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Abstract- Harmonic differential quadrature method is developed for the free vibration
analysis of linear elastic beams. In the method of differential quadrature, partial space
derivatives of a function appearing in a differential equation are approximated by means
of a polynomial expressed as the weighted linear sum of the function values at a
preselected grid of discrete points. The weighting coefficients are treated as the
unknowns. Applying this concept to the governing differential equation of beam gives
a set of linear simultaneous equations, which are solved for the unknown weighting
coefficients by accounting for the boundary conditions. Beams of different support
combinations such as clamped, simply supported, guided, and free are selected to
demonstrate the accuracy of the method. Flexural vibration case is taken into
consideration. First two frequencies are obtained in the applications. Numerical results
are presented to illustrate the method and demonstrate its efficiency.
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1. INTRODUCTION

It is well known that, the analysis of engineering systems are included two main
stage, such as construction of a mathematical model for a given physical phenomena
and the solution of this mathematical equation. With the modern computer technology,
various numerical methods were well developed and widely used to solve various kinds
of engineering and science problems, which are described by the differential equations.
This equations either linear or nonlinear and in most cases, their closed form solutions
are extremely difficult to establish. As a result, approximate numerical methods have
been widely used to solve such a differential equations which arise in almost all
engineering disciplines. The most commonly used numerical methods for such
applications are the finite element and finite difference, and most engineering problems
can be solved by these methods to satisfactory accuracy if a proper and sufficient
number of grid points are used. However, in a large number of practical applications
where only reasonably accurate solutions at few specified physical coordinates are of
interest, the finite element or finite difference method becomes inappropriate since they
still require a large number of grid points and so large a computer capacity, especially in
the cases of nonlinear problems where iteration becomes unavoidable [5,23].
Consequently, both CPU time and storage requirements are often considerable for the
standard methods.

In seeking a more efficient numerical method which requires fewer grid points
yet achieves acceptable accuracy, the method of differential quadrature (DQ), which is
based on the assumptions that the partial derivatives of a function in one direction can
be expressed as a linear combination of the function values at all mesh points along that
direction, was introduced by Bellman et al. [1]. The method of differential quadrature
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circumvents the above difficulties by computing a moderately accurate solution from
only a few points.

In this study, free vibration analysis of beams is investigated by using harmonic
differential quadrature. The accuracy, efficiency and convenience of HDQ are
demonstrated throughout the numerical examples,

2. DIFFERENTIAL QUADRATURE METHOD (DQM)

The idea of the differential quadrature method is to quickly compute the
derivative of a function at any grid point within its bounded domain by estimating a
weighted linear sum of values of the function at a small set of points related to the
domain. As with other numerical analysis techniques, such as finite element or finite
difference methods, the DQM also transforms the given differential equation into a set
of analogous algebraic equations in terms of the unknown function values at the
reselected sampling points in the field domain.

The problem areas in which the applications of differential quadrature method
may be found in the available literature include static and dynamic structural mechanics
and stability analysis of structures [16,17]. Recent works of Bert and associates, mainly
on the vibration analysis of plates, have contributed significantly to the development of
the DQM [3,4]. Authors applied the DQM to the stability, vibration and bending
analysis of elastic bars {6,9], and plates [8] and other type structures [7,11]. It has been
claimed that the DQM has the capability of producing highly accurate solutions with
minimal computational effort. All this work has demonstrated that the application of the
DQ methods leads to accurate results with less computational effort and that there is a
potential that the method may be become an alternative to the conventional methods
such as finite differences and finite element [10,12,13,17,18]. Therefore research on
extension and application of the method becomes an important endeavor.

In the differential quadrature method, a partial derivative of a function with
respect Lo a space variable at a discrete point is approximated as a weighted linear sum
of the function values at all discrete points in the region of that variable. For simplicity,
we consider a one-dimensional function ¥{x) in the [-1,1] domain, and N discrete
points. Then the first derivatives at point i, at x = x; is given by

! N

gfx(xi)ma—fi =3 Ay ¥ (x)s 1= 12N (1)

dx |x = X
where x; are the discrete points in the variable domain, ¥ (x;) are the function values at
these points and Ay are the weighting coefficients for the first order derivative attached
to these function values. Bellman et al. [1,2] suggested two methods to determine the
weighting coefficients. The first one is to let equation (1) be exact for the test functions
Px) =57, k=12,.,N 2)
which leads to a set of linear algebraic equations

i=1

N
(k=1)xf-2= % 4,5t for i=12,0N and k=12,.....N (3)
j=1
which represents N sets of N linear algebraic equations. This equation system has a
unique solution because its matrix is of Vandermonde form. This equation may be
solved for the weighting coefficients analytically using the Hamming’s method {22] or
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numerical method using the certain special algorithms for Vandermonde equations, such
as the method of Bjorck and Pareyra {21]. As similar to the first order, the second order
derivative can be written as

