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Abstract- In this paper, the equations of motion of a rotating beam encountered in
various mechanical systems are given in the Euler-Newtoian form using four different
dynamic modelling approaches. These models differ from each other in that they use
different elastic displacements to define the state of deformed beam, i.e. the longitudinal
and transversal deflections model, the axial and transversal deflections model, the axial,
transversal deflections and slope angle model, and finally the transversal deflection with
normal force model, which are abbreviatedly denoted by the UVM, the SVM, the
SV@M, and the VNM. Following a brief discussion about geometric relationship among
three linear elastic displacements,—that is, the longitudinal u-, the transversal v-, and the
axial s-displacements— geometric stiffening effect, and the choice of spatial functions
consistent with boundary conditions to discretize equations of motion, simulation results
found from these models are presented in graphics, and comparatively evaluated. It is

concluded that the SVM and the SVQM is most reliable models provided that the
comparison functions for axial displacement s are the eigenmodes of a fixed-free,
longitudinally vibrating rod. The VNM appears to be a prudential model, because it
always gives results above those obtained by the SVM.
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1. INTRODUCTION

Most engineering applications include flexible bodies rotating about a fixed or moving
axis in space such as robot arms, hard disc drivers, solar panel carriers or antennas of
satellites, and helicopter blades, which operate at very high speeds. Thus, they may
considerably deform so that the whole system cannot function properly or may
sometimes fails completely. In this regard, accurate modelling and analysis of
mechanical systems or their critical parts have become indispensable. There has been
very intensive work on the subject in last two decades under the headline “rotating beam
dynamics” which can be classified into two main groups. The first group of papers deals
with the motion control of flexible beams using simple dynamic models because they
operates at speeds lower than first natural frequency [1,2,3,4] while the other group of
papers concentrates on developing possibly accurate and realistic dynamic models [5-
14]. Among them, there are a few detailed treatments on modelling of flexible single or
multibody system [9,12,14]. The use of a rotating coordinate system attached to the
undeformed imaginary beam is a common practice for many authors. To define the
deformed position of a rotating beam two of three elastic displacements, i.e. the
transversal, the longitudinal and the axial displacements, which are usually denoted by
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v, u and s, can be employed. Since the equations of motion are generally non-linear and
coupled they can be solved by discretization. Hence, the appropriate choice of
comparison functions is significant. Another point to be considered in the modelling of
rotating bodies is the geometric stiffening due to centrifugal forces. Although these two
issues are well known by relevant research community, some principal errors are
observed in the literature if rarely. For instance, in [12] the same set of generalized
coordinates are used for all elastic displacements. In the models proposed in [13]
geometric stiffening terms do not appear in the equations derived. Furthermore, a
comparative study regarding dynamic models used so far has not published yet, to the
authors’ knowledge. The present paper primarily aims to compare and discuss different
models used for dynamic analysis of a rotating beam. To this end, first the relationship
among there elastic displacements will be given and discussed. Then the results of
simulations made by a MATLAB code will be presented in graphics and evaluated.

2. EQUATIONS OF MOTION

Consider a beam rotating about z-axis as shown in Figure 1. It is assumed that the beam
is homogenous and uniform. Its length, cross-sectional area, second moment of area,
density and Young modulus are L, A, I, p, and E, respectively. 6 is the rotation angle of
the beam measured from a fixed frame. Its first and second derivatives with respect to
time, i.e. 6 and 6 are the angular speed and acceleration of the beam. Time derivatives
are denoted by dots over the letters.

w

o

Figure 1. Rotating beam in its deformed position.

The motion is assumed to occur in the horizontal plane, so that the potential of beam
weight can be disregarded. In the study of motion a rotating coordinate system xQOy will
be used. The XOY-system is a fixed coordinate system. At any time ¢, the linear relative
displacement of a generic point P which is initially at x on the beam can be decomposed
into two components # and v along x and y axes, respectively, which are called
longitudinal and transversal elastic displacements as referred to the undeformed state of
beam. However, the axial elastic displacement s can also be used in the equations of
motion instead of u. The axial displacement s is measured on the median line of the
deformed beam. The differential relationship among these three elastic displacements is
as follows:
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(ds+dx) = |(d@x+dul +av?] (1)
or in the derivative form

(3] 3]

