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Abstract- The role of the non-Archimedean construct € in the DEA models is clarified.
1t is established that the multiplier (envelopment) forms of DEA models can be
infeasible (unbounded). Sufficient conditions are established for feasibility (bounded
ness) of multiplier (envelopment) forms of DEA models and a method of securing a
global assurance interval fore is provided.
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LINTRODUCTION

Data Envelopment Analysis (DEA), introduced by Charnes et al.|3], is a method
of evaluating relative performance of a group of similar units, called Decision Making
Unit (DMU). DMUSs are essentially perform the same task using similar multiple inputs
to produce similar multiple outputs.

DEA gives a measure of efficiency, which is essentially defined as a ratio of
weighted outputs to weighted inputs. The computation of a weighted ratio requires a set
of weights to be defined and this can be not easy. Charnes et al.'s idea is to define the
efficiency measure by assigning to each unit the most favorable weights.

The traditional CCR models, as introduced by Charnes et al.[3] are fractional
linear programs that can easily be formulated and solved as linear program. Consider n
DMUs, each of which consume varying amount of m inputs in the production of s
outputs. Suppose x; denotes the amount consumed of the i-th input measure and y,

denotes the amount produced of the r-th output measure by the j-th decision making
unit. Let us define :

u,: Weight assigned to output r (r=1,2,...,8)
v, : Weight assigned to input i (i=1,2,...,m)

Then the CCR model in uand v is formulated as follows:

CCR,) Max  Yu,y,

r=1

§ "
8.t Zuryrj—zv‘.xﬁ <0 i=12,...n
=1

r=1
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Zvjxip =1 (1)
i1
u, 2 & r=1,2,...,8

v, 2 & 1=1,2,....m

The dual problem will also be used afterwards:

CCR,) Min 8, —e(3s; + )

fa} ra|

s.t. Zﬁjxij -0,x, +s; =0 i=12,...,m
j=1

SA v, =8l =y, r=1,2,....8

=1 .
4,20 =12, )
5720 r=1,2,....8
s; 20 i=12,....m

Where € is a convenient small number that prevents the weights from vanishing
(formally, & should be seen as a non-Archimedean infinitesimal constant; .on this
subject see Charnes et al.[2]). Potential errors in (and in some cases, the impossibility
of) solving standard DEA models are clarified. It is tempting to represent £>0 by a

small real number such as £=10"%., However, this is not advisable. It can lead to

erroneous results and the situation may be worsened by replacing &€ =107 by even
smaller values, see Ali and Seiford[1].

Therefore in most DEA computer codes, it is not necessary to explicitly assign a
value to €>0. Instead, this is taken care of operationally by using a two-stage
computation, which may be formalized as follows.

Stage 1 accords priority to 8; =Min 6,, subject to (2). The later are dealt with in
stage 2 by incorporating this value of 6; instead of 6, in (2) and by means of objective
function Max { ) 57 + 3. s}

Our purpose in this paper is the correction of Ali and Seiford's technique, to
provide a valid global assurance interval for €.

2. ASCERTAINMENT OF A GLOBAL ASSURANCE INTERVAL FOR ¢
‘Ali and Seiford[1], apply a technique to produce a global assurance interval [0,6 1,

where § = 1/ Max, ., { D" x;}. But this interval is not a valid interval for . In this
section, by means of correction of Ali and Seiford's technique, a global assurance
interval for non-Archimedean infinitesimal ( € ) is provided.

2.1. Value of ¢
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Definition Interval [ 0,0 »1 is called assurance interval associated to DM U, if for each

P
€{0,0 » 1, model CCR, in evalvating DMU , is bounded (or as its counterpart, model
CCR in evaluating DMU , is feasible).

Definition Interval {0,611 is called global assurance interval, if for each DMU ;
(j=1,2,...,n) and for each £¢€[0,0], model CCR, in evaluating DMU ; is bounded (or
as its counterpart, model CCR,, in evaluating DMU ; is feasible).

