Mathematical & Computational Applications, Vol 9, No, 2, pp. 205-214, 2004
/4 Association for Scientific Research 205

EXTRAPOLATION METHOD FOR IMPROVING THE SOLUTION OF
FUZZY INITIAL VALUE PROBLEMS
S. Abbasbandy
Department of Maihematics, Imam Khomeini International University,Qazvin, Iran.
{abbasbandy @yahoo.com)
T. Allah Viranloo
Department of Mathematics Science and Research Branch,Islamic Azad University,
Tehran, Iran. (alahviranlo@yahoo.com)

Abstract - In this paper we apply extrapolation to increase the accuracy of
approximations to the solution of the fuzzy initial value problems, based on the standard
Euler method and Midpoint method, [11]. The method in detail is discussed and is
illustrated by solving some linear and nonlinear fuzzy Cauchy problems.
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1. INFRODUCTION

The fuzzy differential equation and the initial value problem were regularly treated by
0. Kaleva in [5],{6] and by S. Seikkala in [7] and others. The numerical method for
solving fuzzy differential equations is introduced by M. Ma, M. Friedman, A. Kandel in
[11] by the standard Euler method. The 2™ Taylor method is applied by S. Abbasbandy
and T. Allah viranloo in [14]. In section 2 some basic results on fuzzy numbers and
definition of a fuzzy derivative ,which have been discussed by S. Seikkala in [11] are
given. In section 3 we define the problem, this is a fuzzy Cauchy problem whose
numerical solution and to increasing the accuracy of approximations is the main interest
of this work. The extrapolation method is discussed in section 4. The proposed
algorithm is illustrated by solving some examples in section 5 and conclusion is in
section 6.

2. PRELIMINARIES
Consider the initial value problem

Y@ =ft,y@®);, a<gt<h,
y(a)=a. M

To apply extrapolation to solve initial value problems, a technique based on the
Midpoint method is used

. 2)
Wy, =W, + 2R (8, w,), i=1.
This technique requires two starting values, w, and w,. As usual, one can use the
initial condition for w, =y(a) = &. To determine the second starting value, w, , one can

apply Euler's method. Subsequent approximations are obtained from (2). After a series
of approximations of this type are generated ending at a value ¢ , an endpoint correction
is performed that involves the final two midpoint approximations. This produces an
approximation w(t,2) to y(¢) that has the form
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YO =wt.h)+ Y eh”, (3)
=]

where the e, are constants related to the derivatives of the solutions y(z). The important
point is that the e, do not depend on the step size ~ . Let us that we wish to

approximate y(f,)= y(a+ h). For the first extrapolation step we let 4, =5 and use the

Euler's method with w(z,) =« to approximate

Wa+h)=y(a +§),
as

W =W, + haf(a: Wo)s (4)
w,= L.

Then we apply the Midpoint method with z,=a and ¢, =a+h,=a +~g« to produce a

first approximation to y{a + h)=y (a +2h,),
Wy =W, + 2h, f (a + hy,w,).

The endpoint correction is applied to obtain the final approximation to y(a+ k) for
the stepsize h, This results is the O(hg) approximation for y(#,) and in this same

way, that will be discussed and extended in section 4. _
A triangular fuzzy number v is defined by three numbers a,<a,<a, where the

graph of v(x) ,the membership function of the fuzzy number v , is a triangle with base
on the interval [a,,a,] and vertex at x =aq,.

Let E be the set of all upper semicontinuous normal convex fuzzy numbers with
bounded r-level intervals. It means that if ve E then the r-level set

v], ={s|v(s)zr}, O0<r<l,
is a closed bounded interval which is denoted by

V1, =[vi (r).v, ()]
Let I be areal interval. A mapping y:I — E is called a fuzzy process and its r-level
set is denoted by

[y@®], =y &)y, 60)], tel, re(01]

Definition 2.1 - A function 5:[0,1] —[0,1] is a reducing function if s is increasing and
5(0)=0 and s(I)=1. We say that s is a regular reducing function if

i 1
jos(r)dr = >
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Definition 2.2 - If 1 is a fuzzy number with r-cut representation, (L(#),R (r)), and if
s is a reducing function then the value of y (with respect to s) is defined by

1
val ()= s(r)(L)+ R(r)dr.
Let be given the fuzzy numbers u and v, we say that g <v in case val (¢ )<val (v).