The rhs of equations (2) is usually expanded into a binomial series, and one holds up to
the first three terms. Thus, the following approximation is obtained:
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If the shear force effect is to be included in models then the number of elastic
coordinates will be five, i.e., u, v, s, ¢ and 7. Here ¢ and y are bending rotation and shear
angle, respectively. It is well known that there is also a relation among v, @ and ¥, as
follows:

dv

dx a1 @
There are five elastic coordinates against two relationships (equations (2) and (4)).
Hence, three of them can be selected main dependent variables. The parameter that
describes the rigid body motion of beam is 6. Assume that the actuator has such a torque
characteristic that a desired motion program 6(z) can be provided. Then, to obtain only
the equations of motion associated with u, v, @ or s, v, @ will be sufficient.

The conventional procedure to derive the Lagrangean equations of motion will not be
given here. The coupled equations of motion related to u, v and ¢ are obtained as
’
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while those related to s, v and ¢ are as follows:
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where the dots and primes over letters, parentheses or brackets, denote the derivations
with respect to time ¢ and position x, respectively. Since bending moment has more
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dominant effect on the transversal deflections than that of shear force for long beams, it

will be useful to re-derive the equations (5 to 7) and (8 to 10) assuming that ¢ = v*.
Thus, the equations related to # and v become as follows:

ii—u6.2—2f/9.—v9.—£(u'+lv'2) =x6° (11)
ol 2

9+2d9—v92+ué+£1—vm—1i\7”—£ u'+—]—v/2 V| =—x6 (12)

JoX| A p 2
while those in s and v are found as :
X e ) X : " "
s—ij’v'zdx -6° s—ijv'zdx —201'/—0v——E—s”=92x (13)
2y 29 P

s £ 7 i % & vs n ” , N s
V+260 s—ijvzdx =yl 4 s—ifv2dx +ﬂv —Iii} —E(sv)=—x6 (14)
H 1) pd" 4o

The effect of rotatory inertia can be abandoned by dropping the term (7,,/A4)V” in

equations (12 and 14). Henceforth, the model given by equations (11-12) will be called
the (u-v)-model or the UVM, the model based on equations (8 to 10) the (s-v-¢)-model

or the SVOM, and finally, that of equations (13-14) the (s-v)-model or the SVM. It is
observed that equations (13) and (14) can be simply obtained by replacing the terms
related to u and their derivatives in equations (11) and (12) with its counterpart given by
equation (3). Some authors use only one equation of motion for transversal vibrations in
the form of

-ve?+ 2Ly Lgr (Nv) = —xd (15)

pA A
instead of the coupled (u-v)-model [6]. In order to take the geometric stiffening effect
into account, the transversal component of the normal force included by rotation is
included in equation (15) via the term (Nv’)". The counterpart of this term in the (u-v)-

model is EA (u'+ 2 2). Note that the coefficient of the term in equation (11) is E/p but

not EA, because all the terms of that equation are divided by p A. Since the u deflections
are assumed to be very small under the practical operating conditions, the normal force
N in equation (15) is sometimes replaced with the centrifugal inertia force for
undeflected beam, which will be denoted by Ny , as follows:

N,, =%pA92 (L2 —x%) (16)

In the following sections of the paper, this model also will be called the (v-N)-model or
the VNM.

Before the presentation of numerical results some terms in the equations of motion will
be briefly discussed because they determine whether numerical solutions diverge or not.

The term of —v6? appearing in equations (6), (9), (12), (14) and (15) represents the so-
called geometric softening. This term causes the divergence of solution at the angular
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speeds higher than the first bending frequency which can be differ from each other
depending on comparison/admissible function chosen. Whichever method is used, either
the Galerkin or the assumed modes method, this is the case. On the contrary, the term

E

& 1 2 g . .
= ~Hu + Ev . )v } in equations (6) and (12), and the term
o

_E (s/v/) in equations (9) and (14) present the geometric stiffening, and
p

ensure the convergence of numeric solutions. Another noteworthy point that the system
becomes stiffer in the mathematical sense when the modal functions of a fixed-free
longitudinal vibrating rod are used as shape functions for u in equations (11) and (12).
Thus, the deflections u and v smaller than that of they must be are obtained.