Theorem Suppose M=Max, . (Min g {x, /x,;:x; #0}}. Interval [0,5,] is an

assurance interval associated to DMU ,, if §, = 1/{2’:1 X, +M 2’;:1 > vt

Proof We shall prove that for each ¢ € [0,6 e model CCR, in evaluating DMU , 18
bounded. 8’, =1, s =5s"=0, A= e, = (0,...,0,1,0,...,0), where 1 appears in position p,
is a feasible solution and due to non-negativity of parameters A,, x, and y,, we have
8, > 0. Therefore, if model CCR, is unbounded then some s, or s, must be made

arbitrarily large. Purthermore, since by increasing s; or s

r?

value of 0, is also
increased, we can concentrate on enhancing €, by one unit and compute maximum
alterations in s . s, and objective function.

When 0, increases by one unit (A@,=1), for feasibility of the input and output
constraints, the following situations must be hold.
Vi, 1si<m: As; < x,,, therefore E::] As; < Z;’;] Xy, -
Vjy 1S jsn: AL SMing, {x, [, x; # 0},
And if M =Max, (Ming,,{x, /%, x; #0}}, then

. . + " n X . ¥ + n 5
Vr, 1Sr<s: As] < Ejﬁ ¥4, SMZJ-:; ¥, » therefore Zm}mr < szﬂ Eml Yy -
The change in the value of the objective function is given by:
- . m — § 4 _ "t mn g
AZ=1-e(Y,  AsT+ D, s )21-e(Y %, + MY " v,
To complete the proof, value of &, is determined in such a way that alterations in
objective function be positive. In other words, it is sufficient to determine & , in such a

way that the model CCR, in evaluating DMU , has not any improvement recession

. 3 _ ‘ . s 4 . . m n 5
direction. Therefore, it is sufficient to have £ <6, = I/{Zs=1 x, + M E}_:i E,_ml Yy im

Corollary Interval [ 0,8 ] is a global assurance interval, where § = Min{s,,6,,...,0,}.
X, 1

Corollary Suppose M= Max {Min{~%: x, # 0},
y SUpp }$j<kSu{lS£Sm{ X, Y } Max{x, /xij Xy 0}

l&i<m

is a global assurance interval, if & = }/{Maxlst” {ZZI Xy} ME’,::; ;] Yyl

}. Interval 10,6
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Proof For each pe {1,2,...,n}, let AB, =1, then for feasibility of the input and output

constraints, the following situations must be hold.

Vi, 1<i<m: As] <x,, therefore 2:1 As] < 2:11 X, S Maxlstn{ZLxU}.

Vi, 1< j<n: AA, <Ming,, (x, /x; 1 x, 0},

And if M =Max,, ., (Ming., (x, /x;  x; # 0}, Max ., {x, /%, - x; # 0}, then

Vr ISr<s: As] < 2;:1 ¥ AL SMZ;:; v, » therefore 2r=1 AstT < MZ;:; E'rzl Y-
For each p, the change in the value of the objective function is given by:

AZ =1-e(Y," Asy + Do) zl-eMax, (D 2} + M ijl V)

Therefore, it is sufficient to have £ < & = 1/ (Max, o, (D X J4 MY S0y, im

2.2. Numerical Example
Consider the following DMUs:

DMU 1 2 3
Input 1.0 0.5 2.0
Output | 1.0 1.0 2.0

By means of Ali and Seiford's boundary of ¢, it is sufficient that ¢ be less than
1/2, but with €=3/8<1/2, multiplier form of CCR model in evaluating DMU, is

infeasible. By means of our proposed boundary, interval {0,1/}8] is an assurance
interval associated to DMU,.

3. CONCLUSION
The above discussion is by no means esoteric. As £ is below the threshold value,
while finite objective are obtained in envelopment model, the obtained value of the
objective can overshoot optimality. In general, the effect of reducing £ is that obtained
efficiency scores increase because of the effect of the slack term is diminished.
Therefore, results are sensitive to the specific value for ¢, even if this value be in
assurance interval.
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Abstract- Let S={1, 2,..., n} be a set of positive integers. The nxn matrix [S]=(, /),

where s;=(x;,x;) the greatest common divisor of x, and x,, is called the greatest

common divisor GCD matrix on S. In this study, we have obtained some bounds of
norms of this matrix. In addition, we have obtained upper bounds of norms of the
almost Hilbert-Smith GCD matrix is defined

(8)= {M}
7

i j=l
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1. INTRODUCTION

Let S={x,,x,,...,x,} be a set of positive integers. The matrix (S) having the
greatest common divisor (x,,x ;) of x; and x; as its i, j entry is called the greatest

common divisor GCD matrix on S. The study of GCD matrices was initiated by Beslin
and Ligh [3]. They have shown that every GCD muatrix is positive definite, and, in fact,
is the product of a specified matrix and transpose.

