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Abstract: We investigate the origin of the ubiquitous existence of flat bands in the network super-
structures of atomic chains, where one-dimensional (1D) atomic chains array periodically. While
there can be many ways to connect those chains, we consider two representative ways of linking
them, the dot-type and triangle-type links. Then, we construct a variety of superstructures, such
as the square, rectangular, and honeycomb network superstructures with dot-type links and the
honeycomb superstructure with triangle-type links. These links provide the wavefunctions with an
opportunity to have destructive interference, which stabilizes the compact localized state (CLS). In
the network superstructures, there exist multiple flat bands proportional to the number of atoms of
each chain, and the corresponding eigenenergies can be found from the stability condition of the
compact localized state. Finally, we demonstrate that the finite bandwidth of the nearly flat bands
of the network superstructures arising from the next-nearest-neighbor hopping processes can be
suppressed by increasing the length of the chains consisting of the superstructures.

Keywords: flat band; network; electronic structure

1. Introduction

A flat band denotes a band with a zero group velocity over the whole Brillouin zone [1,2].
When the flat band becomes slightly dispersive, which is the case in real experiments, we
call it a nearly flat band [3]. The flat band systems have received great attention because of
their intriguing many-body and geometric aspects. When the Coulomb interaction between
electrons is introduced, the flat bands host unconventional superconductivity [4–12], ferromag-
netism [13–19], Wigner crystal [20–23], and fractional Chern insulator [3,24–33]. The quantum
distance, one of the geometric quantities of the Bloch wavefunction, plays an important role in
the anomalous Landau levels [34,35], a new kind of bulk-interface correspondence [36], and
appearance of the topological non-contractible loop states in flat band systems [37]. More-
over, it was revealed that the quantum metric [38] is the key quantity in the physics of the
superfluidity [39,40] and orbital magnetic susceptibility [41,42].

Despite the numerous intriguing properties of the flat band, it has become a popular
research subject only recently since the experimental realization of the nearly flat bands
in the twisted bilayer graphene at the magic angle [5]. In addition to this, many artificial
flat band systems have been examined [37,43–49], lots of nearly flat band materials such as
CoSn [50,51] and FeSn [52] have been synthesized [53–57], and many candidate materials
have been proposed theoretically recently [58–63]. We focus on the frequent appearance
of flat bands in lattice structures with a large-size unit cell such as cyclic-graphyne, cyclic-
graphdiyne, and honeycomb network in the nearly commensurate charge-density-wave
phase of 1T-TaS2 [17,64]. While the charge-density-wave phase of 1T-TaS2 has been synthe-
sized experimentally, the cyclic series of carbon networks are only proposed theoretically
from the densify functional analysis. Since these lattices are in the shape of a periodic
network of finite-size 1D chains, they are called network superstructures. The common
feature of network superstructures is that they host extremely flat bands at multiple energy

Photonics 2023, 10, 29. https://doi.org/10.3390/photonics10010029 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics10010029
https://doi.org/10.3390/photonics10010029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0001-9094-0650
https://doi.org/10.3390/photonics10010029
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics10010029?type=check_update&version=2


Photonics 2023, 10, 29 2 of 12

levels. Although the existence of the flat bands in several network superstructures such
as those mentioned above was reported already [17,64–66], the general understanding of
why the flat bands are so ubiquitous in this class of systems and why there are multiple
numbers of flat bands are developed is not studied yet.

In this paper, we understand the existence of flat bands in the network superstructures
from the perspective of the special localized eigenmode of the flat band, so-called the
compact localized state(CLS) [67–69]. The CLS is characterized by the fact that it has
nonzero amplitude only inside a finite region in real space while exactly zero outside it.
It was rigorously shown that one can always construct a CLS by a linear combination of
the Bloch wave functions of a flat band [67]. If the Bloch wave function of the flat band
does not have any singularity in momentum space, one can find N number of linearly
independent CLSs to span the flat band completely, where N is the number of unit cells
in the system. However, when the Bloch wave function becomes discontinuous due to
a band-crossing with another band, the CLSs cannot form a complete set, and they are
always linearly dependent. In this case, some non-compact eigenstates independent of
the CLSs are required to exist to form a complete set of eigenfunctions spanning the flat
band. Such non-compact states are usually found as non-contractible loop states (NLSs),
which are extended along one spatial direction while compactly localized along another
direction. NLSs show topological features in real space because they cannot be cut by
adding CLSs and exhibit a winding feature over the whole system under the periodic
boundary condition. This kind of flat band is called a singular flat band.