The equations of motion associated with the SVM, UVM, SVQOM and VNM were re-
derived using the assumed modes method. The sets of coupled, ordinary differential
equations obtained were solved by means of an odesolver ODE15s that is also suitable
for stiff equations and a built-in code in MATLAB

To make a comparison among the models presented so far with regard to their range of
validity and the order of results produced by them simulations were carried out

choosing a specific program for (1) which is also used in [9,12,14]. The coming

section will be devoted to the presentation, comparison and discussion of numerical
results.

3. NUMERIC RESULTS AND DISCUSSION

The simulations were carried out based on a cycloidal time function for angular speed ®
in the following form:
MY, L 0<(<T
T 2nm T
W=, t>T

amn

where @y denotes the maximum angular speed of beam when ¢ 2T. Then, the angular
acceleration ¢ varies as follows:
T P £

o= 0= B [1 cos = ) 0<t<T (18)

o=0 t>T
The graphics of w and o are plotted in Figure 2a and b. The magnitude of angular
acceleration causing transversal deflections is determined by two parameters, i.e. @y and
T while, on the other hand, the angular speed given by (17) is the only source of
geometric stiffening. Either kinematic entity affect the dynamic behaviour of beam

oppositely. It is obvious from (18) that increasing T for a fixed @y reduces angular

acceleration which leads to a decrease in transversal displacements. At first glance, it
can be thought that same transversal deflections would occur as long as the ratio of wy/T
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Figure 2. Variation of a) angular speed and b) angular acceleration of beam
kept constant no matter either wp or T is increased or vice versa. However, this is not the
case because the geometric stiffness changes proportional to @y squared, which can be
observed in the plots given below. That both effects, i.e. the angular acceleration and the
geometric stiffness, are determinant for elastic displacements should always be
accounted for.

To generalize the results of analysis the equations of motion were made non-
dimensional by dividing elastic displacements u, v and s by the length of beam L, and

12
_y ; « 1 . . ;
multiplying the real time # by »" = F[—AJ so that the dimensionless coordinate and
Jo
displacements are now x/L, w/L, v/L, s/L as the non-dimensional time 7 is than T=w't.
Note that the slope of elastic curve does not alter according to these new definitions.

In order to investigate the effects of @p and T, one of these parameters was changed, as
the other was held constant. Both parameters were replaced their non-dimensional
counterparts @, and 7" so that W'=wy/o" and T*=w'T. The first bending frequency of
non-rotating cantilever is CO}‘:(I.875)2 o = 3.51a)*, thus the non-dimensional first
frequency w;'=w/w’=3.51. To compare the dynamic models described above, three
different values for " were chosen:

oJZ;:O.BS:%(nf, Wy =351=0; and wj=7=2w}.

These values correspond to one tenth of, itself and twice the first bending frequency.
The values selected for T° were 8.1, 16.2 and 32.4 to compare the results with those
given in [14]. Using the physical parameters given in that paper one obtains ©'=1.08.
When 7" values are divided by ®'=1.08 their counterparts in actual time scale are found
as T=7.5, 15 and 30 seconds. Note that w," values chosen are lower than second non-
dimensional bending frequency oy =22.

The plotted curves can be qualitatively compared with each other in two ways since
there are two parameters, i.e. @,” and T". For instance, keeping 7" constant, it can be
evaluated how the order of @" affects the results and vice versa. In Figures 3 to 5, the
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deflection curves of tip point corresponding to @y'=0.35; 3.51 and 7 are plotted for the
fixed value of T'=32.4. If one assumes the maximum normal force due to rotation as 1
unit for @y =3.51, it will be hundred times less than this when @p'=0.35, and four times
larger when wy"=7. At a speed of as low as 0.35 all the models, especially the SVM and
VNM, give almost the same results for transversal deflections, Figure 3a. However,
longitudinal displacements remarkably differ from each other as shown in Figure 3b.

In fact, the UVM is expected to give smaller displacements relative to the SVM for the
reasons explained previously. The difference among three models begins to be more
obvious when a)o*=3.51, Figure 4a. The curves in Figure 5a also follow the same

pattern.
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Figure 3. Non-dimensional a) transversal deflections and b) longitudinal deflections
of the tip point found by different models for wy'=0.35, T'=32.4.
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Figure 4. Non-dimensional a) transversal deflections and b) longitudinal deflections
of the tip point found by different models for wy'=3.51, T'=32.4.
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Figure 5. Non-dimensional a) transversal deflections and b) longitudinal deflections
of the tip point found by different models for w, =7, T'=32.4.

