require an optimal interpretation of the intensity captures I(x, y)
with the aim of obtaining W(x, y). Hence, we apply the point cloud method to each I(x, y)
as a 2D surface. Thus, a certain common numerical error can be reduced using the point
cloud from transversal cuts in I(x, y), considering the relative maxima in each cut [26].
For the purposes of this work, we use 21 transversal cuts (considering 50 SGR fringes) for
each I(x, y) per element under test (L1, L2, and L3), shown in Figure 6a,c,e for L1, L2 and
L3, respectively. Finally, we perform a polynomial fitting with less dispersion to the point
cloud, and we show it in Figure 6b,d,f, associated to the Figure 6a,c,e, respectively.

6.3. Obtaining the Wavefront

We obtain the wavefront by numerically solving the TIE (Equation (5)). To this aim,
we require at least two intensity captures (∆I) with a separation between the capture
planes ∆z (in our work ∆z = 0.5µm, which comes from the work by Arriaga et al.,
2020 [50], three orders of magnitude lower than the value in Sections 3 and 4; this value
allows us to reduce the wavefront propagation errors, as well as some edge defects in
the surfaces under test [47,50]), and satisfying ∂I

∂z≈
∆I
∆z in the right side of Equation (5) to

decouple the elliptical differential equation. Considering this along with the results in
Figure 6, we can apply several numerical methods to recover the wavefront W(x, y) from
Equation (5), such as finite element, finite differences, etc. [51,52]. In our case, we use
the finite differences method [53] to obtain W(x, y) as a 2D surface from the numerical
solution [22,26]. Therefore, we consider two fits per point cloud per I(x, y) for ∆I to obtain
∆I/∆z, and finally, the data in Equation (5) to numerically solve W(x, y) with the finite
differences method [51,53], as mentioned in Arriaga et al. [22,26]. As a direct consequence
of the numerical solution from the TIE, we obtain the wavefronts W(x, y) in rectangular
coordinates, which need to be transformed into polar coordinates in order to be analyzed
in terms of the Zernike aberrations polynomials [24–26]. Subsequently, from W(ρ, θ),
we obtain the aberration coefficients up to the 12-th degree, applying the least-square
multi-linear regression method [54] of the data using the following expression:

W(ρ, θ) =
M

∑
i=0

i

∑
j=−i

bi,jZi,j(ρ, θ), (8)

with Zi,j(ρ, θ) the Zernike polynomials [24–26], M the polynomial degree expansion and
W(ρ, θ). By virtue of theorems in statistics and probability theory, regarding the central limit
theorem, it is straightforward to conclude that for larger M values, the dispersion and error
will be minimal. Hence, we perform a M = 30-degree fit (obtaining 496 Zernike coefficients
bi,j per test). Our proposal is focused on modifying the TIE as an optical test using the SLM
(recalling that an RR is used in the TIE). In order to validate our proposal, we compare
the wavefront W(ρ, θ) with those obtained by well-known tools, such as ZYGO [27] and
APEX. ZYGO is capable of providing the interferogram, whereas APEX analyzes it in
order to obtain the Zernike aberrations polynomial [24–26]. We call that interferogram the
ZYGO/APEX. Since the order of our fit is high [26], the coefficients obtained by APEX are
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less in quantity than those obtained by our fit. Hence, in Figure 7, we show two columns
of images of W(ρ, θ). In the left panels we show W(ρ, θ) of our proposal for the lenses L1,
L2 and L3 (Figure 7a,c,e respectively). On the other hand, in the right panels, we show
W(ρ, θ) obtained by ZYGO/APEX for L1, L2 and L3 (Figure 7b,d,f respectively). After a
simple visual comparison, we observe that the obtained wavefronts are very similar, giving
reliability to the results obtained with our proposal. Subsequently, we mention that some
aberration coefficients up to 12th degree are obtained with ZYGO/APEX, among which are
the piston, tilt, tip, coma, astigmatism, trefoil, quadrafoil and spherical. However, these
are not all the coefficients. On the other hand, our proposal allows us to obtain up to 30th
degree, and hence, it is possible to obtain all the coefficients. Furthermore, higher degrees
could be fitted depending on the available computing power [22,26].