In the network superstructures, the CLS can be stabilized due to the destructive
interference offered by the special lattice structure around the linking parts between 1D
chains. We consider two representative types of the linking structure, the dot-type, and
triangle-type. We construct various network superstructures by connecting the 1D chains
in diverse ways and then show that they host many flat bands. The number of flat bands
equals to the number of independent CLSs. While the flat band becomes a nearly flat band
when some long-range hopping processes are introduced, we show that the bandwidth
of the nearly flat band can be suppressed by increasing the length of the 1D chains. Our
results can be also used as one of the flat band construction schemes [70–78].

2. Network Superstructures Hosting Flat Bands

Since the existence of the flat band is equivalent to the presence of the CLS if there is
no external applied field [67,79], we can obtain a flat band model by designing a lattice
structure stabilizing the CLS. While the CLS has zero amplitudes outside a finite region,
it should maintain the same shape after the hopping processes to be an eigenmode. To
this end, destructive interference is necessary to avoid any dissipation of the amplitudes
of the CLS after the hopping processes. As an example, the kagome lattice with the
nearest-neighbor hopping processes can stabilize the hexagon-shaped CLS. In network
superstructures, such destructive interference is expected to occur via the hopping processes
at the lattice sites linking the neighboring 1D chains. In the following, we explain how this
is possible in network superstructures.

Examples of the network superstructures are illustrated in Figures 1a,e and 2a. First,
the lattice structures in Figure 1 are called network superstructures with dot-type links
because the 1D chains are linked by purple-colored dots. The cyclicgraphyne and cyclic-
graphdiyne belong to this category. Here, the 1D chain indicates the black dots in a straight
line between two neighboring dot-type links. The sites in a 1D chain are labeled as the n-th
dot in the m-th chain. The length of the m-th chain is represented by Qm, which counts the
number of sites in the m-th chain. If the length of all the chains is the same, it is simply
described by Q. The amplitude of the CLS at the n-th dot in the m-th chain is denoted by
am,n. On the other hand, the amplitude of the CLS vanishes at the links. The CLS can be
stabilized in these lattice structures because the amplitudes at the neighboring sites of the
dot-type link show destructive interference at the dot-type link after the hopping processes.
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Figure 1. In (a,e), we plot the rectangular and honeycomb network superstructures with dot-type
links, respectively. CLSs are represented by yellow closed lines. When Q1 = Q2, the rectangular
network superstructure becomes the square network superstructure. Dot-type links are represented
by the purple color. am,n reads the amplitude of the CLS. In the network superstructures with dot-type
links, the CLS’s amplitude at the dot-type link is always zero. In the unit cell of the rectangular
network, we have Q1 + Q2 + 1 sites, while we have 3Q + 2 sites in the honeycomb case. From
(b–d,f–h), we plot band structures of the square and honeycomb network superstructures with
different sizes Q. Here, red lines represent the flat bands, whose energies are denoted by εn. Here,
only the nearest-neighbor hopping processes are considered.

Second, the network structures in Figure 2 are called network superstructures with
triangle-type links because the 1D chains are linked by purple-colored triangular bonds.
The charge-density-wave phase of 1T-TaS2 belongs to this class. In this lattice structure, the
amplitudes at the end sites of the neighboring 1D chains experience destructive interference
via the triangular hopping structure. For example, the amplitudes a1,Q−1 and a2,0 of the
first and second 1D chains will meet at another site in the triangle where they belong to
and vanish after the hopping processes if a1,Q−1 = −a2,0.
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Figure 2. (a) The honeycomb network superstructure with the triangle-type links. The triangle-
type links are colored purple. In the unit cell, there are 2Q sites. The hopping parameter for the
triangle-type link is denoted by t, while it is 1 otherwise. The yellow closed line represents the CLS.
From (b–d), we plot band spectra with t = 1, while we consider t 6= 1 cases in (e,f). Flat bands are
represented by red curves.

