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Abstract: Nonlinear Raman frequency conversion is an important technical scheme to obtain special
optical band lasers based on conventional ion-doped lasers. In our work, we designed an intra-cavity
Raman fiber laser based on graded index fiber (GRIF) as the Raman gain medium. Based on the
fundamental-frequency 1080-nanometer laser, efficient first-order and second-order Stokes Raman
lasers were obtained, respectively. When the power of the fundamental-frequency 1080-nanometer
laser was 33.4 W, the output power of the second-order 1193-nanometer laser was 11.39 W. The
corresponding conversion efficiency was 34.1%. To our knowledge, this is the first report of a
second-order Raman output based on a GRIF and intra-cavity structure. In the experiment, the
spectrum-purification process with the increase in power was also observed. Our experimental
results prove that the intracavity Raman-laser system based on graded index fiber with a high optical
conversion efficiency has important application potential for obtaining new special-application bands.

Keywords: Raman fiber laser; intra-cavity structure; graded index fiber; spectrum purification

1. Introduction

Lasers are new and innovative tools and are widely used in various industries [1–3]. In
particular, fiber lasers have good heat-dissipation effects and pure flexible fiber structures.
Therefore, fiber lasers have the advantages of compact structures, high output power
and good beam quality, which is the focus of laser research at present [2–7]. Generally
speaking, fiber lasers are mainly based on fibers doped with rare-earth ions as the gain
medium to obtain the laser output. For example, the most commonly used Yb-doped fiber
is used for 1010–1120 nm [2–6]. However, lasers based on ion-doped fibers are limited
to obtaining specific wavelengths uncovered by doped-ion radiation bands. Nonlinear-
frequency conversion technologies, such as frequency doubling [8,9], optical parametric
oscillation [10,11], the Raman effect [12–17], etc., are effective means of performing new-
wavelength-band laser operations. In particular, the Raman effect does not require phase
matching and its own beam purification is the most commonly used nonlinear-frequency
conversion technology in fiber lasers [12–17].

Previously, Raman gain media such as single-mode fibers [12,13], multi-mode
fibers [14,15], Raman fibers (high-Raman-gain fibers) [16,17] and graded-index fibers [18–22]
were commonly used to obtain Raman-laser output. In particular, the graded-index fiber
has multiple advantages. Compared with the single-mode fiber, it does not require high
beam quality from the fundamental frequency light. Because it has a larger limited area
of light, its coupling efficiency is higher and its output power is larger [18,21]. Compared
with specially designed Raman fibers, not only does it offer the advantages mentioned
above, but, furthermore, its cost can be effectively controlled [18–22]. In addition, Raman
lasers based on graded index fibers exhibit obvious beam-purification effects, which are
intrinsic properties of graded-index multi-mode fibers due to their specially designed
refractive-index-graded fiber cores. Through the Kerr effect [23–25] or stimulated scattering
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process, such as Raman or Brillouin scattering effects [16,26–28], spatial-beam purification
can lead to high-quality beam output from multi-mode fibers pumped by multi-mode
lasers with low beam quality [29], and can even achieve near-single-mode laser output [22].

Important advances have been made in the research on Raman lasers based on graded-
index fibers. For example, Professor Babin’s research group focuses on the research into
GRIF Raman fibers pumped by basic multi-mode semiconductor lasers. In 2017, a high-
power, high-efficiency graded-index-fiber Raman laser pumped by laser diode modules at
978 nm was demonstrated. A CW output power of 154 W was obtained at a wavelength
of 1023 nm with an optical-to-optical conversion efficiency of 65%, making it the highest-
power and highest-efficiency Raman fiber laser demonstrated in any configuration allowing
brightness enhancement [18]. In 2019, A 976-nanometer all-fiber Raman laser enabling
high beam quality with at direct multimode-laser diode pumping with low beam quality
was demonstrated. The laser was applied in a 100/140 graded-index fiber with special
in-fiber Bragg gratings that secured the generation of the Stokes beam with relatively
good quality and high slope efficiency [19]. In addition, the frequency doubling of a
multimode-diode-pumped GRIN-fiber Raman laser with improved beam quality in a
simple single-pass scheme with a 5-mm PPLN crystal was studied. An efficient conversion
into the blue spectral range with an output power of about 0.4 W@488 nm and 0.64 W@477
nm was demonstrated [20]. Furthermore, the power scaling in a high-power continuous-
wave Raman fiber amplifier employing a graded-index passive fiber was reported by
Chen et al. The maximum output power reached 2.087 kW at 1130 nm [21]. Fan et al.
demonstrated a high-power Raman fiber amplifier with excellent beam quality based on
graded-index fiber; the beam-quality factor M2 at maximum output power was 1.6, with a
brightness-enhancement factor of 27 [22]. It is obvious that at present, Raman lasers based
on graded-index fibers mainly adopt the mode of extra-cavity Raman. In the extra-cavity
structure, reflection grating, wavelength division multiplexer (WDM), or isolators working
at the wavelengths of pump power and Stokes waves are usually used to separate the
laser cavities of the pump laser and the Raman laser. However, there is no similar device
between the pump laser and the Raman laser in the intra-cavity structure, and they share a
common cavity [30]. Compared with the extra-cavity Raman laser, the intra-cavity Raman
laser has a high power density and a low Raman-laser threshold because the fundamental-
frequency light and the Raman light share a laser resonator. However, at present, there are
relatively few reports on the intra-cavity Raman fiber laser based on the graded-index fiber.
Furthermore, the intra-cavity Raman laser built in our work includes the advantages of
the random Raman fiber laser (RRFL). Instead of using grating pairs, the naturally present
Random distributed feedback from the 3.1-km GRIF is the main mechanism for cascade
Raman shifts [31,32]. This can not only reduce the complexity, improve the compactness of
the laser cavity and reduce costs, but also absorb the properties of RRFL-like time-domain
stability, low coherence, and low noise [33–35].