Figure 6. In (a,c,e) we show relative maxima for 21 transversal cuts, considering only the 50 fringes in
the SGR in the simulated LCD (point cloud) for L1, L2, and L3, respectively. In (b,d,f), the polynomial
curve fitting the point cloud in (a,c,e), respectively.



Photonics 2023, 10, 39 11 of 15

Figure 7. Obtained wavefronts W(ρ, θ) by a M = 30-degree fitting from Equation (8) in (a,c,e) of
the SGR in the simulated LCD, from experimental data of L1, L2, and L3 respectively. In (b,d,f), we
show the fits to the software and hardware data ZYGO/APEX of the same lenses L1, L2, and L3,
respectively.

We perform in Equation (8) a M = 30-degree fit to the APEX results (in order to
compare our experimental results coefficient by coefficient) according to Equation (8). We
include such coefficients in the repository (CoeZernExpLi_coeff.mat for the SGR in the
simulated LCD and CoeZernZYGOLi_coeff.mat for the APEX results fit, for each Li with
i = 1, 2, 3 respectively) following the ANSI ordering protocols. Thus, for the fits performed
to the ZYGO/APEX results, we obtained in average a dispersion value of 1 nm and an
error of 0.01% between the fitting curves and the results by ZYGO/APEX. The fits to the
simulated results by the SGR in the LCD are 2.988 nm with an RMS of 0.09631 for L1,
5.562 nm with an RMS of 0.08097 for L2, and 2.041 nm with an RMS of 0.0101 for L3. We
bear in mind that for a ruling with higher frequency, the results are slightly optimized,
which can be visually validated in the wavefronts in Figure 7.

Finally, we recall that our proposal is a direct modification of the conventional TIE
by Ichikawa et al. [23] also studied by Arriaga et al. [22,26]. In our proposal, we use the
LCSLM with SGR patterns instead of the RR (conventional TIE). Hence, we can consider the
conventional TIE to compare our results. Thus, we also analyze the lenses L1, L2, and L3
with the conventional TIE (Sections 4 and 4.1), and compare the W(ρ, θ) results obtained
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using three techniques: our proposal, the conventional TIE and ZYGO/APEX. We show
the data from the comparison in Table 1, where we perform a simple comparison between
the main aberration coefficients, following the ANSI ordering protocols.

Table 1. We show the main aberration coefficients (following the ANSI ordering protocols) corre-
sponding to L1, L2, and L3, obtained experimentally, applying the TIE with the RR, simulating the
SGR in the LCD and the data obtained by ZYGO/APEX.

L1 [m] × 10−8

ANSI Coeff Aberration Exp RR SGR in LCD ZYGO/APEX

1 b0,0 piston 11.5223 12.4140 12.1610
5 b2,0 defocus 6.9981 7.3471 7.3831
4 b−2,2 Astig 45° −1.4970 −1.5073 −1.5587
6 b2,2 Astig 0° −1.9338 −2.0570 −2.0855
8 b3,−1 coma x −0.5006 −0.5890 −0.4807
9 b3,1 coma y −1.6599 −1.7658 −1.8214
13 b4,0 Spherical −8.9067 −8.3279 −8.2557

L2 [m] × 10−8

ANSI Coeff Aberration Exp RR SGR in LCD ZYGO/APEX

1 b0,0 piston 12.9901 13.9450 13.2360
5 b2,0 defocus 8.2316 8.8043 9.0063
4 b−2,2 Astig 45° 0.4003 0.3721 0.1800
6 b2,2 Astig 0° −0.4733 −0.4895 −0.5259
8 b3,−1 coma x −0.1723 −0.1670 −0.1506
9 b3,1 coma y 1.9801 2.5862 0.5937
13 b4,0 Spheric −8.0072 −8.8874 −8.4999

