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Abstract- In the present paper, we apply the complex variable method (Cauchy
method) to derive exact expressions for the Goursat's functions for the boundary value
problem of infinite plate weakened by a curvilinear hole. The hole is conformally
mapped on the domain outside a unit circle by means of a general rational mapping
function. Also the stress components, when an initial heat is uniformly flowing in the
perpendicular direction of the hole, are obtained. Some applications are investigated,
The interesting cases, when the shape of the hole takes different famous formulas are
included as special cases. The work of many previous authors can be considered as
special cases of this work.
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LINTRODUCTION
Problems dealing with isotropic homogeneous perforated infinite plate have been
investigated by many authors [1-10]. Some of them [6,7,10] used Laurent's theorem to
express each complex potential as a power series, others [1,5,8] used complex variable
method of Cauchy type integrals to express the complex potential in the Goursat's
functions form.

Consider a thin infinite plate of thickness h with a curvilinear hole C where the
origin lies inside the hole conformally mapped on the domain outside a unit circle vy by
means of a rational mapping function z =c¢w({), subject to the condition z'({) does

not vanish or become infinite outside a unit circle v, Cmei‘u ., (O y £2m), if a heat
©=gqy, is flowing uniformly in the direction of the negative y-axis, where the
increasing temperature © is assumed to be constant across the thickness of the plate i.e.
8 =6{x, y), and g is the constant temperature gradient. Here, we take the x-axis to be

the horizontal axis which is perpendicular to the y-axis. The uniform flow of heat is
distributed by the presence of an insulated curvilinear hole C, and the heat equation
satisfies the relation
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where #n is the unit vector perpendicular to the surface.
Neglecting the variation of the strain and the stress with respect to the thickness
of the plate, the thermoelastic potential @ satisfies the formula (see[9])

Vi = (1+0)ad, 2)
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where ¢ is a scalar presents the coefficient of the thermal expansion and v is Poisson's
ratio. Assume the faces of the plate are free of applied loads.

It is known that {1] the first and second boundary value problems in the plane
theory of thermoelasticity are equivalent to finding two analytic functions, ¢1(z) and

y1{(z) of one complex argument z=x +iy. These fupctions must satisfy the boundary
conditions

Koy (1) — 19, @) —yri (1) = f (1), {3).
where for the first boundary value problem K =-1, £(z) is a given function of stresses,
while for the second boundary value problem K =k >1, f(¢) is a given function of the
displacement, & is called the thermal conductivity of the material and ¢ denoting the
affix of a point on the boundary,

The formula (3) for the first and second boundary value problems, respectively,
take the following form

ob 1

010 + 19y (1) + (1) ~—~—+z—é;+~éwf[X(s) ~Y(s) ks +e, 4)
kcbl(r)wzcbi(r) wl(t) u+w~~~€-)§3+za_q1 (5
ox dy

where the applied stresses X (s) and Y(s) are prescribed on the boundary of the plane,
s is the length measured form arbitrary point, u and v are the displacement
components, G is the shear modulus, and @ represents the thermoelastic potential
function. Also, here the applied stresses X (s) and Y(s) must satisfy the following (see
oD

dx dx
ny _— ¥y T

ds ds
where 0,,., C yy and o, are called the stress components and given by (see [9])

O e + Oy =4G1'(2) + §(2) ~ 20,

, 20 % _ 2% _ e
Oyx = Oyy +2i0,, =2G[ e > +2i axay}—‘*(;[zq) (D) +y (Z)], (6)

d d
X(s)zoxx;%w Y(s):cryx—&i}——a

1+v . . .
where A = 05—2- is the coefficient of heat transfer.

A very powerful method for solving the thermoelastic problems makes use of
conformal mapping to reduce the problem for any given region whose boundary C
satisfies certain regularity conditions, to corresponding problem for a region having a
unit circle. In terms of the rational mapping function z =c¢ w({) where ¢ >0 and w'({)

does not vanish or becomes infinite for |€;} >1, then the infinite region outside a close
contour may be conformally mapped outside the unit circle v.

The two complex potential functions ¢(z) and y;(z) are written in the form
(see[9]) ' '
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where S,., § y are the components of the resultant vector of all external forces acting on

the boundary I", I * represent the stresses at infinity, generally complex, &(L), yw({) are
single value analytic function within the region outside the unit circle vy and
(o) = (eo) = 0, which means that, ¢(z) and y(z) are homomorphic functions at
infinity. It will be assumed that T" = [ and Sy =8y, =0 for the first boundary value
problem.