Another notable point is that the transversal deflection curves of the SVM become
asymmetric over the time span T~ while the VNM given the maximum tip point
displacement nearly always at 7=7"/2. The reason for this is that the effect of transversal
displacement on the normal force is not included in the VNM. The u-displacements are
also plotted in Figure 4b and 5b. As expected, the longitudinal displacement of tip point
is always smaller than that obtained by the SVM.

In Figures 6 to 8 the similar curves for T"=16.2 are presented. For @y'=0.35 the tip point
deflection curves obtained by the SVM and VNM are nearly coincident. However, the
curve of the UVM goes away from the others in comparison with the curves for T'=32.4
because the angular acceleration gets larger as 7~ becomes smaller. The asymmetry of
the curves by the SVM is observed in these figures as well. Finally, Figures 9 to 11
show the curves for T°=8.1. It can be clearly seen in these figures that the curves
separate from each other considerably.

-4l 5 o i P, = e 20 . 35 0 5 10 15 ®) 20 2 Y " 35
Figure 6. Non-dimensional a) transversal deflections and b) longitudinal deflections
of the tip point found by different models for wy'=0.35, T'=16.2.
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Figure 7. Non-dimensional a) transversal deflections and b) longitudinal deflections

of the tip point found by different models for w,'=3.51, T"=16.2.
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Figure 8. Non-dimensional a) transversal deflections and b) longitudinal deflections
of the tip point found by different models for wy'=7, T'=16.2.
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Figure 9. Non-dimensional a) transversal deflections and b) longitudinal deflections
of the tip point found by different models for w, =0.35, T"=8.1.
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Figure 10. Non-dimensional a) transversal deflections and b) longitudinal deflections
of the tip point found by different models for w, =3.51, T'=8.1.
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Figure 11. Non-dimensional a) transversal deflections and b) longitudinal deflections

of the tip point found by different models for w, =7, T'=8.1.

In addition to the qualitative examination made so far, to enable one also a numerical
evaluation of the results the tip point deflections obtained from each model are
summarized in Table 1 provided that the deflection by the SVM is assumed as 1 unit (or
hundred percent).

Table 1. Tip point deflections found by each model with respect to different @, and T"
values for cycloidal angular speed program
(All deflection values are divided by that of the SVM)
E3

T 32.4=300" 16.2=150" 8.1=7.50"

odels

.. UVM | SVM | VNM | UVM | SVM | VNM | UVM | SVM | VNM
0

0.35=0.1cy | 0.950 | 1.000 | 1.000 | 0.875 | 1.000 | 1.000 | 0.756 | 1.000 | 1.000

3.5=w; 0.745 | 1.000 | 1.241 | 0.568 | 1.000 | 1.240 | 0.400 | 1.000 | 1.217

T=20r 0.735 | 1.000 | 1.493 | 0.526 | 1.000 | 1.479 | 0.363 | 1.000 | 1.485
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In Table 1, the values obtained from the SVQM do not appear because they are in full
agreement with those of the SVM, which is caused by choosing a very large slenderness
ratio, i.e. L/i where i is the gyration radius of cross-sectional area, and L is the length of
beam. For example, in [14], this ratio is about 447. The reason for taking such a value
for slenderness in the computations is to make a comparison between the results found
here and in [14]. However, to examine when shear effect becomes dominant another
analysis was carried out using the dimensional physical parameters. It is observed that
the relative error defined by

deflection by the SVOM —deflection by the SVM N
deflection by the SVOM

100

varies from 2% to 14% while the slenderness ratio is decreased from 20 to 4. For a
beam with solid circular cross-section a slenderness equal to 20 means L=5D where D is
cross-sectional diameter of beam. As a consequence, for beam with 1/i >20, the SVM is
quite reliable model.

As visualization of Table 1, Figure 12 shows how the tip point deflections found by
each model vary with respect to different @, and 7" values in surface plots.