L3 [m] × 10−8

ANSI Coeff Aberration Exp RR SGR in LCD ZYGO/APEX

1 b0,0 piston 9.3109 9.5123 9.2009
5 b2,0 defocus 5.7501 5.5605 5.6785
4 b−2,2 Astig 45° 1.9988 3.0229 0.2762
6 b2,2 Astig 0° 2.0089 2.1026 2.1489
8 b3,−1 coma x −0.5006 −0.4412 −0.2752
9 b3,1 coma y 0.4591 0.4653 0.3170
13 b4,0 Spherical −6.7001 −6.6191 −6.4783

In the first place, we bear in mind that a more exhaustive and complete comparison
can be performed with the most relevant coefficients in our proposal and ZYGO/APEX
(CoeZernExpL1_coeff.mat and CoeZernZYGOL1_coeff.mat). In Table 1, we observe that
some coefficients are similar, with an error close to 0.001%, as in the case of piston, spherical,
and astigmatism (0◦) for L1 and L3. However, in the L2 case, the error increases up to 0.1%,
and 1%, as expected due to its RMS close to 0.1, which differs from the values corresponding
to the observed profile in Figure 5g since there are no significant deformations. However,
we recall the lack of a bulk of coefficients for fitting. However, from the RMS values
associated with L1, L2, and L3 (0.09631, 0.08097 and 0.0101, respectively), we can verify
that the most aberrated lens is L1, followed by L2, and L3 is the less aberrated lens or with
a profile closer to a spherical one (Figure 5). Another error produced by considering the
primary aberrations only (column 1 in Table 1) occurs when considering the dispersion
value only between the data in Table 1 since the largest value is reached by L2 with 0.6%,
which is not the case. Moreover, our proposal seems to have larger dispersion than the
conventional TIE. However, it is only an error due to the lack of coefficients since in general
terms our proposal reduces by up to 1%, the error margin regarding the conventional TIE
due to errors shown in Figure 4, associated to the RR.



Photonics 2023, 10, 39 13 of 15

7. Conclusions

In this work, we show the TIE [28] as an optical test modified with the experimental
application of an LCSLM (simulating and LCD) with SG patterns, optimizing the results.
The objectives were the LCD simulation and its validation, which lead us to show that the
diffraction pattern is inducible when the LCD has periodic patterns. Hence, we highlight
several contributions of our work: in the first place, the LCD as a diffractive inducible
object, which provides the SLM with certain geometric and fractal elements in several
areas; in the patterns simulation with more complex structure as the structured beams
used in the analysis of medical images and biological samples; and in optical trapping
in the use of vortex lenses, both with the aim of retrieving the phase and identifying
errors and anomalies [55]. In general, we show an option to substitute the RR in glass to
reduce errors if the experimental setup allows it when considering the sizes of the SLM and
polarizers. Subsequently, we show that the periodical equidistant fringes representing the
Ronchi ruling [43] can be substituted by patterns with super-Gaussian (SG) profiles. We
are aware that these patterns have been widely used in the literature in other applications.
However, we contribute with a different application of such patterns to remove errors in
the fringes profiles. Moreover, we bear in mind that the SGR in Equation (7) inherits as well
the LCSLM geometrical properties by being simulated on it. We are delving into several
inducible applications of the SGR as an algebraically convergent series and generating
base of other patterns. Moreover, we are exploring applications beyond surface testing,
for example in biophotonics. Finally, our main objective was obtaining the wavefront from
experimental data, which included all the previous objectives, in addition to the simulation
of the experimental intensity profiles using the SGR in the LCD. We acknowledge the
accomplishment of this objective by observing the percentage errors and the obtained RMS,
considering the data in the repository as well as the aberration coefficients in Table 1. These
results depend mostly on the point cloud method [26], which is a widely used method in
electronics and computer science in data processing, in addition to an accurate numeric
interpolation method. We obtain the intensities with this method. It can be applied also to
the wavefront. However, due to the execution times, we did not perform such estimation in
this work. The latter represents also a numerical contribution to the information processing
since it allows us to obtain reliefs from the maxima. However, in the Matlab ® case,
an image processing and fit data Toolbox is required for its application. The description laid
out in this work can be used to build a simple algorithm and fitting that can be implemented
with any suitable known function.
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