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Abstract-In this paper, symmetrical nuclear matter has been investigated. Total, kinetic
and potential energies per particle were obtained for nuclear matter by Variational
Monte Carlo method. We have observed that the results are in good agreement with
those obtained by various authors who used different potentials and techniques.
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1. INTRODUCTION

Monte Carlo (MC) method is used for simulating the classical many-particle
systems by introducing artificial dynamics based on “random numbers”. The
Variational Monte Carlo (VMC) method was first used by Macmillan [1] for simple
bose systems, such as atomic helium liquids, where the interaction potentials depend
only on interparticle distance. These methods were extended in order to study simple
firm systems [2,3]. However, nuclear matter can not be regarded as a simple system
because of the strong dependence of the nucleon-nucleon interactions on the spin and
isospin orientations [4]. (MC) methods were also developed to investigate nuclear
interactions in some nucleus with a few nucleon systems [5,6].

Quantum Monte Carlo method has been developed to calculate the properties of
quantum many-body systems. The ways which are used in the method is basically same
as for classical systems. The direct simulations in the classical many-body system have
been proved the only way to get thoroughly reliable information about many-body
effects, particularly as the systems get more complex. Quantum systems can be reduced
to classical systems in certain limits (e.g. at high temperature) hence if it is needed to
simulate the classical systems, one needs simulation to calculate the properties of
quantum systems. [7]. In this paper we will introduce how the variational quantum
Monte Carlo method can be applied to the symmetrical nuclear matter and how the
physical properties of the system under consideration can be calculated.

2. JASTROW THEORY, VARIATIONAL WAVE FUNCTION AND
METROPOLIS ALGORITHM

In variational Monte Carlo method the ground state wave function ‘PO(R) is
approximated by a variational wave function ¥, (R) with many variational parameters,
which are determined by minimizing (H). A common choice of ¥, for simple fermi
systems contains a product of two and three-body correlation functions f(r,) and

F(r;,ry.n,;) and Slater determinant [8] :
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This ¥, reduces to the Hartree-Fock form when the correlation functions f=F =1.
When the three-body correlation F=1, but pair correlation f #1, one obtains the
Jastrow form. We will base our calculations on a wave function of the form

¥,(R) =TT f,0). @)

iJ

Where @ is the many particle wave function for the system of non-interacting particles
and R is a 3N dimensional vector representing the coordinates of particles, while f; is

the two particle correlation function. Jastrow suggested that this correlation function in
general can be an operator function [9]. However in most applications of f ; it is
assumed to depend only on the interparticle distance r; = |r,. - rjl . In order to simulate

the nuclear matter, we will consider a system of N nucleons confined in a cube of side L
with periodic boundary conditions. Therefore for the single particle wave functions we
can use the plane waves

(I?(P_") = e:’ff (3)

where k =2mi/L and n is an integer vector. Because of the symmetry of ground state
we can use real plane waves
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instead of complex plane waves in eq.(3). Under these conditions the many particle
wave function in eq.(2) becomes

®(R) = f["ﬁ‘ )

s=1
where D’ is the slater determinant of single particle wave functions
d; =¢,((7,s),), D* = det(d}). (6)

For the two particle correlation function f; in eq.(2) we chose a function similar to the
Woods-Saxon potential
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Here we define the pseudo potential u(r) for practical reasons as

() = exp(-u(r,)) u(r,) =~In(f,(z,)) 8)

then our variational wave function becomes

"I"j=exp{—2u(!}j)]xﬁl_)s. )
5=1

i{j

The method of sampling the wave function is identical to that used for classical
ensembles [10]. The only complication that arises is the evaluation of the determinant.
Initial coordinates are chosen for each particle; typically they are either on a lattice or
are a result of a previous Monte Carlo calculations. The particles are then moved one by
one to new trial positions. Suppose particle 1 is being moved. Then its new trial position
7, i8 7, +& , where & is a random vector uniformly distributed in a cube of side A

centered at the origin. The new position for particle 1 is accepted with a probability
equal to

P= minll,l‘l’(fv)/‘}’(ﬁ )|2J. (10)

If the absolute value of the wave function at the new position is larger than that was at
the old, the new coordinates are automatically accepted. This random walk is
Markovian and by the usual argument [1] the set of coordinates generated by a
sufficiently long calculation is an unbiased sample drawn from the probability

distribution [¥(R)|" /dR[¥(R)[".