3. Tight-Binding Analysis
3.1. General Recursion Relation

The typical form of the CLSs of the network superstructures hosting flat bands is
given by

|χ〉 =
M

∑
m=1

Qm

∑
n=1

am,n|m, n〉, (1)
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where am,n is the amplitude of the CLS at the n-th atom of the m-th chain. For the CLS to be
an eigenstate of the given tight-binding Hamiltonian with the nearest-neighbor hopping
parameter 1, the amplitudes should satisfy

am,n + am,n−2 = εam,n−1, (2)

where ε is the energy of the flat band. Without loss of generality, one can assume that
am,0 = 1 releasing the normalization condition for the CLS. Boundary conditions for the
chain at two ends of it determine am,1 and ε. Let us assume that we know the value of am,1
from one of the boundary conditions. Then, the recursion relation (2) can be rewritten as

bm,n = (ε− αε)bm,n−1, (3)

where bm,n = am,n − αεam,n−1. Here, αε satisfies αε = 1/(ε− αε), namely,

αε =
ε±
√

ε2 − 4
2

. (4)

From (3), we obtain

bm,n = (ε− αε)
n−1bm,1, (5)

which leads to

am,n = Fn+1(αε) + (am,1 − ε)Fn(αε), (6)

where

Fn(αε) =
αn

ε − α−n
ε

αε − α−1
ε

. (7)

Since the eigenenergy of an infinite simple chain with the nearest-neighbor hopping param-
eter 1 lies between −2 and 2, it is reasonable to seek flat band energies in the same interval.
Therefore, we can express the eigenenergy of the finite chain as ε = 2 cos θ, which leads to

αε = e±iθ . (8)

Note that θ 6= 0 to ensure the function Fn is well-defined. Then, Fn(αε) is simplified as

Fn(αε) =
sin nθ

sin θ
. (9)

The explicit forms of the amplitudes of the CLS and the corresponding eigenenergy are
determined from the boundary conditions of the chain at the links attached to it. The
detailed forms of the eigenenergies of the flat bands of various network superstructures are
derived in the following subsections.

3.2. Network Superstructures with Dot-Type Links

We first consider a square network superstructure, which contains two simple chains
of the same size in a unit cell as illustrated in Figure 1a with Q1 = Q2. The simple chains
are connected to each other by dot-type links. As shown in Figure 1a, we consider a CLS
having zero amplitudes at the dot-type links. As a result, for the chain with m = 1, as an
example, the recursion relation (2) for n = 1 is given by

a1,1 = εa1,0 = ε, (10)
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because am,n is assumed to be zero for a negative n and 1 for n = 0. By plugging in this
value of a1,1 into (6), the general term of the amplitude of the CLS along the m-th chain is
obtained as

a1,n = Fn+1(αε), (11)

for 0 ≤ n ≤ Q1 − 1.
When n = Q1 − 1, namely at the end of the simple chain, the recursion relation (2)

becomes

a1,Q1−2 = εa1,Q1−1, (12)

because a1,Q1 is supposed to be zero. By applying (11) and ε = 2 cos θ to the above, we
obtain

2 cos θ sin Q1θ = sin(Q1 − 1)θ, (13)

which can be simplified into

sin(Q1 + 1)θ = 0. (14)

From the solution of (14), θ = qπ/(Q1 + 1), where q = 1, 2, . . . , Q1, the eigenenergy of the
flat band is evaluated as

εq = 2 cos
q

Q1 + 1
π. (15)

Note that q = 0 and q = Q1 + 1 are excluded because the corresponding eigenenergy is
2 which makes αε = ±1 and Fn ill-defined. In addition, we only considered positive θ’s
because Fn(αε) is an even function of θ, and we obtain the same CLS and eigenenergy for
θ and −θ. By noting that a1,Q1−1 = FQ1(αεq) = (−1)q−1 for the flat band at ε = εq, the
amplitudes of the CLS on other simple chains are given by a2,n = (−1)qa1,n, a3,n = a1,n,
a4,n = (−1)qa1,n. Since all the simple chains have the same size, n runs from 0 to Q1 − 1 for
all m. We confirmed that Formula (15) matches well with the flat band energies obtained
numerically as shown in Figure 1b–d for various values of Q.

