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Abstract- Some properties of unsteady unidirectional flows of viscous fluids are
examined for flows impulsively started from rest by the motion of a boundary or two
boundaries. Three illustrative examples are given. The first example is the unsteady
Couette flow, the second is the unsteady flow between two parallel plates suddenly set
in motion with the same speed and the third is the unsteady flow in a circular
cylinder moving parallel to its length. It is shown that if the conditions for which the
values of the quantities such as velocity, flux and skin friction obtained for large times
are nearly the same with those obtained for small times are established, the expressions
of the quantities obtained for one of large times or small times can also be used for the
other,
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1. INTRODUCTION

Three exact solutions of the time-dependent Navier-Stokes equations are
discussed to obtain some general results. It is well known that most of the solutions for
unsteady flows of viscous fluids are in the form of series. These series may be rapidly
convergent for large times but slowly convergent for small times or vice versa. In this
paper, it is shown that if the conditions for which the values of the guantities such as
velocity, flux and skin friction obtained for large times are nearly the same with those
obtained for small times are established, expressions obtained for large times can also
be used for small times and the opposite can also be troe. This is very important,
because, sometimes it can be difficult to obtain the solution for small times but it can be
easy to obtain it for large times, then, the solution obtained for large times can also be
used for small times, the opposite can also be true. In order to illustrate this fact, three
examples which are the exact solutions of the Navier-Stokes equations are given. The
exact solutions of the Navier-Stokes equations are very important for many reasons,
They have been collected by many authors [1], [2, 3].

In this paper, the flows considered are: the unsteady Couette flow, the
unsteady flow between two parallel plates suddenly set in motion with the same speed
and the unsteady flow in a circular cylinder moving parallel to its length. The series
solution of velocity for the unsteady Couette flow obtained for large times is rapidly
convergent for large times but slowly convergent for small times. However, it can be

used for small times. For example, for vt/h* =0.001 to obtain the value of
u/U accurate to fourteen decimal places, the required number of terms is about 54,
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Furthermore, the series solution of velocity for the unsteady Couette flow obtained for
small times is rapidly convergent for small times but slowly convergent for large times,
however, it can be used for large times.

Indeed, for vt/h* =10 in order to obtain the value of u /U accurate to

fourteen decimal places, the required number of terms is about 17. These examples
show that if the expressions of the quantities such as velocity, flux and skin friction can
be found for one of large times or small times, these expressions can also be used for the
other.

The series solution of velocity for the unsteady flow between two parallel plates
suddenly set in motion with the same speed obtained for small times is rapidly
convergent for small times but slowly convergent for large times. However, it can be
used for large times. For example, for v¢/b* =0.01 and y/b=0 in order to obtain

the value of u/U accurate to six decimal places, the required number of terms is about
100. This can be established without difficulty. :

The unsteady flow in cylindrical regions has been investigated by many authors.
'The unsteady flow in a circular pipe was investigated by Szymanski [4]. The unsteady
flow outside a cylinder moving parallel to its length was investigated by Batchelor [5].
The unsteady flow between two cylinders was examined by Miiller [6]. The unsteady
flow around a cylinder was investigated by Nanda [7]. In this paper, the unsteady flow
in a circular cylinder moving parallel] to its length is examined. The series solution of
velocity for this flow obtained for large times can also be used for small times. Indeed,
for 7=0.1 and r/a=0.5, w/W gives about 0.3896 accurate to four decimal places
which can be compared with 0.3890 obtained for small times.

The examples given show that if the expressions of the quantities such as
velocity, flux and skin friction can be found for one of large times or small times, these
expressions can also be used for the other.