0:15
- UVM
(VL) 1 SVM
o1 1 VNM
0.05

g e 40
10 o 20 T )
Figure 12. Non-dimensional tip point deflections found by each model
with respect to different (o and T" values in surface plots

The analysis has been repeated by using another motion program for angular velocity to
examine how to affect the overall dynamic behaviour of beam. To this end, a parabolic
law defined below was used:
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2
t
m:ZmO[?J 0<t<T/2
2
m:m0{~z(i] +4(ij—1} T/2<t<T (19
T i
W=w, (>l

o =20 0<t<T)2

il
a:%(T—t) T/ LT (20)
a=0 = T

The maximum value of angular velocity is 2awy/T, so the same as the cycloidal program
has. Although the results are not presented as figures here due to limited space, they are
given in Table 2 similar to Table 1. The results have same tendency as in the case of
cycloidal speed function, that is, the UVM gives smaller deflections and the VNM
produces bigger deflections in comparison with those obtained from the SVM.

Table 2. Tip point deflections found by each model with respect to different @y and T"
values for parabolic angular speed program
(All deflection values are divided by that of the SVM)

£

T 32.4=300" 16.2=15w" 8.1=7.50"

odels

- UVM | SVM | VNM | UVM | SVM | VNM | UVM | SVM | VNM
0

0.35=0.1e; | 0.950 | 1.000 | 1.000 | 0.880 | 1.000 | 1.000 | 0.817 | 1.000 | 1.000

3.5=wm; 0.833 ! 1.000 | 1.362 | 0.640 | 1.000 | 1.416 | 0.448 | 1.000 | 1.314

T=20; 0.873 | 1.000 | 1.676 | 0.629 | 1.000 | 1.692 | 0.425 | 1.000 | 1.531

Finally, the results obtained by the models studied in this paper, based on input data in
[14] and those given in [14 ] will be presented for the purpose of comparison. Also in
[14], the Euler-Newtonian equations of motion are derived. These equations are solved
by using the finite element method along with the Galerkin procedure. Any information
about the interpolation functions is not given but it is strongly possible that the usual
Hermite polynomials were employed. To remove the non-linear coupling between the
equations for u and v due to the axial force, the authors of [14] replaced it with the
centrifugal force for the case of a rigid beam. The graphics in [14], which for the
longitudinal u, the transversal v deflection and the slopes @ of the tip point, are repeated
in Figure 13a, b and c.
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Figure 13. Longitudinal deflection (a), transversal deflection (b) and slopes (c)
of the tip point given in [14]. The horizontal axis shows time.

345

1
g2 ('3 0”
v
0
Al e
0.1
5 0.2}
0.3
-10f S
-0.5
-5
0.6
205 5 10 15 20 25 30 0 5 10 15 20 25 '
(a) (b)
0.5
@ (degree)
0
-0.5
.1 F
1.5
2F
2.5
3}
-3.5
0 5 10 15 20 25 30
(c) 4

Figure 14. Longitudinal deflections (a), transversal deflections (b), and slopes (c)
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of the tip point found from the SVQM (based on the input data given in [14] ).
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Figure 14 shows the results obtained from the SVQOM. From the comparison of these
figures with Figure 13, it is clear that the maximum values of v and ¢ do not coincide
but are of the same order. The reason for this was explained above. This is a different
approach that leads to a model representing a transition from the VNM to the UVM.

4. CONCLUSIONS

In this paper, four dynamic models that have been used in many papers on rotating
flexible beams were presented and examined. One can summarize some basic
conclusions drawn from this study as follows:

In comparison with the SVM, the UVM gives relatively small values for both
transversal and longitudinal deflections. In contrast, the VNM yields larger values then
the SVM. In the UVM and in the SVM, the same spatial functions for u and s,
respectively, were used. These functions are the eigenmodes of a fixed-free,
longitudinally vibrating rod. It is obvious that the u-displacements are forced to satisfy

the boundary condition EAg—u(L,t):O at free end of beam while in fact this is not the
X

case. In other words, the system is subject to mathematical constraints if not physically.
Thus, the system apparently becomes stiffer and the deflections get smaller. To
compensate this principal error, an algebraic constrain must be introduced for free end
of beam using equation (3) as Ryan et al did in [9].

The VNM is quite simple model, but it does not consider the interaction between
transversal deflections and centrifugal force. The SVM appears to be the most reliable
model, because it is consistent with physical conditions under which the beam operates.
At high speeds, the VNM can be evaluated as a prudential model.
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