Let A be an mXn matrix. Then Euclidean norm, £, norm and spectral norm of
the matrix A are defined by

=l j=i

(3 ZH)

j, [zzu); Cpem

izl el

and

41, = Jmax ., (4°4) = 0,(4)

respectively where Ais the conjugate transpose of the matrix A.

A function v is called polygamma function if

() mgm{tog[r(x)]}
X
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where

oo

I'(x) = j e 1t .

0

The function y{m, x) have the property:
limy(a,n+b)=0 (1.1)
Hrehoo

where a>0 and b are any numbers and # is positive integer.
Denote the space of m-by-n complex matrices by M, and set M, =M, . The

is defined by

ntH

Hadamard (entry-wise) productof 4={(a;), B=(b,)e M

AeB=(ab;)e M, .

For any A€ M, ,, we denote by ¢ (A),c,(4),...,c,(4) 20 (the Euclidean lengths of

the » columns of A), listed in descending order, and by r(A4),7,(4),...,7,(4)=0 (the
Euclidean lengths of the n rows of A), similarly ordered. The singular values of
Ae M ., which we shall always exhibit in descending order

o,(4),0,(4),...,0,(4)=0

are the non-negative square roots of the eigenvalues of AA" as well as the non-negative
square roots of the n largest eigenvalues of AA". Let Y(A)= (c;)e M, , have

0,(4y=0,(4) for i=1,2,..,n and all others for o, =0 for i#/. We know that A has a
singular value decomposition 4=V X(A)W", in which Ve M, and We M, are
unitary [4]. For any xd" and AeM , if x'Ax =0 then A matrix is called positive

semidefinite (if x"Ax > 0 then the matrix A is called positive definite).

A norm |.| on M,,,
unitary Ue M, and VeM . For any AeM .

matrix are both unitarily invariant norms because two norm is connected singular
values. Also, spectral norm is induced matrix norm or operator matrix norim.

is unitarily invariant if |4} =|U4V| for all AeM, , and all

mn

spectral norms and Euclidean norm is A

Definition 1. 1 [5] If n>1 the Euler totient ¢(n) is defined to be the number of positive
integers not exceeding n which are relatively prime to .

Definition 1. 2 [3] A set S of positive integers is said to be factor-closed (FC) is
whenever x, 1s in § and d divides x,, then d is in S.

The above definition is due to J. J. Malone.
Definition 1. 3 [3] S={x,x,,...,x,} be a set of positive integers. The nxn matrix
[S]=(s;) where (s;)=(x;,x;), the greatest common divisor of x; and x,, is called the
greatest common divisor (GCD) matrix on S,
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It is clear that any set of positive integers is contamed in an FC set. The following
theorem describes the structure of GCD matrices.

Theorem 1. T [3] S={x,,x,,...,x,}, be a set of positive integers. Then the GCD
matrix [$] is the product of an nxm matrix A and the mxn matrix A", where the nonzero
entries of A are of the form +/¢(d) for some d in an FC set that contains S, and ¢(x) is
Euler's totient function.

Proof. Suppose D = {d,,d,,..

defined as follows:

d,} is an FC set containing S. Let the matrix A=(a, ) be

nt

a, =e,.j(7&j)”2 (1.2)
where
Ld, |x,
e, =4 ' (1.3)
/ {0,0Iherwz'se

and A, =¢(d;). Hence Ais nxm and A" is mxn . Furthermore,

n

(447) = Za,kajk
= 2\/¢(d ()

di%

Y éd,)
dilx, %)
= (x,'sxj)
m S
Thus [S]= AAT .
Theorem 1.2 [4] Let4,Be M, . Then
k
; (A (B)
Zo (AoB)S %! . k=1,2,..,n (1.4).
Ec (A)r,(B)