The rational mapping z=c¢w({) maps the boundary C of the given region
occupied by the middle plane of the plate in the z-plane onto the unit circle ¥ in the {-
plane. Curvilinear coordinates (p,0) are thus introduced into the z-plane which are the

maps of the polar coordinates in the § -plane as given by { = pe'®
Using w({) in (3), we have

Koyle W)~ ({é) @1 c w(§))- 1ic w(§ )W fle w®)). 9

Muskhelishvili {10} used the transformation z:cw(C)mc(Z;erE; ) in (9) when

K =-1, for the first boundary value problem, and K =k =y = );jjp' >1 for the
1

second boundary value problem, A, i are called the Lame's constants, while % is called

. Muskhelishvili constant, for solving the problem of stretching of an infinite plate
weakened by an elliptic hole. This transformation conformally maps the infinite domain

bounded internally by an ellipse onto the domain outside the unit circle IC[ =1 inthe -
plane. Also the application of the Hilbert problem for a stretched infinite plate

weakened by a circular cut is discussed in [8].
The following rational mapping functions

C+mICW , , see[S]) (10)
1- ”1?1
o LrmC eml? Iy < 1, see[1,4]) (11
1- ”15;_
_ Lrml | <1 £=1.,p, seel3)  (12)
[~ f’llz;w
Lr3ime?

» see[2]) (13)

b
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where ¢ >0, m's and n's are real parameters restricted such that z'({) does not vanish
or become infinite outside v, are used by El-Sirafy and Abdou [5], Abdou [1], Abdou
and Khar-Eldin [3} and Abdou and Badr [2] respectively in (9), to solve the first and
second boundary value problems of the infinite plate with a curvilinear hole C in the
same previous domain. Abdou and Salama [4] used the rational mapping (11) in Eq.(9)
to obtain the stress components for the first and second boundary value problem in the
thermoelastic infinite plate weakened by a curvilinear hole C.

In this paper, the complex variable method has been applied to obtain the two
complex analytic potential functions, (Goursat's functions) () and w({), the three

siress components o, G, and &, for the first and second boundary value problem
in thermoelasticity of the same previous domain, for an infinite plate weakened by a
curvilinear hole C conformally mapped outside a unite circle v by the rational mapping
function

Ctml 8+ mpH
A-m -t

when a heat © =gy is flowing uniformly in the negative direction of y-axis. The
increasing temperature © is assumed to be constant across the thickness the plate. Here,
in (14) m's and n's are real parameters restricted such that w{{) does not vanish or

become infinite outside the unit circle y. The interesting cases when the shape of the

hole is an ellipse, hypotrochoidal a crescent or a cut having the shape of a circular arc is
included as special ones. Holes corresponding to certain combination of the parameters
m's and n's are sketched (see Figures 1-6). Some applications of the first and second
boundary value problems of the infinite plate with a curvilinear hole having several
poles are investigated.

z=cw(()=c (c>0, men, {=L..p) (14

2.THE METHOD OF SOLUTION

In view of the definition z = x+iy = peie and the rational mapping function of

Eq.(13), the solution of the boundary value problem of Eq.(1) is given by
2

)
@mq{lmz+m;;w%mﬂ. (15)

In determining the thermoelastic potential of Eq.(2), the uniform heat may be
disregarded. So the formula (2) takes the form

Zsin?0

V20 = a1+ v) 2 (16)

Imz

Using the definition of V2® in polar coordinates and solving (16) in this domain, we
have

: 2 _
B(z,2) = @fmxmzin(m). (17

Hence the value of ® and @ are completely determined.
W&
w'(§)

The expression can be written in the form
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(2)

v+
vy

= lé»min +an

(j=1,2;“0=1+—é) (19)

and B(L) is a regular function for 1@] >1.
Using (7), (8) and (18), the boundary condition (9) can be written in the form
K((0) - () (0) ~ y«(0) = fx(0), (20)
where & =¥ denotes the value of £ on the boundary of the unit circle v, while

W0 =wQ+BOQ),
£ = F(O) - ck;ﬂ: + T NO© +BO))

- S, -
N =l - 5
Q== k)C
F) = £ = fle wb)). (1)
Assume that the derivatives of (o) must satisfy Holder condition.
Our aim is to determine the functions §() and () for the various boundary

value problems, from (20). For this multiplying both sides of (20) by 1 do then

2ni 60—
integrating the result around the unit circle Y and evaluating the integrals thus
formulated by residue theorems, one has

KOO+ 0‘(">¢ o = eI 4 40+ =L NP
2y i (22)
P Ny ™, (v = 1+3-)
{-ny! ¢
where
A = - 3¢ [P (oMo (23)
27{.17]:0 v

Using (18) in the integral term of (22) we assume
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where b's are complex constants to be determined.
Hence, we have

sl J(cb +N (@Y 1))
KN = AQ T - § —
=t hyT =G
Differentiating (25) with respect to £, and using the result of ¢'(o) in (24), we obtain

cKb; + cn?Fm + .afjlzj{(:z):,T + N(n})wl)} =-An;), (j=12).