In our work, we designed an intra-cavity second-order Raman fiber laser based on a
1080-nanometer Yb-doped fiber laser as the fundamental-frequency light and 105/125 graded-
index fiber as the Raman gain medium, which was used to obtain a 1200-nanometer fiber
laser. This 1200-nanometer laser has important applications in many biological fields
and can be used as an excitation-light source to achieve fluorescence near the second
near-infrared region in relevant research [36,37]. When the power of the 1080-nanometer
laser is 33.4 W, the maximum second-order Raman output power reaches 11.39 W, and
the corresponding fundamental Raman conversion efficiency is 34.1%. In addition, the
purification process of the Raman laser spectrum with the increase in power was clearly
observed in the experiment.

2. Experimental Setup

Figure 1 shows the construction of the Raman laser based on the graded-index fiber,
in which two 30-watt 915-nanometer semiconductor lasers were used as pump sources.
The pump light entered a 30-m 10/130 Yb-doped fiber through a (2 + 1) × 1 pump-beam
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combiner. The Yb-doped fiber was used to operate the fundamental-frequency laser. The
signal end of the pump-beam combiner was sequentially fused with a 1080-nanometer
high-reflection grating (99.9% reflectivity at 1080 nm) and a 50/50 coupler. The high-
reflection grating can select the wavelength of fundamental-frequency light and reflect it
in the manner of a total-reflection mirror. Furthermore, the Raman optical resonators can
be formed under the naturally present random Rayleigh scattering as random distributed
feedback (RDFB) along the 3.1-km GRIF and the broadband-reflective effect of Sagnac loop.
A 3.1-km section of graded-index fiber (from YOFC) was used as the Raman gain medium.
The end face of the fiber was perpendicularly cleaved. The whole laser was placed on a
water-cooled plate with a set temperature of 20 ◦C in order to ensure the stability of the
laser during high-power operation. The parameters of the output laser were analyzed by
optical fiber spectrum analyzer, power meter, etc.
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Figure 1. Schematic diagram of the intra-cavity Raman fiber laser.

3. Experimental Results and Discussion

In the experiment, without the Raman gain fiber, we first studied the output character-
istics of the 1080-nanometer fundamental-frequency light. Figure 2a shows the relationship
between the pump power and the output power. As shown in the figure, with the increase
in the pump power, the output power also showed a linear increase and the slope of the
linear fitting curve was 63%. When the pump power was 52.3 W, the maximum output
power was 33.4 W and the corresponding optical-to-optical conversion efficiency and slope
efficiency were 63.9% and 64.6% respectively. Figure 2b shows the emission spectrum of
the laser. The center wavelength and 3-decibel bandwidth of the laser were 1079.92 and
1.04 nm, respectively.
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Figure 2. (a) Output power and conversion efficiency of the 1080-nanometer laser. (b) The emission
optical spectrum of the 1080-nanometer laser.
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Next, the 3.1-km graded-index fiber was added to the laser cavity to obtain the Raman
laser output. Figure 3a shows the output power of the Raman laser versus the 1080-
nanometer fundamental laser. The red line represents the linear fitting curve, which had
a slope of 34.95%. The Raman laser’s output characteristics were as follows. First, there
was no Raman laser output when the input power of the 1080-nanometer fundamental-
frequency laser was lower than 6.6 W. However, when the optical power of the fundamental
frequency exceeded about 7 W, the first-order Raman laser, which operated at 1133 nm,
began to appear. Additionally, the intensity of the first-order Raman laser gradually
increased with the increase in the pump power. At the same time, due to the increase in
the first-order Raman, the fundamental-frequency optical power began to decrease and
the maximum power of the first-order Raman laser was about 6 W. Furthermore, when
the first-order Raman laser was greater than 6 W, the second-order Raman light began to
appear. Similarly, because the second-order Raman laser consumed the first-order Raman,
the first-order Raman power gradually decreased and the second-order Raman-laser output
power gradually increased with the increase in the pump power. The maximum output
power of the second-order Raman was 11.39 W, corresponding to the optical-to-optical
conversion efficiency of the fundamental to the Raman, which was 34.1%. The maximum
output power was limited by the maximum pump power. No output from the third-order
Raman laser was found in the experiment, limited by both the length of the GRIF and the
maximum pump power.
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Figure 3. (a) Output power of the Raman laser versus the 1080-nanometer fundamental laser. (b) The
evolution of Raman laser.