The expectation value of any operator F is simply the average value of the
operator evaluated for the coordinates of the random walk with M moves

. [are" (HFE¥FE) if“" - -
- Idf|‘i"(ﬂ12 M i=1 o

The most effective way to handle this wave function is to calculate the inverses of the
matrices D° at the beginning of the random walk and then update them as the particles
are moving. This inverse is needed to compute the Metropolis acceptance ratio[eq.(10)]

and the variational energy. Let D° be the inverse of the transpose of D* of Eq.(6).
Then, the equation
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can be defined. Note that the first index always represents an orbital, the second a
particle. Now the determinant of a matrix is equal to the scalar product of any column
(row) of the matrix with the same column (row) of the matrix of cofactors. Let particle 1
(with spin s) be moved to a new trial position. Since only one particle is being moved;
only one column of the matrix D° will change, and the required ratio of wave functions
is easily evaluated. Since D" is proportional to the matrix of cofactors, the ratio of
determinants is

Sy Y(R
Y. D@, () =1 —q(,—(-*glwexp( Zu( Foo) = 07) ] (13)

If the move is accepted all of the elements of D will be needed to be changed

bﬁ;/ i=1
Bt o LD 0L.F (14)
’ Dﬂ.—D}.,Z"’—;— i#1

k=1

3. NUCLEON-NUCLEON INTERACTION POTENTIALS

The simplest model of a nucleus is a collection of point nucleons that obey the
nonrelativistic Schrédinger equation and interact through a two-body potential that fits
nucleon-nucleon scattering data and the properties of the deuteron. Any assumed two-
body potential implies a curve of energy per particle versus density for nuclear matter.
The saturation point of this curve must agree with the empirical one if the potential used
in the calculation represents that of the nucleus well. Therefore it is essential to have a
method for reliably calculating by using an assumed potential and the binding energy of
nuclear matter as a function of density. Only if this calculation can be done accurately
does it make sense to compare the calculated saturation point with the empirical one and
hence to accept or reject the potential [11]. Therefore the starting point for nuclear
matter calculation is a two-body potential that models the nucleon-nucleon interaction
[12]. We have used the Urbana V4 potential for the nucleon-nucleon interaction. This
potential, due to Lagaris and Pandharipande, was obtained by fitting the phase shift data
from low energy nucleon-nucleon scattering experiments and the properties of deuteron
[13]. Urbana potential contains 14 operator components and it has the form

V, =v°+v°(0,-0;)+0°(z,7,) + 0" (0, -0, ), *7;)
+0'S; +0" §;(t, -7,) +v*(L-8), +v* (L-8),(z, -7;)
+0' L +0% (0, -0,) +vT [ (7, -1,) +0*" (0, -0, )z, T;)

+0”(L-S)* + " (L-8)*(z, “T,):
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3.1. Expectation Values of Potential and Kinetic Energy

The variational parameters r,, a and t in Eq.(7) will be obtained from the
minimization of the total variational energy E;

(¥, HIE,) K2 5
ol sl i) ¢ LRy v V.. 16
° M) 2»12 +%" d o)

where H is the expectation value of Hamiltonian operator in the ground state of the
system. Here (—#”V}/2m) is the kinetic energy operator of the i-th particle and Vj; is
the potential energy operator between the pair i and j. For the moment it is sufficient to
know that this potential depends only on the distance between the particles i1 and j and

on their spin isospin orientations. Therefore it is easy to calculate the expectation value
for the potential energy per nucleon

_JaRY @V R)¥(R)

V) ;
dR¥’ (R)(R)¥(R)

1
, <V’>EEHZV‘(R*') (17)

where V,(R,) is the total potential energy in the i-th step of the random walk due to the

interactions between the moving particle and all other particles contained in a sphere of
radius L/2. In this manner of calculation each interaction is considered twice and
therefore there is factor of % in Eq. (17). As we consider only the particles contained in
a sphere of radius L/2, the contribution of the particles outside this sphere should be
added to our estimation of the potential energy [4]. This contribution calculated with the
assumption that the radial distribution function equals unity outside this sphere. Thus
the contribution is

:
Ve = [PV (r)amrdr (18)