2. UNSTEADY COUETTE FLOW

When two paralle] plates are in relative motion, a simple shearing motion with linear profile
is obtained and this flow is called as the Couette flow. In practice, one plate is moved and the
other is held stationary. It is assumed that the fluid is bounded by two parallel plates at y =0
and y = h, and the fluid is initially at rest. Then the fluid sets in ‘motion by the velocity of the
upper plate in its own plane, the lower plate being held stationary. The governing equation and
the boundary and the initial conditions are

du 3u

=y —— 1
ot Y dy* W
u(0,6y=0 for all z,

u(h,t)y=U fort=>0, . (2)

u(y,0) =0 for0<y<h
where £ is the distance between two parallel plates and U is the velocity of the upper plate.
The solution of equation (1) subject to boundary and initial conditions, equation (2), is obtained
by a method which can be applied to all unsteady unidirectional flows. Since the velocity
distribution in the case of the steady state is known, then, the velocity can be written as
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E( 1) ""hﬂ.'V!”t Sil’l ﬂ:y . (3)
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If the lower plate moves and the upper one are held stationary, then, the velocity
distribution becomes

H_g 2 25 L e g RITY

U h nmiin
The rapidity with which terms of this series expansion tend to zero increases with n. The
first texm 1 = I survives longest and therefore this first term dominates the series.

Although equation (3) is obtained for large times and it is slowly convergent for small
trmes, it can also be used for small times, if the number of terms which are considered is
sufficient. This can be realized without any difficulty.

The volume flux across a plane normal to the flow and per unit width of this plane can be
written as

Q - 1 - ___§W 1 ew(Zerrl)?rczr (4)
Uhl?2 7t A (2n+1)

where 7 =vt/h*. The series in equation (4) is valid for all 7. For 7 =0, since

Z 1 a?
L on+1)® 8
0 becomes zero. The required time for Q to attain the asymptotic value is short and it

is about 7 = 1.The factional force per unit area exerted by the fluid on the moving plate

at y=his

ofe) oz
y y=h n=|

For small values of time, the flow near the moving plate has a character similar to
that of the impulsive motion of a plane wall. The required time to attain the
asymptotic value of the skin friction is about 7 = 1.
The expressions given by equations (3), (4) and (5) obtained for large times can
also be used for small times. Indeed, in equation (3), for v¢/k* =0.001 to obtain the value

of U/h 1o fourteen decimal places, the required number of terms is about 54. This can be
realized without difficulty. This shows that the expressions of the quantities such as
velocity, flux and skin friction obtained for large times can also be used to find their values for
small times.

2.1. Solutions for small times

The series solutions of the velocity, flux and skin friction for large times are
slowly convergent for small times. Therefore, to obtain the accurate values of these
quantities for small times, using the series expansion obtained for large times sufficient
number of terms must be calculated. In order to find the number of terms to be calculated
the Laplace transform method is used. The Laplace transform of u(y,¢) is defined as

o0

T Iu e dt

0
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Then, equations (1) and (2) become
—» S

7 —\—/—Em(), =0, u(y=U/s

where primes denote differentiation with respect to y. The solution subject to boundary
conditions is
u /U =sinhgy/sinh gh
where g = (s/v)""*. In order to obtain the expressions for small times the method given in
[8]1is used Smce small f corresponds to large s, then, i can be written as
_ —q[{ZnH)h ¥} i ~gl2nshay] 6
% - 2; - ()
The inverse of i is
2n+1) -~ y/h (2n—:~1)+yfh
— - 7
; Khareyenon 2ve/h*)"? ; e ot 2ve/h*)? )
Itis ciearly seen that for y/h<<l andvt/h* <<1, equation (7) takes the form

U -y

— =erfc

U 't 2./vt
which is the velocity distribution of the flow produced by the impulsive motion of a plate

neary = h.
The series expansion in equation (7) is rapidly convergent for v¢/h* <<1, but slowly

convergent for vz/h* >>1. However, it can also be used for large times. For small
times, the volume flux Q across a plane normal to the flow and per unit width of this plane is

Q _ 12
Uhfz“é{ } Emﬁf( T e /h2 i

—~ ZEierfcﬂz—lwm} (8)
- vi
where

i"erfc x = J‘i”’“Ieifcf dé

iYerfe x=erfex
are integrals of complementary error function which are obtained from tables [9].