Proof. Because of the Hadamard product is commutative, the two inequalities in (1.4)
are equivalent; we verify the upper one. We first note the case k=1. Let ” . H . denotes the

Euclidean norm on 9", let A=(a, ) and B=(b, ) and let x=(x,)ed" be given unit vector.
Then
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“3fshrgper

s;ﬂl(A)z_};Z}{bfjj x| mrl(A)ZZij}zZthﬁ'z
=y = J= =L g=

<R (B Y | =r(4) e, B,

o Bl =Y

i=1

Z%y;

i

Since 0,(4 B) = max{{(4 o B)x| . :|x| . =1}, the desired bound have been obtained.

Theorem 1. 3 [4] Let m, n be two positive integers, g=min{m, n} and A, Be M
Then

Myt

io,-(AoB)sﬁ‘jn(X)qu)o,(B)

such that A=X"Y where Xe M, and YeM .
2. MAIN RESULTS

In this section, we have obtained some upper bounds for norms of defined matrices
on the set S.

Theorem 2.1 Let $5={1,2,.., n} be a set of positive integer. If S is factor-closed, then for
the upper bound for Euchdean norm of GCD matrix [S] defined on § by

E{ }P(")w n(n+1)

Proof. From [3], the GCD matrix [S] is written [S]=A4". Firstly, we evaluate Fuclidean
norm of A. In the case » is prime number, the matrix A can be written of the form

Jo) 0 0 - 0
Jo) o) 0 0
A=[Jo® 0 Je3 - 0

: : : 0
Vo 0 0 o Joln)

Then the Euclidean norm of the matrix A is

=330 51,2

¥i

The Euclidean norms of the matrices A and A” are equal. From properties of product of
matrix norm, for Euclidean norm of {S] matrix
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(o1, =jas<t, 11, < 3 Se00)

N :n(n+1)
= ;[k}q)(k) 3

is valid where ¢, Euler's totient function and [] is the greatest integer function.

Similarly, from structure of GCD matrix, Altimisik has defined almost Hilbert-Smith
matrix on the set S={1, 2,..., n} in [2] such that

) —{@} . o
U i, j=1

We consider the matrix S as Hadamard product two matrices, In addition, we have
obtained an upper bounds for Euclidean and spectral norms of this matrix.

Theorem 2.2 ||.{| is unitarily invariant norm. Then, for the matrix (S) be as in (2.1)

ISy, < n(lp(l,n 1)+ %)

where (S) is the GCD matrix on set of § so that § is factor-closed as in Theorem 2.1.
Proof. At first, let ($)=[S]o K and [S]=AA" then from [4]
I, < e (e, (4yo,(K) = ¢} (4)o,(K)

Y
of columns of the matrix A and ¢,(K) is the biggest singular value of the matrix K as
follows defined respectively

where [S1=[(i, /)]=AA" and K= [»}w} respectively. ¢, (A) is the biggest Euclidean lengths

¢, (A4) = max \/22a0| = \/ZQ)(I) =n
Je=) gt
and characteristic polynomial of matrix K is to be
A (A)y=A" —trace(K)A"" .

The roots of this polynomial are x;= 0, i=1,2,..,n-1 and x, =trace(K). Also, for any
nonsingular matrix A

HA!]F=(trace(A*A))”2:[i?xi(fﬂl)] m(ic‘f(,q)} .

The symmetric matrix K has only one nonzero eigenvalue and we obtain

1/2

K], = (trace(K?)""? = trace(K) = (1, (k)] = (02 (k) = 0,(K)
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and
| i
0,(K) =]k, = wrace(X) = PO y(,n+1)+ =
kel

Thus, we have obtained upper bounds for spectral norm of the (S) matrix as follows

IS, <2 (A0, < ;{W,n o) mgw}

Corollary 2.1 Let the matrix (S) be as in (2.1). Then

7 a(n+1) _ ant(n+l)

is valid where {l N - 1s the Buclidean norm.

Proof. For any matrix norm, |4 o B <[4]|B| . Proof of Theorem is very simple obtained
by this norm inequality.
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