(25)

(26)
The general solution of (26) is
_KE;~hd; E; J
’ c(K2 ~n3d3)
where
=—A(n))~en; VT d N,
and
dj=n;"" (1 ~nay Tz : 27)
From the boundary condition (20), w({) can be determined in the form
K h -
(@) =5 QF ""(,C@) 00 D)+ — g
, 1- }"li (: (28)
M5 g+ BO) - B,
1- 1’12 t_,
where L
G (0) = (EB’(C) +N(8),
F (0)
B =5 [~
: "
g L@, 29)
2w, ©

't

Using (15), (17), (25) and (28) in (6) after some derivatives and algebraic
relations, we have

Oy = ZG{M v( +dzz+ 7 )Imz + Rel20/(0) - M(C»z))},
0y =26[ 12 + ) mz + Ree )+ M LD

6,y = 262~ 20m 92 Re 2+ ImM (L, D)) (30)
where |
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MEE = {c (-0 }@”(C) By O L g2

w' (L) 27“C(1+/) w'(8)
w(C) h CZ v-1
PO+ NOH B Q)+ ¥ ——r5d:(n; ), (BD
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_ (1+ U)i"(}z
4fezf
3.SPECIAL CASES
(i) For my = n, =0, we have the rational mapping function
Lotmb m!
. =12,
1 ncwe Y

and the results of (26), (28) are in agreement with the result of Abdou and Kar-Eldin[3].
(ii) For my = ny = ny = 0, we have the rational mapping function

z= C(C+m(;—€), 0sm <%)

the main reason of interest in this mapping is that the general shapes of the
hypotrochoids are curvilinear polygons, for £ =1, our basic functions (26), (28) agree
with (82.4", (82.5", (83.10) and (83.11) of Muskhelishvili's result obtained for the
elliptic hole {8]. For £ =2, we have a curvilinear triangle, for £ =3 curvilinear square,
and hence approximate region of physical interest (see [6]).
(iii) For my = my = ny =0, we have the transformation

G

¢t

1
{c>0, Enl < ————)
I-n
which leads to a certain regular curvilinear polygon with £ sides and £ round vertices

which become cusps when 1nl < «iw% (see Figures 2,3.,4).
_|_
(iv) For ny = m = 0 we have the rational mapping function

z=c@rml ™ +ml?h, (OSm; <L j=120=12,.,p)

the physical interest of this map comes from the following:

" A circle of radius C when my = my =0,
® An ellipse when my =0, £=1.
* A square with rounded corners with diagonals parallel to the x and y axis

when my = 0, my =about 0.1, £=1. The same square with its sides parallel to the
axis's when my =0, my = about -0.1.

= An ovaloid when my = about 0.3, my = about —0.05 and £=1.
More information and applications on technology for these special cases are found in

[6].

(v) For my = ny =0, £ =1, we have the rational mapping function
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C_,+m§ 1

~n{L
and the results of (26), (28) are agree with the result of El-Sirafy and Abdou [5].
(vi) For my =ny =0, { =1 and my = -1 the boundary C degenerates into a circular cut
and (26)-(28) reduce to

cf:l I—nz KE +nE

- Ko = A(L) ~ + N+ s 32
o) = A E C~n( e (32)

kI w(t™h (1-n )C
B B, 33
W) = BE) + WD OOy = " D (33)

where _
E=n?(N-c-AEh,
-¢!

=22 34
w(l) - (34)

(vii) For my =ny =0, £ =1 and values of m vear -1, the edge of the hole resembles
the shape of a crescent.

(viii) For my =ny =0, 4 =1 and m = —n?* the hole 18 bounded by the circle [z - nc[ =0
and the functions () and y({) becomes

KRG = C 35)
W) = B(C)+ffg( n+ w0 - B. (36)

(ix) For ny, =0, £ =1, we have the rational mapping function

C + mlf; + 2
1-n{™!
and the values of ¢(8) and w(£) of (26), (28) respectively, in this case, agree with the
work of Abdou [1].