The frictional force ,u(au/ dy) per unit area exerted by the fluid on the moving
plate can be obtained by equation (6). The Laplace transform of 7, = ,LL(au / ay)

as ©, = u(0w/dy)

yasl
- 15 Ziven

=, and inserting equation (6), one finds

_ o ul -2
T o= o . hgh + (2n+2)qh
b lu'[ Jy ]yzh A [;;4 Suz 2

The inverse of T, is
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(n+1)?

du UUIh |5 i o
T, = [—— s € “f e
Fh “[any=k (n.vt/hZ)HQ :

n=l) n=0
The expression of 7, obtained for small times can also be used for large times. Indeed, for

vt/h* =1, one obtains 7, /(U /) =1.000103 accurate to six decimal places which
can be compared with 1.000104 obtained for large times.

3. FLOW BETWEEN TWO PARALLEL PLATES SUDDENLY
SET IN MOTION WITH THE SAME SPEED

It is assumed that the fluid is bounded by two parallel plates at y=-band at y = b,
and it is initially at rest and the fluid starts suddenly by the motion at the same speed of the
upper and the lower plates in their own planes. The governing equation is equation (1), and
the boundary and the initial conditions are

u(th,y=U for >0

u(y,0)=0 for —~h<y<h
where 2b is the distance between two parallel plates. Since the velocity distribution in
the case of the steady-state is U, then, the velocity u(y, t) can be written as

u 4 (-1" ~(asialri4
=]l ¢ cos(2n+1)mn/2 9

U n§2n+1 ( N ®
where 7 =vt/b*and 1 =y/b. The first term n = 0 survives longest and therefore

this first term doininates the series. ‘
Although equation (9) is obtained for large times, it will be seen later that it can be
used for small times, if the number of terms which are considered is sufficient. The

variation of u/U with y/bfor various values of vt/b”is illustrated in Figure 1. For small

values of time, the flow near the plates has the character of the Couette flow and there is no
effect due to the plates on the region near the centerline. It can be seen from Fig.] that the

required time for u(y,?) to attain the asymptotic value is about v¢/b* = 2.
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Figure 1. Flow between two parallel plates suddenly set in motion with the same speed. The

variation of /U with y/b for various values of v¢/b*.
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The volume flux Q across a plane normal to the flow and per unit width of
this plane is
__Qm_m - 1__% . MGM(ZH&'I}ZﬂzTI'd ' (10)
26U 7% 2n+l)
The seriés in equation (10) is valid for all 7 . For 7 =0, since
y 1 a
Z@n+1 8
Q becomes zero. The required time to attain the asymptotic value of ¢ is about 7 =2.
The frictional force per unit area exerted by the fluid on the plate at y = b is

e, =ul 2% mzi"—qzexp[m{znﬂ)zn%m] (11)
. a Y b n=0
y=b
The required time to attain the asymptotic value of the skin friction is about T = 2.

3.1. Solations for small times

The series solutions of velocity, flux and skin function obtained for large times are
slowly convergent for small times. Therefore, to obtain the accurate values of these
quantities for small times using the series expansion obtained for large times, sufficient
number of terms must be calculated. In order to find the number of terms to be calculated the
Laplace transform method is used. The Laplace transform of « is i, then equation ( 1) and
boundary conditions take the following forms

7-27=0,
v
T(th) =L
5

where primes denote differentiation with respect to y. The solution subject to boundary
conditions is

u coshgy

U coshgb

2 Por small times the method given in [8] is used. Since small ?

corresponding to large s, then, & can be written as
—q{(znmb ¥l ~g[(2n+1)b+y]

—2( 1) e 2(‘”"““““;““““ (12)

n=0

where g =(s/v)

The inverse of i is
. (2n+l-n (2n+l)+n
—=) (-D)'e + ) (-Derfe—F7— (13)
TP 2 KAy
The series expansions in Eq. (13) is slowly convergent for 7 >>1, however, it can also be
used for 7>>1. Indeed, for 7=0.0land 1 =0, equation (13) gives u/U =2erfc5

=3.074918x10™" accurate to six decimal places. This result can also be obtained by
equation (9), the number of terms to be calculated in the series in about 100. This can be
realized using a computer.