L2

where p is the number density of the matter. The expectation value of the total Kinetic
energy 1is given by
j dR¥" (R)T(R)¥(R)

(T) .
j dR¥* (R)¥(R)

(19)

Using the variational wave function from Eq.(9) and inverse matrices from Eq.(14)
average kinetic energy for the first particle is expressed as[4]
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The expectation value for the kinetic energy of particle 1 can also be expressed as
[14,15]

n? [dR(V, ")V, ¥)

(1)) = : 21)
Com o [drety
using the Monte Carlo method and inverse matrices we get
hz By e 2 = ?
(1) = 2mM E iVie() J * ;VIH(P’U)J
: (22)
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The variance or the previous form goes to zero as the wave function approaches an
eigen state of the Homiltonian. These two forms for the kinetic energy give the same
result if the configuration space is adequately sampled. Therefore the alternative form
for the kinetic energy is used to control whether the configuration space is sufficiently
sampled.

4. APPLICATION OF VARIATIONAL MONTE CARLO METHOD TO
NUCLEAR MATTER

The 14 operator components in Eq.(15) are necessary to have a good fit to the
experimental data. However, the first four terms are much stronger and due to the
symmetrical nature of the nuclear matter the terms depending on the relative angular
momentum operator L. do not considerably effect the binding energy of the nuclear
matter. Therefore in our calculations we have used only the first four terms of the
Urbana potential, that is the two nucleon interaction used in our calculations,

Vg =V 4V (a,0,)+ V" (50, )+ V™ (0,0 )70, ), (23)

where V', V7, V* and ¥ depend only on the distance between the nucleons i and j.
Each term in Eq. (23) has three parts
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Vi=V]+V/ +V; (24)

representing long-range (V/), intermediate-range (¥)), and short range )

interactions. (V) is nonzero only for i =07 and is given by

i

Vo (r) =3488=—(1—-¢™") (25)

L

where w=0.7fin" is the inverse Compton wavelength for pions. The intermediate and
short range parts are, respectively,

i S i 3 3 e-‘ur f’*‘z ) == Si
V"(”"{[Hﬁﬂurf}??(l_e )}’ ) =g @9

Values of the potential strengths /° and S’ and the parameters c, R, a are given in
Table L.

Table I. Parameters of the Urbana V4 nucleon-nucleon potential.

I r 5
c -5.7030 2575.3
o 0.7628 -366.56
T 0.8892 -466.56
oT -0.2790 40281
¢=0.2fm™, R=0.5fm, a= 0.2fm

We have incorporated three and more body interactions into our calculations
with the assumption that the strength of the short range part of the potential

| §'
Vs (r) :Wh"‘a(ﬂ)ﬁ]- (27)

The parameters & and f in the above equation is adjusted so as to obtain a binding
energy close to the observed value of E=-16 MeV.
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Table II. Total, potential and kinetic energy per nucleon for the nuclear matter as a

function of density

p( fim -3 ) Tolr;];',n\irgy Pol}.\ljnsrgy Kinﬁf,n\(;rgy p(fm =3 ) Totl.\?nsrgy Polﬁnérgy Kin ];En\t;rgy
Density (MeV) (MeV) (MeV) Dty (MeV) (MeV) (MeV)

0.01 0.51657 -3.56805 4.08764 0.21 -13.58950 | -49.30824 | 41.19925
0.02 0.12196 -6.57212 6.72132 0.22 -12.90494 | -50.61014 | 43.65940
0.03 -1.75476 | -10.55439 | 8.88308 0.23 -10.74015 | -53.97984 | 49.68146
0.04 -3.07755 | -14.01034 | 11.10621 0.24 -9.84579 | -49.51716 | 46.61423

0.05 -4.59480 | -17.03785 | 12.73923 0.25 -8.18015 | -50.43835 | 49.71531

0.06 -6.00842 | -20.79842 | 15.24023 0.26 -6.18196 | -49.45341 | 51.25565
0.07 -7.50641 | -23.96694 | 17.09342 0.27 -3.69219 | -49.72471 | 54.55634
0.08 -8.74660 | -26.68039 | 1B.77688 0.28 -0.98018 | -50.02049 | 58.11602
0.09 -10.12231 | -29.40210 | 20.35867 0.29 2.22632 | -44.64206 | 56.50796
0.10 -11.26877 | -32.10169 | 22.17168 0.30 5.60101 | -44.55496 | 60.37118
0.11 -12.48090 | -34.82090 | 23.96136 031 8.93460 | -43.08104 | 62.81800
0.12 -13.38560 | -36.52438 | 25.06420 0.32 13.29550 | -42.08761 | 66.78393