Figure 4 shows the spectrum-evolution process under different levels of 1080-nanometer
fundamental-frequency power. As shown in the figure, with the increase in fundamental-
frequency power, the number of Raman light orders increased significantly, after which the
power of the higher-order Raman light gradually increased. The energy consumption of
the lower-order Raman light took place at the same time. The output of the third-order and
higher-order Raman laser was not observed in the experiment, mainly due to the limitation
of the pump power and the Raman-gain fiber length described above.



Photonics 2023, 10, 33 5 of 7
Photonics 2023, 10, x FOR PEER REVIEW 5 of 7 
 

 

 

Figure 4. Spectrum evolution process under different powers of 1080-nanometer laser. 

Figure 5 shows the changes in the first- and second-order Raman spectra under dif-

ferent power levels. As shown in Figure 5a, for the first-order Raman, the contrast of the 

Raman spectrum was low at low power. The same applied to the second-order Raman. 

When the second-order Raman appeared, the contrast of the Raman spectrum was also 

low. With the increase in power, the contrast of the Raman spectrum increased. In our 

opinion, this phenomenon was due to the beam-purification effect of the nonlinear Raman 

process. 

 

 

Figure 5. (a) The evolution of 1133-nanometer first-order Raman laser. (b) The evolution of 1193-

nanometer second-order Raman laser. 

4. Conclusions 

In conclusion, based on the graded-index fiber, we studied the output characteristics 

of the intracavity Raman fiber laser. A 3.1-km 105/125 graded-index fiber was used as the 

Raman-gain medium. First and second-order Raman-laser output were observed in the 

experiment. The central wavelength of the second-order Raman was 1193 nm, which has 

important application value in the fields of fluorescence presentation and two-photon ab-

sorption. When the power of the 1080-nanometer fundamental frequency was 33.4 W, the 

maximum output power of the second-order Raman laser was 11.39 W. The experimental 

results show that the intra-cavity Raman laser based on the graded-index fiber had signif-

icant application prospects for obtaining low-threshold and special-wavelength lasers. 

Author Contributions: Conceptualization, C.H. and P.S.; methodology, C.H. and P.S.; investigation, 

C.H.; resources, P.S.; writing—original draft preparation, C.H.; writing—review and editing, P.S.; 

1080 1100 1120 1140 1160 1180 1200

-80

-70

-60

-50

-40

-30

In
te

n
si

ty
 (

d
B

)

Wavelength (nm)

 6.6 W  11.7 W  18.7 W

 22 W  26 W  33.4 W

Figure 4. Spectrum evolution process under different powers of 1080-nanometer laser.

Figure 5 shows the changes in the first- and second-order Raman spectra under
different power levels. As shown in Figure 5a, for the first-order Raman, the contrast of
the Raman spectrum was low at low power. The same applied to the second-order Raman.
When the second-order Raman appeared, the contrast of the Raman spectrum was also low.
With the increase in power, the contrast of the Raman spectrum increased. In our opinion,
this phenomenon was due to the beam-purification effect of the nonlinear Raman process.
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4. Conclusions

In conclusion, based on the graded-index fiber, we studied the output characteristics
of the intracavity Raman fiber laser. A 3.1-km 105/125 graded-index fiber was used as
the Raman-gain medium. First and second-order Raman-laser output were observed in
the experiment. The central wavelength of the second-order Raman was 1193 nm, which
has important application value in the fields of fluorescence presentation and two-photon
absorption. When the power of the 1080-nanometer fundamental frequency was 33.4 W, the
maximum output power of the second-order Raman laser was 11.39 W. The experimental re-
sults show that the intra-cavity Raman laser based on the graded-index fiber had significant
application prospects for obtaining low-threshold and special-wavelength lasers.
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agreed to the published version of the manuscript.
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