For small times, the volume flux @ across a plane normal to the flow and per unit
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width of this plane is

0w n |
0D 27 L/_+22( 1)1813%\/_} | (14)

n=t
The expression for Q given in equation (14) obtained for small times, can also be used for
large times. Indeed, for 7 =1, this gives about 0.9313 accurate to four decimal places which
is exactly the same with that obtained for large times.

The frictional force p(du/dy),., per unit area exerted by the fluid on the plate at
y=bis

. a U/b H =y JT
7, :M(_a_’;J SR ALs {sz( 1" e™ }
y=b

(wT)
Although the expression of 7, is obtained for small times, it can also be used for large

times. For 7 =1, it gives 7, A pU /b ) =0.1696 accurate to four decimal places which
1s exactly the same with that for large times.

4. UNSTEADY FLOW IN A CIRCULAR CYLINDER MOVING
PARALLEL TO ITS LENGTH

Suppose that the fluid is in a circular cylinder and it is initially at rest, and the
fluid starts suddenly due to motion of the cylinder parallel to its length. Cylindrical
polar coordinates are used. The axis of the cylinder is the z-axis. The governing
equation is

ow dw low
A I S N i
dt V(aerrrar) (15)

where, w(r,t)is the velocity along the z-axis, v is the kinematic viscosity of the fluid, r
is the coordinate and ¢ is the time. The boundary and the initial conditions are

wia,t)=W for t>0

wr0)=0 for 0sSr<a
where W is the constant velocity at r = g and g is the radius of the cylinder. The solution
of equation (15) subject to boundary and initial conditions (16) may be obtained by the
Laplace transform method. However, the solution is obtained by a method which can be
applied to all unsteady unidirectional flows. Since the velocity distribution in the case of
the steady-state is W, namely, the fluid moves eventually at the same speed of the
cylinder, then, the velocity w( 7,7 )can be written as

wir,t)=W-— f(rit)

where f( r,t )satisfies the following differential equation
of _[@ f 10 f}
at gr? r ar

and the boundary and the initial conditions are

fla,y=0, [f@rO=w.

When ¢ goes infinity f(r,t jtends to zero. The first boundary conchtzon suggests a

(16)
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solution in the following form

fir.)= Zexpf—lﬁ vt/aszn(r)

n=l
where F, (r)satisfies the following differential equation
1 Al

Fl4— F +--’~’-F =0
where pnmes denote differentiation with respect to r. The solution of this differential
equation is

F(rn=A4,J,A,rla).
Since F, =0at r = a, one finds

JO (A‘n )= 0
where A are zeros for which the values are obtained from tables [9]. Thus the velocity
distribution is given by

J, (A 2

E_zlszMe*%f (17)

w AR
where 7 =vs/a’and & =r/a, and J is the Bessel function of the first kind of order
one. The first term 7 = 1lsurvives longest and therefore this first term dominates the
series. Equation (17) is obtained for large times, however, it can be used for small times,
if the number of terms which are considered is sufficient. The variation of w/W with
r/ a for various values of 7 can be illustrated in a figure similar to that of Figure 1. The
effect of the friction of the flow in the cylinder is greater than that of the flow between
two parallel plates. Thus the required time to attain the asymptotic value for the flow in
the cylinder is shorter than that of the two-dimensional case. Indeed, the required time
to attain the asymptotic value is aboutt =1.

The volume flux Q across a plane normal to the flow is

o3

where T =vt/a®. For T —O, since
I 1

S 47
Q becomes zero. The required time to attain the asymptotic value of Q is short and it is
aboutt =1.