0.13 -14.22610 | -38.59986 | 26.62366 0.33 32.89046 | -60.85293 | 105.75378
0.14 -14.93340 | -41.18732 | 28.84771 0.34 24.40687 | -27.52648 | 64.56423
0.15 -15.34160 | -42.84453 | 30.45917 0.35 28.02116 | -26.52689 | 67.81017

0.16 -15.59880 | -44.36715 | 32.10475 0.36 33.16407 | -29.32822 | 76.39621

0.17 -15.66470 | -46.05091 | 34.11980 0.37 40.27195 | -19.55187 | 74.37996
0.18 -15.55380 | -48.39241 | 36.98577 0.38 46.01228 | -23.07687 | 84.30776
0.19 -15.17280 | -48.53123 [ 37.93499 0.39 53.76104 | -8.00477 | 77.65702
0.20 -14.65840 | -50.14799 | 40.51069 0.40 59.98947 | -6.18824 | 82.75149

Table I11. Equilibrium density, binding energy and Fermi momentum were obtained by
various authors with different potentials and techniques for nuclear matter.

p(fm?) E(p)MeV) | k (fm™)
Equilibriub Density | Binding Energy |  Fermi it Refemee
Momentum
0.24217 -17.2 1.53 Reid v, Potential Day (1978) [11]
0.1589 -16.0 1.33 Urbana v,, Potential Lagaris and
Pandharipande (1981)
[13]
0.18553 -15.0 1.4 Walecka Model Horowitz and Serot
(1983)[17]
0.27695 -17.8 1.6 Paris Potential Day and Wiringa
(1985) [18]
0.16114 -16.237 1.33 Thomas-Fermi Model | Myers and Swiatecki
(1998) [19]
0.192 -13.74 1.42 Urbana v,, Potential | Atav and Ogul (2000)
(4]
0.1696 -15.59 1.35 Urbana v,, Potential This Study
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Figure I. Binding energy per nucleon for  Figure IL Binding energy per nucleon for
the nuclear matter as a function the nuclear matter as a function
of density. of Fermi momentum.

5. CONCLUSIONS

Nuclear matters are hypothetical systems of nucleons interacting without
Coulomb forces. Symmetrical nuclear matter is composed of equal numbers of neutrons
and protons. It is translationally invariant with a fixed ratio of protons and neutrons. In
the ground state of the nuclear matter 4 nucleons can go into each spatial state so the
degeneration number g for nuclear matter is 4. The goal of nuclear matter theory is to
obtain empirically known bulk properties, such as the binding energy, equilibrium
density, symmetry energy, incompressibility, etc., starting from the underlying two-
body interactions [12]. In this paper we have interested in the ground states of the
symmetrical nuclear matter and as mentioned before we will consider a system of N
nucleons confined in a cube of side L with periodic boundaries.

It is well known that three and more body interactions are very important in
dense systems like nuclear matter. Using only the two-body interactions gives very
large equilibrium densities for nuclear matter [8]. Therefore three and more body
interactions somehow should be incorporated into our calculations. In order to simulate
three and more particle interactions, the strongly repulsive short range part of the

Urbana potential was assumed to depend on l+a’(,o)ﬂj. For symmetrical nuclear

matter, we have obtained the kinetic, potential and total energies per nucleon at
densities between p =0.01 fm™ and p=0.40 fm™ with 0.01 fm” steps. Equlibrium
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density of nuclear matter was obtained to be p, =0.169 fm™ and the corresponding
Fermi momentum kg=1.35 fm™', where the binding energy per nucleon for the nuclear
matter is obtained to be E(p,)=-15.59 MeV. Binding energy per nucleon for the
nuclear matter as a function of density and Fermi momentum are given in Figure I and
Figure II respectively. Table Il shows the results, and Table III compares our results

with those obtained by other authors with different techniques and potentials. It can be
seen from this table that our results are closer to the observed values than all the other.
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