_

0 x?
where the By is the weighting coefficients for the second order derivative. Equation (4)
also can be written

N
=3 By ¥ (x5 i= 12N 4)

j=l

Wxx(xi)

.’C=x[.

w o (x)= i e § Ay § ApPly) ¢ i= 12N (5)
R R BT
Again, the function given by equation (2) is used so that the second order derivative is
N
(k=1)0k=2)xk"3= 3 Byxt~ | (6)

j=1
this can be solved in the same manner as indicated for equation (3) above. The second
method is also proposed by Bellman et al. [2] to obtain the weighting coefficients is
similar to the first one with the exception that a different set of trial or test function is
chosen for satisfying equation (1) exactly;

Ly(x)
¥ (x)=
o (= x )L ()

where Ly(x) is the Nth order Legendre polynomial and [(}/(x) the first order derivative

of Ly(x). N is the number of grid points as with the first one. However, it requires that x;
(k=1,2,....,N) have to be chosen to be roots of the shifted Legendre polynomial. This
means that once number of grid points N is specified the roots of the shifted Legendre
polynomial are given, thus the distribution of the grid points are fixed regardiess of the
physical problems being considered. By choosing x; to be roots of the shifted Legendre
polynomial and substituting equation (7) into equation (1), we obtained a direct simple
algebraic expression for the weighting coefficients Ay

, k=12, N (7)

4y = Ln(xt) for i#j; andi j=12,....N )
(xi—xj)L N(JCj)
4 =12 for i=j; andi, j=12,....N (9)
T o—— =gy L = Lz N
' 2x,-(x;"”1)

In this second approach, the weighting coefficients that was defined equation (8)
and (9) are easy to obtain without solving algebraic equations or having a singularity
problem as with the first one.

3. HARMONIC DIFFERENTIAL QUADRATURE (HDQ)
A recently approach the original differential quadrature approximation called the
HDQ has been proposed by Striz et al. [15]. Unlike the differential quadrature that uses
the polynomial functions, such as Lagrange interpolated, and Legendre polynomials as
the test functions, HDQ uses harmonic or trigonometric functions as the test functions.
As the name of the test function suggested, this method is called the HDQ method. The
harmonic test function f{x) used in the HDQ method is defined as [14];
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sin(x_xo)n ........ (ke T mx JT (x—xy)mw
2 2 5 5
hk(x)=
sinw -------- sin(xk—xk”)ﬁsin(x"‘ x’f“)ﬁ.;..‘sinw
2 9 ” >
for k=0,12,....N 10

According to the HDQ, the weighting coefficients of the first-order derivatives A; for i
- #j can be obtained by using the following formula:

(m/2 )P( x; )

A, = , , i =123, N (11)
/ P(xj)sm[(x,-—xj)/z]%
where
N e .
P(x,)= Tlsin x'zxfn, for j=1,23,.;N
j=lj#i '

The weighting coefficients of the second-order derivatives B; for i #j can be obtained
using following formula:

By = A,{Z AG = nctg(

xj._x .

5 j}w] Pi=1,23 N (12)

The weighting coefficients of the first-order and second-order derivatives A,;,'“’)
fori =j are given as

N
A== ¥ AP p=1or2; and for i=12,.,N (13)
IEINEY: ‘
The weighting coefficient of the fourth order derivative can be computed easily from By
by [14];

N
D;jz ZBM—B@- (14)
k=1

The main advantage of HDQ over the differential quadrature is its ease of the
computation of the weighting coefficients without any restriction on the choice of grid
points. A factor decisive to the accuracy of the all type differential quadrature solution
is the choice of the sampling or grid points. It should be mentioned that in the
differential quadrature solutions, the sampling points in the various coordinate
directions may be different in number as well as in their type. Two different types grid
distribution are used in this study.

Type I: A natural, an often convenient, choice for sampling points is that of equally
spaced point. This type sampling points are given as
i-1
I e l = 1,2, ..... ,N 15
Vol (15)
in the related direction. Another type grid points are known the Chebyshev-Gauss-
Lobatto points (Type II) are proposed by Bert et al. [4] and given by;

Xi
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%“%P"““ii;”} i=12, N (16)

4. NUMERICAL APPLICATION AND RESULTS

To verify the analytical formulation presented in the previous section; flexural
vibration of beams is considered. Beams subjected to different boundary conditions are
selected as the test examples to demonstrate the applicability and accuracy of the HDQ
method. The governing differential equation of beam is presented. The present
formulation is based on classical small deflection theory. Then, the harmonic
differential quadrature method has been applied to this differential equation. Results are
obtained for each case using various numbers of grid points. It is observed that the
convergence of the method is very good. Reasonably accurate results can be achieved
by using 7 and 9 grid points. The computational time on a standard PC (Pentium II
having 64 RAM) is less than 2 sec for all the cases. Following, several test examples for
different support conditions have been selected to demonstrate the convergence
properties, accuracy and the simplicity in numerical implementation of the HDQ
procedures. The numerical results for various type beam are tabulated (Table 1) and the
comparison of the present results with the exact values available in the literature.
4.1. Flexural vibration of elastic beams