4. EXAMPLES
1. Curvilinear hole for an infinite plate subjected to a uniform tensile stress and flowing
heat:
. P 9

For K =1, r:%, Pe=-Ze 2 0<ps<om, §,=8,=F=0 and O=gy, we
have an infinite plate stretched at infinity by the application of a uniform tensile stress
of intensity £, making an angle © with the x-axis, and a flowing heat in the negative
direction of y-axis. The plate weakened by a curvilinear hole C which is free from
stress, and the two complex functions of (26) and (28) become

Py 2
0O ==+ Y
j=11y C>

?
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o Ph ) 1- EH?(U_I) cos 26 Zn?(u“l) sin 28

-1
W(QZ“C—;CIWV;EEO) 0= (G) + E ”—‘J—Q—E(b (13" hy, (38)

where
00 = 0O+

The stress components ., Cyys ©

(38) in (30).
2. Curvilinear hole having two poles and the edge of which is subject to a uniform
pressure in the present of flowing heat:

For K=~1,8,=5,=I=1%"=0, ©®=gy and f(z)= Pt where P is a real constant.
The formulas (26)-(28) becomes
cP(nll"H} +mgn +mp) . c:P(n%"’”'U +myny + M)

xy can be obtained directly by using (37),

¢(C) = —7 — , (39)
(ny " =0 A-mdXny—ny) (ng =01~ hpdy)(ny —ny)
and
WO =Pl +my + T E Dy ¢ HE gty
W (C 1 - I’Li C (40)
o h?.c.v qt) ( 1- U)
1”“* n2 (:

Hence (39)-(40) give the solution of the first boundary value problem when the edge of
the hole is subjected to uniform pressure P . Putting in (39) and (40) —iT instead of P,
we have the first boundary value problem when the edge of the hole is subjected to a
uniform tangential stress T'. Using (30), the stress components, in this case, can be
directly obtained.

3. The force acts on the center of the curvilinear hole:

In this case, it will be assumed that the stresses vanish at infinity. It is easily seen that
the kernel does not rotate, In general, the kernel remains in its original position. Hence,
one assumes I'=T%= f(7) =0, K =k and © = gy, the Goursat's functions are

. 2 52
I 2 hjn] kf’ljdj(Sx“lSy)- 1+ ]’l d

k(D) = — T ks o—is )] @1
O = Ja W8] ek —niahy ek - hzdz)( D
and
__ M -0, Mt A0 _w(Eh »
y(l) = —— C(E)( 1_@) I;(I)( ) ——L0:(C), (42)
where
+18
o) = Q) -2 (43)

2+ k8
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Therefore, we have the solution of the second boundary value problem in the case when
aforce S,, S, acts on the center of the curvilinear kernel and when a heat is flowing in

the negative direction of y-axis.
5.CONCLUSION

From the above results and discussions, the following may be concluded:
1. In the theory of two dirensional linear elasticity one of the most useful techniques
for the solution of boundary value problems for awkwardly shaped region is to
transform the region into one simpler shape.
2. The mapping function {14) maps the curvilinear hole C in the z-plane onto the
domain outside a unit circle (-plane under the condition w'(() does not vanish or
becomes infinite outside v.
3. The physical interest of the mapping (14} comes from its strong special cases which
discussed here, moreover many new cases can be obtained according to the technology
of the work, where the boundary value problems of the infinite plate with a curvilinear
hole having finite poles are not discussed before.
4. The complex variable method (Cauchy method) is considered as one of the best
method for solving the integro-differential equations (22) taken on closed contour ¥y,
and obtained the two complex potential functions ¢(z) and y(z) directly.
5. Here, we assumed the conformal mapping of Eq.(14), which has two singular points,
ie. we can say that z->e0 at {=ny £=12. Also at infinity we can say that the

function Binf(z,z) is equivalent to the term ©,,y =gy and the thermoelasticity
potential ¢ = (z,Z) is equivalent, at infinity, to the value

- _{(I+vjag -

D (z,2) = ———)——g—zz

So, we can say that the stress components, at infinity, are relative to the

following equations
Oxx + Oy + 20+ )0y = 8GA,

Imz.

3 9? -
Gy = Oy + 4G| = + e (D¢ (2,7) = BGB,
yy XX aZ2 822 531
32 32 B
ny+4iG —a—_‘i‘"’”@- CIDmf(z,z):égGC,
Z

where the real constants A, B and C are related to the stress at infinity.
6. The complex function ¢(z) is considered the solution of the integral equation with
Cauchy kernel

Q)+ —— [K(C,0)P (O)d0 = A'(Q) ~ A (©),
2mi Y

where

w(0) = w() ~ (6 - O)w'(C)
w'(0) ’

k(C,0)=
o w'(o)(o - {)?
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and w({) is given by (14).
7. This paper can be considered as a generalization of the work of the infinite plate with
a curvilinear hole under certain conditions [1-10].
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