The results of the eigenenergies and eigenfunctions of the CLSs in the above can be
applied to any kind of network superstructures with dot-type links if the simple chains
consisting of the network are of the same size. For example, the CLS of the honeycomb
network superstructure is illustrated in Figure 1e, and the destructive interference at the
dot-type links can be hosted by letting the amplitudes of the CLS satisfy am,n = (−1)m−1a1,n.
The eigenenergies of the flat bands are completely described by (15). The tight-binding
calculations of the band structures of the honeycomb network of superstructures are
exhibited in Figure 1f–h.

One can have flat bands even if the network superstructure consists of simple chains
of different sizes(Q1 6= Q2). Refer to the rectangular network superstructure illustrated in
Figure 1a. The allowed eigenenergies of determined from these two chains are denoted
by ε

(1)
q = 2 cos qπ/(Q1 + 1) and ε

(2)
q = 2 cos qπ/(Q2 + 1). While the condition for the

existence of a flat band is that the two chains share the same eigenenergy, there exist
integers q1 and q2 that make ε

(1)
q1 = ε

(2)
q2 if Q1 + 1 and Q2 + 1 have a common divisor larger

than 1 and smaller than min(Q1 + 1, Q2 + 1). In Figure 3, we plot various examples of
rectangular network superstructures with dot-type links. As shown in Figure 3a, one
cannot have a flat band because Q1 + 1 = 4 and Q2 + 1 = 5 have no common divisor. On
the other hand, if Q1 = 3 and Q2 = 5, one can have a flat band when q1 = 2 and q2 = 3 as
illustrated in Figure 3b. If Q2 + 1 is an integer multiple of Q1 + 1, we have Q1 number of
flat bands as plotted in Figure 3c,d.
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Figure 3. In (a–d), we plot band spectra of rectangular network superstructures with Q1 6= Q2. Red
lines denote flat bands. Refer to Figure 1a for the lattice structure.

3.3. Network Superstructures with Triangle-Type Links

The triangle-type links are illustrated in Figure 2a. Unlike dot-type links, triangle-type
links let the simple chains connect to each other directly. Let us consider the honeycomb
network consisting of simple chains of the same size Q. We solve the recursion Equation (2)
for the m = 1 simple chain, which neighbors with the m = 2 and m = 6 chains. Assuming
a1,0 = 1, one can note that we should have a6,Q−1 = −1 to prevent the dissipation of the
CLS via the destructive interference at the triangle-type link. Then, the recursion relation
relevant to the amplitudes of the CLS at the link sites is given by

a1,1 + a6,Q−1 = a1,1 − 1 = εa1,0 = ε, (16)

which gives a1,1 = ε + 1. From (6), the general term of the amplitude of the CLS on the
m = 1 simple chain is obtained as

a1,n = Fn+1(αε) + Fn(αε), (17)

=
sin(n + 1)θ + sin nθ

sin θ
. (18)

Due to the destructive interference at the other triangle link involving a1,Q−1 and a2,0, we
have a2,0 = −a1,Q−1, which results in a2,n = −a1,Q−1[Fn+1(αε) + Fn(αε)] = −a1,Q−1a1,n.
This means that a2,Q−1 = −a2

1,Q−1. By applying the same process to the other chains, we
obtain a6,Q−1 = −a6

1,Q−1 = −1, which implies that a1,Q−1 = ±1 because the function Fn(αε)
is real-valued. Then, the eigenvalue condition is given by

sin Qθ + sin(Q− 1)θ = ± sin θ, (19)
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which leads to sin Qθ/2× cos(Q− 1)θ/2 = 0 or cos Qθ/2× sin(Q− 1)θ/2 = 0. On the
other hand, the eigenvalue equation at another boundary of the m = 1 chain is given by

a1,Q−2 + a2,0 = a1,Q−2 − a1,Q−1 = εa1,Q−1. (20)

Here, a2,0 = a1,Q−1 to have destructive interference at the triangular link. By using the
identity ε + 1 = a1,1 and Formula (18), we have another condition for θ given by sin Qθ = 0.
These conditions for θ lead to the solutions of the form θ = πq/Q, where q is an integer
running from 1 to Q. Here, q = 0 is excluded because this makes Fn(αε) ill-defined as
explained in Section 3.1. These solutions of θ lead to the flat band energies given by

εq = 2 cos
πq
Q

, (21)

by putting these θ’s into ε = 2 cos θ derived in Section 3.1.