When the beam is vibrating transversely, the governing equation of motion is

given by [20];
d*u
dx*
where u = u(X) is the dimensionless mode function of the deflection, X is the

dimensionless coordinate along the beam axis, and € is the dimensionless frequency.
Differential quadrature form of equation (Eq. 17) is given by

_ 02 =0 | (17)

N

b Dijungzu,:O i=34,..,N-2 (18)
J=1
In this equation Dj;is the weighting coefficient of the fourth order derivative. Numerical
applications have been done for a linearly elastic beam under five sets of different
boundary conditions, namely clamped-simply supported (C-S), clamped-clamped (C-
(), guided end- simply supported (G-S), clamped end-guided end (C-G), and cantilever
beam (C-F). Following, these boundary conditions are given.

Clamped end (C) - u= 0 and du/dX =0 (19a)
Simply supported end (S): w="0 and & w/dX* =0 (19b)
Free end (F): d*u/dX*=0 and du/dx’=0 (19¢)
Guided end (G): duw/dX =0 and d°wdx> =0 (19d)

Applying the differential quadrature approximation to the above equations at each
discrete point on the grid, we obtain their DQ form. For clamped (C) support

N .
=0 and ¥ A.y.=0 fori=1,2,.......... N 20)

I}
i=1
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For (S) boundary condition

N
w=0and ¥ B
j=1
For (F) boundary condition

=0 fori=12,.......... i (21)

L

N N

2 Bijujmo and 2 CJMJ,=0 (22)
j=r rero
For (G) boundary conditions

N N

2 Aljuj=0 and ¥ CUHJ:O (23)
i=l j=1

We have (N-2) equations from Eq. (18) and four equations from each beam support
conditions. By rewriting them, one has the assembled form [§]

e el

By some matrix operation, we obtains a typical standard eigenvalue equation
[s¥uut-@? {7 kuqi=0 (25)

where [S]= [S dd]“ [S db][S bb]‘l{s bd] and subscripts b and d indicate the grid points

used for writing the quadrature analog of the boundary conditions and the governing
differential equations of the system, £ is the non-dimensional frequency. In order to
simplify presentation S, C, F, and G represent simply- supported, clamped, free, and
guided supports, respectively. The transversely vibration of elastic beams with various
combinations of S, C, F, and Guided (G) boundary conditions had been investigated.
The first two frequencies of flexural vibration of a C-C, C-F, C-G, G-S, and a C-S beam
are given in Table 1, as obtained by the HDQ and DQ method. All results compare very
well with the exact solutions [19]. The present results were obtained for HDQ using
N=7 grid points. In all cases, the agreement between the compared results was found to
be good. It is shown that in this table, HDQ results using seven (N=7) grid points is
more than accurate than the DQ for nine (N=9) grid points. Reasonably accurate results
can be achieved by using 7 grid points in HDQ for Type-1I grid sampling in the related
directions. Chebyshev-Gauss-Lobatto grid points (Type-II) have been shown to be
consistently better than other choice under consideration.

Table 1 Comparison of non-dimenstonal frequencies ( ? *) for flexural vibration

Support Exact (Ref.19) DQ (N=9) HDQ HDQ
Conditions Type-11 (N=7) Type-I | (N=7) Type-II
QZ! QZ? Qzl 5222 'gzzf 922 QQJ QZZ?
C-C 4730 | 7.853 | 4.682 | 7.846 | 4.688 | 7.850 | 4.728 | 7.853

C-F 1.875 | 4694 | 1.870 1 4711 1 1.873 | 4691 1 1875 | 4.69%4
C-G 2.365 15498 | 2361 1 5.620 | 2360 | 5500 | 2.364 | 5498
G-S 1571 14712 | 1568 § 4.699 1 1.568 | 4.708 | 1.571 | 4.711

C-S 3.927 1 7.069 | 3920 { 7.114 | 3.923 | 7.101 | 3926 | 7.070
¥ 2= pd 14 2 /EI '
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5. CONCLUDING REMARKS

HDQ is recently proposed and there are only a few papers on this novel kind
differential quadrature. A harmonic type differential quadrature method was introduced
to study the free vibration elastic beams with various support conditions. The method of
HDQ that was using the paper proposes a very simple algebraic formula to determine
the connections weighting coefficients required by differential quadrature
approximation without restricting the choice of mesh grids. The known boundary
conditions are easily incorporated in the HDQ as well as the other type differential
quadrature. The discretizing and programming procedures are straightforward and easy.
In addition to this, choice of sampling grid points is one of the more important factors to
obtain the accurate results. The authors believe that the HDQ method may be extended
to the nonlinear problems in structural mechanics, including nonlinear static and
dynamic response analysis.
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