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Abstract: We proposed a single metalens for fiber coupling within telecom bands. This proposed
fiber coupler combined a single layer metalens and a Polydimethylsiloxane (PDMS) layer. Instead of
traditional fiber collimators, which are bulky and require complex calibration processes, we used a
metalens for the focusing of incident and outgoing lasers and achieve achromatic aberration over
a certain wavelength band. The focal length was kept as 514.9 µm with a 6.92-µm tolerance. The
average coupling efficiency of an achromatic lens was calculated as 0.43. The different phases were
produced with the nanopillar element structures. The aim is to provide an idea for creating a more
convenient, integrated and efficient way of coupling fiber optics. This approach can also be applied
to the design of achromatic lenses in other wavelength regions.

Keywords: metalens; fiber optics; lens design; fiber coupling

1. Introduction

Optical fibers rely on total internal reflections for light propagations [1] and have
ultralow losses in infrared (IR) band with strong anti-electromagnetic interference ability [2].
Optical fibers are mainly used in optical communications [3], and are widely used in the
chemical industry, in medicine, telecommunications and other fields [4–6]. In biomedical
fields, fiber-based multi-functional spectral-domain optical coherence tomography (OCT)
systems [7] can deliver ultrahigh resolution OCT imaging. Optical endoscopy [8] can
perform subtle imaging of the inside of the human body and play a role in disease diagnosis
and surgical treatment. These fiberscopes are mainly divided into two broad categories,
one is scanning imaging using single-mode fibers. The other approach is using multi-core
fibers [9] or fiber bundles directly for wide-area illuminations and image transmissions [10].
In the industrial field, optical fibers also have lots of applications, such as temperature,
pressure, strain and chemical sensors as well as optical gyroscopes [11]. The distributed
fiber optic sensing technology [12,13] can realize the protection of buildings [14], bridges,
dams, tunnels and other important civil engineering infrastructures, and also can be applied
for structural inspection and evaluation [15] of mobility equipment such as automobiles
and aircraft [16]. In addition, the functionality of optical fibers in other areas include the use
of optical fibers to construct optical capturing wells [17,18], nonlinear light generation [19]
and magnetic field sensing [20].

Due to the geometrical limits of optical fibers, one typically relies on fiber collima-
tors [21] to couple laser beams into the fibers [22], or collimate the outgoing lights [23] for
signal capturing. These processes require a sophisticated optical alignment stage. In addi-
tion, fiber collimators have a large volume which is not conducive to the use of lightweight
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integrated systems using optical fibers for the fields of endoscopes and optical commu-
nications. Existing achromatic techniques mainly rely on complex lens groups, that is,
gluing multiple aspheric lenses to correct chromatic aberration [24]. This inevitably leads
to large thicknesses, complex industrial processes, higher production costs and undesirable
systematic errors [25].

However, due to the constraints of the lens geometry and refractive index distribu-
tion, chromatic aberrations occur during the light coupling processes. For instance, the
dispersion induces chromatic focusing. Typically, aspherical lenses are commonly chosen
for coupling the laser beam into fibers. The precise alignment is always needed. Plid-
schun et al. [26] implemented an ultrathin metalens on the facet of a modified single-mode
optical fiber via direct laser writing, leading to a diffraction-limited focal spot. In addition,
the metasurface around the side surface of an optical fiber was designed by Lei et al. [27] for
light focusing. In addition, Xu and Shi [28] showed the metamaterial-based Maxwell’s fish-
eye lens for multimode waveguide crossing. Zhang et al. [29] proposed a broadband mode
size converter using an on-chip metamaterial-Based Luneburg Lens. Recently, Ren et al. [30]
designed a 3D achromatic diffraction metalens on the end face of a single-mode fiber that
is capable of achromatic aberration over the entire near-IR telecom wavelength band from
1.25 to 1.65 µm and achieve polarization-insensitive focusing.

In this work, an achromatic flat fiber coupler was proposed and designed. This
proposed fiber coupler combines a single layer metalens and a Polydimethylsiloxane
(PDMS) layer. Instead of traditional fiber collimators, which are bulky and require complex
calibration processes, we used a metalens for the focusing of incident and outgoing lasers
and achieve achromatic aberration over a certain wavelength band. Although researchers
are actively exploring the use of visible light bands for optical communications [31], mature
optical communication technologies are still mainly concentrated in the near-IR band, so
we designed achromatic metalens that operate in the 1250–1650 nm band and fixed them to
the fiber end face with the help of PDMS as a medium. The aim is to provide an idea for
creating a more convenient, integrated and efficient way of coupling fiber optics.

2. Materials and Methods
2.1. The Structure of This Designed Metasurface Fiber Coupler

This proposed fiber coupler (shown in Figure 1a) combined a single metalens and a
PDMS layer. A common type of a single-mode fiber (SMF-28-J9, Thorlabs, Newton, NJ,
USA) with its core diameter is 8.2 µm and NA = 0.14 was chosen. The metasurface fiber
coupler was shown in Figure 1b and included three parts: (1) the supported PDMS layer,
(2) the SiO2 layer, (3) the metasurface TiO2 layer. The thickness of the supported PDMS
layer was approximately set as >500 µm. Moreover, it can directly be attached on the end
faces of an optical fiber. The refractive index of PDMS was measured as 1.4 around the
telecom band by Kácik et al. [32].
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Figure 1. (a) The optical layout of the single-mode fiber and the this designed metasurface fiber
coupler; (b) The structure of this designed metalens fiber coupler: (1) the supported PDMS layer,
(2) the SiO2 layer, (3) the metasurface TiO2 layer.
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2.2. The Design Process of the Metalens

The material of the nanopillar was selected according to the required working band.
For the telecom band (1350–1550 nm), we selected TiO2 as the material of the nanopillar and
SiO2 as the substrate due to good transmittance of TiO2 in the telecom band. Additionally,
this TiO2/SiO2 can make the design of meta lenses have higher efficiency. In Figure 2, we
showed the workflow chart for the design process of the meta lens.
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In terms of matching the ideal phase plane and the element structure, due to process
limitations, we take the height of the microstructure as an invariant and the radius of the
cylinder as the variable that produces different phase shifts. Therefore, the optimization of
the height h0 is used as a large cycle, and the optimization of radius r is used as a small cycle.
Finally, the h0 with the optimal evaluation index is selected as the microstructured height.