The frictional force per unit area exerted by the fluid on the surface of the
cylinder at r = ais

r, =pu@widr,. f,—z“ Eexp( A1), 19)

The required time to attain the asymptonc value of the skin friction is aboutt =1.
4.1. Solutions for small times

For small times the Laplace transform method is very useful [8]. If the Laplace
transform of w is W, then, equations (15) and (16) take the following forms
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W”'+-1—W'~q2WmO, w(a)=W/s
r

whereq = (s/v)'"?, s is the transform parameter and primes denote differentiation with
respect to r. The solution subject to boﬁndary condition is

wiW =1I,(gr)/sl,(ga) 20
where I (x)is the modified Bessel function of the first kind of ordeér zero and the
condition that the velocity is finite at r = @ is used. For small times, w can be written as

W _(a 12 gratan) |_a-r +9a?‘-~~2¢.IJ"~“-~7r2 .
W oir 5 8gar  1284%a’r? '

The inverse of W can be found in the following form
w1 1-& Q=&Y 1-& (9-28-7EHT, [ 1-&
W:ém erf(:z\/; 45”2 zer:fczﬁ-t— PoTE zerfczﬁ+»‘~ (21)

where T =vt/ a*and & =r/a. The series expansion in equation (21) is rapidly
convergent forr << 1, but slowly convergent for 7 >>1. However, it can be shown that
it can also be used for 7>>1. Indeed, for 7=0.1and & =0.5, equation (21) for
- w/W gives about 0.3880 accurate to four decimal places which can be compared with
0.3896 obtained for large times.
For small times, the volume flux Q across a plane normal to the flow is

Q 4 12 1 372 1 2

e T =T = T e =T e 22
W(ﬂ:az) n.if?. n,l.’Z 8 . ( )
where 7 =vt/a®. For ©=0.01, equation (22) gives for Q/W(ma*)about 0.2151
accurate to four decimal places which can be compared with 2.000 obtained for large
times.

The frictional force u(dw/adr), , per unit area exerted by the fluid on the
surface » = a is

B X N7 (S W S
<o) a o™ 2 4x'*

This expression for the skin friction is obtained for small times, however, it can also be
used for large times. Indeed, for v/ b? =001, 7, {(uW)/a=5.1265accurate to four
decimal places, which can be compared with 5.1266 obtained for large times. Since the
series expansion for small times can be replaced with the expression for large times, the

series expansion for large times can be also be used for small times and the opposite is
also true.

5. CONCLUSIONS

The unsteady Couette flow, the unsteady flow between parallel plates suddenty
set in motion with the same speed and the unsteady flow in a circular cylinder moving
parallel to its length are examined. These flows have a common property that their
generation is the same type. They start suddenly by the impulsive motion of a boundary
or two boundaries. For these flow, the expressions of the quantities such as velocity,
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flux and skin friction are in the form of series in terms of time. These series may be
rapidly convergent for large times but slowly convergent for small times. If necessary
conditions are established, the series which is slowly convergent for small times can be
used for small times or vice versa. This is very important, because, sometimes it can be
difficult to obtain the solution for small times but it can be easy to obtain it for large
times, then, the solution obtained for large times can be also used for small times. The
opposite can also be true. To elucidate the subject three examples are given.

The series solution of velocity for the unsteady Couette flow obtained for large
times is rapidly convergent for large times but slowly convergent for small times.

However, it can also be used for small times, For examples, for v¢/h* = 0.001 to obtain

the value of /U accurate to fourteen decimal places, the required number of terms is
about 54. Although the series solution of velocity for the unsteady Couette flow
obtained for small times is rapidly convergent for small times but slowly convergent for

large times, it can also be used for large times. Indeed, for v¢/h* =10, in order to

obtain the value of u/U to fourteen decimal places, the required number of terms in the
series is about 17.

These examples show that if the expressions of the quantities such as velocity,
flux and skin friction can be found for one of large times or small times, these
expressions can also be used for the other.
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