Definition 2.3 - The fuzzy distance function on F,8 :EXE—E , is defined by [13]

8 ()= sup {min (u(x),v()}
) K-yizz
For notational simplicity we will letitby 6, for each pair of fuzzy numbers u,v. It is

not difficult to see that if y,v€ E , and if the r-cut representations of 4 and v are
(a(r),b(r)) and (c(r),d(r)), respectively, then the r-cut representation of
8, (L(r),R(r)) is given by

max{c(r)~b(),0)  if —;-<aa>+b(1>)s%(c(1>+d(1)>,
L(r)=
max{a()-d(),0)  if é»(c(l)+d(1))<%<a(1)+b(1)>,

R(r) = max{b(r)~c(r),d(r)—a(r)}.
Lemma 2.1 - Let v,we E and [ scalar, then for any re (0,1}, [7],

v+ wl, =[v(r)+ w,(r), v, (r) + wy (1],

v —wl, =[v,(r) —w,(r),v,(r) —w ()],

fv.w], =Imin {v, (7). w, (r),v, (r) . w, (7),v, (7). w, (7,0, (F) W, ()],
max {v (r).w, (v, (r) . w, (), v, (). w, (7w, (r) w, (1)},

(vl =L[v],.

- 3.AFUZZY CAUCHY PROBLEM
Consider the fuzzy initial value problem

{y'(r):f(tsy(t))a teIW{O,T}, (6)
y(0)=c,
where f is a continuous mapping from R, XR into R and o€ E with r-level intervals

£y (0ir), 3, (0ir)], re (011
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The problem (6) is said to have a solution y(f) on I if y(f) is absolutely

continuous and satisfies in (6). The extension principle of Zadeh leads to the following
definition of f(z,y) when y=y(¢) is a fuzzy number

f&. )= sup (y(@)|s=f(t1)}, seR

e f 1,8
It follows that

Lf &), =LA@y L@y 0] re0.],
where
fi yiry=min{f (¢, u) [uely (r),y,(N]}, N
L@ yir)y=max{ft,u) juely (r),y,(N]}.
Theorem 3.1 - Let f satisfy - ‘
L~ F)|Sg@lv -, 120, v,veR,
where g(): R XR, — [O,+oo) is a continuous mapping such that r—g(t,r) is
nondecreasing, the initial value problem

u'(@)=gt,u(®), u)=u,, (8)
has a solution on R, for u,>0 and that u(z)=0 is the only solution of (8) for u,=0.

Then the fuzzy initial value problem (6) has a unique fuzzy solution.
Proof [7]. ' .
In this work we suppose (6) satisfies the hypothesis of theorem 3.1 From [11],
w,(t + I r)=w, () +RF (t, w,(6;7),w, (7)), '

wy(t + i r)=w, (67) + Gt w (57w, (557)), ®

(& + )=y, (1) hE(, 3, (1), y,(6;1)), (10)
W+ )=y, (1) +hG @R,y (57),y,(57),
Since the difference methods for the exact solutions are not hold as equality, where
F(t,u,v)=min{f ¢, y)|y€lu,v1}, (11)

G(t,u,v)=max{ f(t,y)| ye[u,v]}.
The following theorem will be applied to show convergence of these approximates ,i.e.,

lim,_, w (7, )=y, (t;r),
lim, , w,(t;r,R)=y,(t;r).
Let
K={(t,u,v) |0<t<T, —oco<y<oo,—oco< u<v},
Theorem 3.2 - Let F(t,u,v) and G(t,u,v) be the functions belong to C'(X), where u
and v are constants and #=<v. Then, for arbitrary fixed r, 0<#<1 , the approximately

solutions (6) converge to the exact solutions y,{#;r) and y,(#;#) uniformly in ¢.
Proofsee [11].
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4. EXTRAPOLATION METHOD
Let the exact solution y(t;r)=[y(t;r),y,(t;r)] of (6) is approximated by
wit,r)=[w,(&;r),w, ()], For r&(0,1], suppose
¥o =lor (r),a ,(r)] 12y
Let us assume the fixed step size & and we wish to approximate y,(t;;r)=y,(a+h;r),

for any re(0,1] and i=12. For the first extrapolation step we let A, =—§ and use (9

which approximate

yv{a+h,r)=y(a +%;r)

as
W, (Py=w, o (r) + Ry f,(a, w3 7), (13)
wf,(}(r);ai (r),

for any re(0,1] and i=12, where [w,], = [w, ;(r),w, ;(r)] for any j see [11], and

fit,,w(t,)sry= min{ f (¢, u) juew,¢,:r)w, (11},
£ wie, s ry=max{f(t,.u) luelw,( :r)w,(t, ;1]}