In the phase matching processes, some phase folding regions occupied small areas,
and often produced extremely residual sum of squares due to error (SSE), which we call
‘dead pixels’. This resulted in the matching effect becoming poor. In contrast, the phase
unfolded area contains the central area of the lens, which are ‘good pixels’. The SSE of
the dead pixels is typically 10~200 times the good pixels. Herein, dynamic weighting is
introduced. A small number of dead pixels did not significantly affect the focusing effect.
Therefore, we reduced the weight of the dead pixels in the total error to eliminate the
influence of dead pixels. Good design results were obtained. In addition, we introduced a
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zero-compensation factor z for the cell structure, that is, the zero point of the target phase
can match any point of the cell structure phase, rather than just matching the zero point to
the zero point. A new dimension has been added to the limited cell structure database to
improve the match ing effect.

3. Results and Discussions
3.1. The Design of Single-Band Fiber Coupler

At first, we designed the single-frequency focal lens with metasurface for fiber cou-
pling. The designed wavelength was set as 1450 nm and the focal length was set as 540 µm.
The lens diameter is 125 µm and the numerical aperture was 0.12. The ideal phase term is
presented as

φ =
2π

λ

(√
f 2 + R2 − f

)
(1)

where ψ is phase term, λ is the preset wavelength (1450 nm), f is the preset focal length
(540 µm), and R is the distance from the center of the lens in spatial coordinates.

Based on the workflow chart for the design process of the metasurface (shown in
Figure 2), the nanostructured layout of the designed single-band metalens was shown
in Figure 3a. The focal length can be perfectly matched to 540 µm when the operation
wavelength is 1450 nm. The nanostructured layout of the designed single-band metalens
was shown in Figure 4a. The unit structure is made of TiO2, which is set as a 1.8-µm high
nanopillar. The diameter of the nanopillars varied from 0.2 µm to 0.8 µm with the step
size of 0.02 µm, which is used to generate phases from 0 to 2π. The 200-µm thick SiO2
was designed as the substrate. The phase terms generated by the simulation process and
were used to construct the electromagnetic field distributions. The lateral optical intensity
distributions were created. Figure 3b showed the lateral optical intensity distributions at
1330 nm, 1450 nm, and 1550 nm, respectively. However, the focal length of this designed
metalens was 578 µm when the operation wavelength is tuned to 1330 nm and 515 µm
when the operation wavelength is tuned to 1550 nm. The lateral chromatic focusing induces
the additional coupling losses and the dispersions.
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3.2. The Design of Broad-Band Fiber Coupler

Here, we designed the achromatic focal lens with metasurface for fiber coupling. The
designed wavelength was set as 1450 nm and the focal length was set as 515 µm. The lens
diameter is 125 µm and the numerical aperture was 0.12. The phase term is presented as

φi =
2 × π

λi
×
(√

f 2 + R2 − f
)

(2)

where λi is the desired wavelength, i was set as 10 wavelength locations from 1330 nm
to 1550 nm. f is the preset focal length (515 µm), and R is the distance from the center of
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the lens in spatial coordinates. Based on the workflow chart for the design process of the
metasurface (shown in Figure 2), the selection rule was shown as

Indexradius= Index(min
m

∑
i=1

(φi − φj)) (3)

and
φreal = φi(Indexradius) (4)

The matrix information of the same height element (h0) corresponding to the phase
closest to the focus points can be obtained for each wavelength, that is, the phase of each
wavelength focused to f can be confirmed. The nanostructured layout of the designed
single-band metalens was shown in Figure 4a. The unit structure is made of TiO2, which
is set as a 1.8-µm high nanopillar. The diameter of the nanopillars varied from 0.2 µm to
0.8 µm with the step size of 0.02 µm, which is used to generate phases from 0 to 2π. The
200-µm thick SiO2 was designed as the substrate. Figure 4b showed the lateral optical
intensity distributions at 1330 nm, 1450 nm, and 1550 nm. The focal lengths for different
wavelengths were kept as constant and matched as 515 nm.
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3.3. The Optical Performance of Achromatic Lens

The light intensity distribution of achromatic metalens with different wavelengths is
shown in Figure 5a. The average coupling efficiency of achromatic lens was calculated as
0.43. Additionally, their focal length with different wavelengths was marked in Figure 5b.
The preset focal length was 515 µm. The focal length of the designed achromatic metalens
was kept as 514.9 µm with a 6.92-µm tolerance. On the other hand, we also showed the
light intensity patterns with different wavelengths (shown in Figure 5c) of a chromatic
metalens and their focal length with different wavelengths (shown in Figure 5d).
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4. Conclusions

We explored a compact and light design for optical fibers for light transmitting and
receiving. In this work, we proposed a flat achromatic fiber coupler. The optical coupling
was immune to light polarizations because of the centrosymmetric design. The focal length
was kept as 514.9 µm with a 6.92-µm tolerance. The aim is to provide an idea for creating
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