3.4. Triangle-Type Link with Different Hopping Amplitudes

The hopping parameters of the bonds in the triangle link can be different from 1, the
hopping parameter of the simple chains, as shown in Figure 2. Let us denote the hopping
parameter in the link by t. As in the previous cases, we set a1,0 = 1. Then, the recursion
relation for determining a1,1 is given by

a1,1 + ta6,Q−1 = a1,1 − t = εa1,0 = ε, (22)

which results in a1,1 = ε + t. From (6), the general term is evaluated as

a1,n = Fn+1(αε) + tFn(αε), (23)

=
sin(n + 1)θ + t sin nθ

sin θ
. (24)

Eigenenergies of the flat bands are obtained from the condition a1,Q−1 = ±1, which leads to

sin Qθ + t sin(Q− 1)θ ± sin θ = 0. (25)

Another boundary condition given by

a1,Q−2 + ta2,0 = a1,Q−2 − ta2,0 = εa1,Q−1, (26)

gives

sin(Q− 1)θ + t sin(Q− 2)θ ± (sin 2θ + t sin θ) = 0, (27)

where the sign± is synchronized with that of (25). By solving coupled Equations (25) and (27)
with the same sign, we obtain the flat band energies ε = 2 cos θ.

3.5. Effect of the Next-Nearest-Neighbor Hopping Processes

Around the dot-type link in Figure 1a,e, let us consider the effect of the small next-
nearest-neighbor hopping processes. The corresponding parameter is denoted by t′. For
example, in Figure 1a, the hopping processes between (m, n) = (1, 0) and (m, n) = (4, Q−
1), (m, n) = (1, Q− 1) and (m, n) = (2, 0), (m, n) = (2, Q− 1) and (m, n) = (3, 0), and
(m, n) = (3, Q− 1) and (m, n) = (4, 0) are the next-nearest-neighbor ones. As in many
flat band models, the flat bands in the network superstructures are also easily warped
when we include such long-range hopping interactions. We obtain band dispersions of
the square network superstructures with t′ = 0.2 and 0.4 as exhibited in Figure 4. The
perfectly flat bands of the square network superstructures in Figure 1 represented by red
lines, deform to the nearly flat bands, also colored red, in Figure 4. We noted in Figure 4d,h
that the bandwidth of the nearly flat bands decreases as 1/Q. While the bandwidth of the
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nearly flat band scales with the effective hopping integral between localized modes at two
neighboring 1D chains, the amplitudes at each site, such as a1,0 and a6,Q−1 are proportional
to 1/

√
Q. As a result, the bandwidth is proportional to t′/Q. These results imply that one

can flatten the nearly flat band as much as one wants by increasing the length of the 1D
chains consisting of the network superstructures.
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Figure 4. Band structures of the square network superstructures with the next nearest-neighbor
hopping processes (t′) between four sites around the dot-type link in Figure 1a. The flat bands
in Figure 1b–d deform to the nearly flat bands colored red in (a–c) and (e–g) for t′ = 0.2 and 0.4,
respectively. In (d,h), we plot the bandwidth of the nearly flat band as a function of 1/Q. Here, we
take the maximum bandwidth among all the nearly flat bands for a given Q.

4. Conclusions

We have investigated the origin of the development of flat bands in network super-
structures from the perspective of the stabilization of the CLSs because there is a corre-
spondence between the flat band. Two types of the bonding structures linking 1D chains
offer the destructive interference, so that the CLSs satisfy the eigenstate condition. We have
considered two types of links between 1D chains called dot-type and triangle-type links.
By using these links, we have constructed the square, rectangular, and honeycomb network
superstructures and obtained analytic forms of the flat band energies and CLSs. Note that
the number of flat bands equals to the number of independent CLSs. While the previously
studied network superstructures such as cyclic-graphyne, cyclic- graphdiyne, and honey-
comb network in the nearly commensurate charge-density-wave phase of 1T-TaS2 exhibit
almost flat bands in spite of the long-range hopping processes, we demonstrated that this
is because the overlap between localized modes in 1D chains scales as the inverse of the
length of the chains. Therefore, one can flatten the nearly flat band as much as they want
by increasing the length of the 1D chains.
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