We then apply the Midpoint with f,=a and f,=a+h,=a +—g to produce a first
approximation to y,(a+h;r)=y,(a+2hy;r),

W, , (r)=w, o(r)+2h, f(a + By, w3 7),
for any re(0,1] and i=1,2. The endpoint correction is applied to obtain the final
approximation to yl.'(a+h; ry for any re(0,1] and i=1,2; and the stepsize h,. This
results in the O (h}) approximation to ,(z,;7) '

1
yi () =5 W (4w, () +hof @+ 2hy, wyin))
for any re(0,1] and i=1,2; where [y,1, =[y,(r),y,;,(r)]. We save the approximation

y}'l (r) and discard the intermediate results w;,(r) and w;,(r), for any re(0,1] and

i=1,2. To obtain the next approximation, y,,(r), to y(t,) welet h =—':ri and use Euler's

method initial values to obtain an approximation to y,(a+ h;r)=y.(a+ % 7) , that we
will call w,,(¥)
W (1) =w, o (N +h f{a, wysr), (14)

w (r)=a,(r),
for any re (0,1} and i=1,2.



210 S. Abbasbandy and T. A. Viranioo

Next we produce approximations w,,(r) to
y(a+2h;ry=y(a +~g-;r) and yi(a+3h1;r)myi(a+%;r)

given by

W (F)=w, (N + 2R fi(a+h,wir),
and

w s (r=w, (F)+2h fla+2h,w,;7),
for any re(0,1] and i=12. Then we produce the approximation w,,{r) to
yi(a+4h; ry=y/{t,;r) given by

w,,(F)=w, (r)+2h f(a+3h,w,;r)

for any re(0,1] and i=12. The endpoint correction is now applied to w,,(r) and
w, . (7) to produce the improved O (hf ) approximation to y,;(#,;7),

yi},z(r)m%: [W;,e;(r)'*'wf,?,(r)‘*‘]ﬁf;(a +4h,wir)l,

forany re(0,1] and i=1,2.
The two approximations to y,{a -+ h;r) have the property that

2 4

h h h h
yj(a+h,'r)myij(r)+ef',(r)( e )2 +e, o (r)( = )4 +,..m= yj',(r)-%ej_f(r)_——+e‘,,2(r)———‘+..., (15)
2 2 o 16
] i ' h‘ 2 ' h 4 I ' hz : h‘4
yi{athir)=y, {r}te U(r}(;) +e',r) 5) o= yy,(rite M(r)7+e ,)2(1*)?5-%-..., (16)
(at+hr)= “(me T RN ST L e P L Ky an
Y ; Yis L 3 12 ) Y2 N VI AR rr il
(a+hr)=y] (P +eé (r)(ﬁ)2+e* (r)(ﬁ)‘i-% = YLt r)+e (t'r)flj—+e' (z'r)——h4 +.(18)
¥Ya : Yaa 2.1 4 2,2 4 coe Yol AT 22 W15 T

and _
for any re(0,1], where [¢;], =le, ;(r),e, ;(r}].We can eliminate the 0 (h*) portion of
this truncation error by averaging these two formulas appropriately, for any re(01].

Specifically, if we subtract (15) from 4 times (17) and divide the result by 3 and repeat
this process for (16) and (18) we have

4

1 h
y:(a + h;r)myll‘z(r)%-g(y:\g(r)—yl‘k(r)l)—gzil(r) BZ'*‘uw

1 n
v,(a+h; r)myé,g(r)+§(yé,2(f‘)— Yo () —e'y, (1) TR

So the approximation -

1
yﬁz (r):y;,z(r)'*"g(y;.z (r)- y:'l_l (r)
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for any re(0,1] and i=1,2, has error of order O (h*). Continuing in this manner, we
next let 7, ﬂwz» and apply Euler method once followed 5. Then we use the endpoint

correction to determine the A° approximation that we denote y}j(r) ,to yla+thr),
this approximation can be averaged with y:'z (r) to produce a second O (h*)
approximation that we denote y7,(r) for i=1,2. Then y’,(r) and y},(r) are avefaged
to eliminate the O (A*) error terms and produce an approximation with error of order

O (h%) . Higher-order formulas are generated by continuing the process. The error is
controlled by requiring that the approximations yi‘,1 (r),y%,(r),... be computed until

|y (D=yL ()] and |y, (r)~y;.,(7)] is less than a given tolerance, for i=1,2. If
y;(r) and y;,(r) are found to be acceptable, then w;,(r) and w,,(r) is set to
vi;(r) and y,,(r) respectively, and computations begin again to determine
[w,(r),w,,(r)] which will approximate y,,=y,(a+2hr) for any re(0]1] and
i=1,2. The process ‘s repeated until w,, (r) and w,,(r) approximate y (b;r) and
y,(b;r) , for any re (0,1].

5. EXAMPLES
Example 5.1 - Consider the fuzzy initial value problem, [11],

y'=y®, rel=[0l],
y(0)=(0.75+0.25r,1.125-0.125r), O<r<l.
Using the Euler approximation with N =10 we obtain

w, (r)=(0.75+0.25r)(1+ {‘6)“’ ,

wz(l;r)=(1.125+0.125r)(1+—1%)1°.

The exact solution is given by
Y (&N=y,0me v, Br)=y,(0r)e,
which at =1
YA, =[(0.75+0.25r)e , (1.125-0.125r)e}, O<r<l.

The distance between the Euler fuzzy number and the Exact fuzzy number is a fuzzy
number that we called it g and also the distance between the Extrapolation method

fuzzy number and the Exact fuzzy number is a fuzzy number that we called it v. One
can see that

val (11)=26,7841 , val(v)=8.6646.
The exact and Euler and Extrapolation solutions are compared in Table 1.
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Table 1, Tolerance=0.001,h=0.5

r Euler Extra Exact
0.0 (1.687500,2.531250) (2.038710,3.058064) (2.03871,3.058067)
0.1 (1.743750,2.503125) (2.106667,3.024086) (2.106668,3.024089)
0.2 (1.800000,2.475000) (2.174623,2.990107) (2.174625,2.990110)
0.3 (1.856250,2.446875) (2.242580,2.956129) (2.242583,2.956131)
04 (1.912500,2.418750) (2.310537,2.922150) (2.310540,2.922153)
0.5 (1.968750,2.390625) (2.378494,2.888172) (2.378497,2.888174)
0.6 (2.025000,2.362500) (2.446451,2.854193) (2.446454,2.854196)
0.7 (2.081250,2.334375) (2.514408,2.820215) (2.514411,2.820217)
0.8 (2.137500,2.306250) (2.582365,2.786236) (2.582368,2.786239)
0.9 (2.193750,2.278125) (2.650322,2.752258) (2.650325,2.752260)
1 (2.250000,2.250000) (2.718279,2.718279) (2.718282,2.718282)
Example 5.2 - Consider the fuzzy initial value problem, [7]
y=ly®, 120,
y( ) =(r,1-1n(r)), O0<r<i.
The exact fuzzy solution y(¢) is defined on [0,7 gl with 7, =T~:—f§(ﬁ—) by
[y, =[x, @ r)y, 0], B <r<d,
Where
r 1-In(r)
Lrj=——— Lr)=————,
_ &) 1= 7 Y, (t:r) 1—(-In()

and ¢ s —0 as $--07, See [7]. The exact and Euler and Extrapolation solutions are

compared in Table 2.
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Table 2, tg =0.2, Tolerance=0.001,h=0.1

R Euler Extra Exact
0.0 (0.000000,Inf) (0.00000000,Inf) 0.000000,Inf)
0.1 (0.102020,6.323393) (0.102041,9.728272) (0.102041,9.728279)
0.2 (0.208162,4.372998) (0.208333,5.457783) (0.208333,5.457792)
0.3 (0.318548,3.413183) (0.319149,3.941250) (0.319149,3.941258)
04 (0.433306,2.804949) (0.434783,3.107118) (0.434783,3.107120)
0.5 | (0.552563,2.371791) (0.555556,2.560058) (0.555556,2.560058)
0.6 (0.676450,2.041527) (0.681818,2.165019) (0.681818,2.165019)
0.7 (0.805100,1.778117) (0.813953,1.861859) (0.813953,1.861864)
0.8 (0.938650,1.561196) {0.952381,1.619256) (0.952381,1.619261)
0.9 (1.077236,1.378229) (1.097560,1.419077) (1.097561,1.419079)
1 (1.221000,1.221000) (1.249999,1.249999) (1.250000,1.250000)
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6. CONCLUSION
The order of convergence Euler's Method is O (%) , [11]. Now in this method we can

get the higher-order of convergence, so that | y| (¢,;7)—y/™ (¢,; )| and
| y3 (2;39) =y (¢,.,37)| are less than a given tolerance. Therefor we can improve the
solution of FIVP arbitrary.
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