Mathematical & Comp;uzatfonal Applications, Vol. 9, No. 2, pp. 165-171, 2004 165
© Association for Scientific Research

PROXIMAL METHODS FOR GENERALIZED NONLINEAR
QUASI-VARIATIONAL INCLUSIONS

Salahuddin and S. S. Irfan
Department of Mathematics
Aligarh Muslim University

Aligarh-202002 (India)
salahuddin12 @mailcity.com

Abstract- We consider the solvability, based on iterative algorithms, of the generalized
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1. INTRODUCTION _

Variational inequalities theory, which was introduced by Stampacchia [14] in
1964, has emerged as an interesting and fascinating branch of applicable mathematics
with a wide range of applications in industry, physical, regional, social, pure and
applied sciences ( ¢.f. [5, 6, 8-10, 12] and references therein ). This field is dynamic and
is experiencing an explosive growth in both theory and applications, as a consequence,
research techniques and problems are drawn from various fields. An important and
useful generalization of variational inequalities is called variational inclusion, which
was introduced and studied by Hassouni and Moudafi [7].

In this paper we study a class of generalized nonlinear quasi-variational
inclusions with noncompact valued mappings and propose a proximal point algorithm
for computing its approximate solution. We prove that the approximate solution
obtained by proposed algorithm converges to the exact solution of our inclusion. Some
special cases are also discussed.

2. PRELIMINARIES
Let H be a real Hilbert space whose norm and inner product are denoted by | . || and
<.,.>, respectively. We denote by 2" the family of all nonempty subsets of H. Given
multivalued mappings A, S, T:H— 2%, single-valued mappings g, m :H — H and a '
bifunction N :HxH -— H. We consider the following problem of finding ue H, xe Su,
y€Tu and ze Au such that
g(u) ~ m{z) € dom df(.,u)
{(NEY),v-g)) 2 ¢(glw) - m(z), u) - (v, u), for all ve H, 2.1
where ¢ : HXH —> R U{+ <o} be such that for each fixed ve H, ¢(,,v) : HXH — R U{+
e} is a proper convex lower semicontinuous function on H and d¢ denotes the
subdifferential function of ¢.
The problem (2.1) is called generalized nonhnear quasi-variational inclusion problem
(GNQVIP).
Special cases- If ¢(u,v) = ¢(u), for all ve H, then problem (2.1} reduces to the following
generalized set-valued nonlinear quasivariational mclusmn problem (GSVNQVIP)
considered by Shim et al [13].
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(GSVNQVIP): Find ue H, x€ Su, ye Tu and ze Au such that
g(u) — m(z) € dom do and
(N(xy), v - g@) = o(gu) —m(z)) - ¢(v), for all ve H. 2.2)
In order to prove our main result, we need the following concepts and results.
Definition 2.1 [2]- Let H be a Hilbert space and GH — 2% a maximal monotone
mapping. For any fixed 1 >0, the mapping J%, :H — H defined by
I6,) = (1+1G )™ (u), forall u €H,
is called the resolvent operator of G, where I stands for the identity mapping on H.
Lemma 2.1 [1]- Let X be a reflexive Banach space endowed with a strictly convex
norm and ¢ : X — RuU{+ o} a proper convex lower semicontinuous function. Then
3¢:X — 2" is a maximal monotone mapping.
Lemma 2.2 [3]- Let G:H — 2% be a maximal monotone mapping. Then the resolvent
operator JGTl : H — H of G is nonexpansive, thatis forallu,veH
3% - 15m [ <fu - v
Definition 2.2- A mapping g : H — H is said to be
@) o - strongly monotone if there exists a constant o > 0 such that
(glu)—g(v),u-v) = a ||lu—v|? forall u,ve H;
(i) P - Lipschitz continuous if there exists a constant f > 0 such that
legw-gW|<Pllu—v]|, forallu,ve H.
Definition 2.3 [15]- Let $:H — 2" be a mapping. An operator N(.,.)HxH — H is said
to be relaxed Lipschitz with respect to S in the first argument if there exists a
constant ¥ = 0 such that
(N(x;1,) ~N(x2,),u~v) < & Ju~v| *forall x,€Su, x,€ Svandu,ve H.
Definition 2.4 [15]- Let T:H — 2" be a mapping. An operator N(.,.):HxH — H is said
to be relaxed monotone with respect to T in the second argument if there exists a
constant ¢ > 0 such that
(NC,y)~NC,y2),u=v) = cl]lu-v| % forall y,€Tu, y,¢ Tvanduyve H,
Defination 2.5 [4]- A mapping S:H — 2" is said to be Lipschitz continuous if there
exists a constant v > 0 such that
” X1~ X2 u < M(SU1 s Sug) <V ” uy— i " s for all Xi& Su; and e H, i =], 2,
where M(.,.) is Hausdorff metric on H. :

3. ITERATIVE ALGORITHM
The following Lemma 3.1 ensures that (2.1) is equivalent to a fixed point problem.
Lemma 3.1- The set of elements (u, X, y, z) is a solution of the problem ( 2.1 ) if and
only if (u, X, vy, z ) satisfies the relation :

g(u) = m(z) + 1% [ g(w) ~ 1 N(xy) ~m(@) ), 3.

where 1 > ( is a constant, o W= (141 3., u))™ is the resolvent operator of
00(.,u) and I stands for the identity mapping on H.

Based on Lemma 3.1, we see that generalized nonlinear quasi-variational
inclusion problem (2.1) is equivalent to the fixed point problem (3.1). The equation
(3.1) can be written as
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u= (1= u+ A [u-g(u) + m(z) + ¥ [ gw) - N(x,y) - m@)]}, (3:2)
where 0 <A< 1andn>0are both constants.
This fixed point formulation enables us to suggest the following algorithm.

Algorithm 3.1- Let g,;m:H — H be single-valued mappings, N:HxH — H a bifunction
and A, S, T:H — CB(H) be multivalued mappings, where CB(H) denotes the family of
all nonempty bounded closed subset of H. For given uge H, we take xo& Sug, yoe Tug,
Zp€ Aug and for 1 > 0, assume '

up = (1 = Aug + A [ug — g(uo) + m(zo) + I "0 [ glup) — m N(xo,y0) = m(zo)] 1,
where 0 <A <1 is a constant.

Since xo€ Supe CB(H), yoe Tuee CB(H), zoc Auge CB(H), by Nadler {11] there exist
x1€8u;, 1€ Ty, z;€ Au; such that

‘ Fxi — %o | € ( 1+ 1) M(Su;, Sug),
|yt —yoll € ( 1+ 1) M(Tu;,Tug),
|zt = zo | < ( 1+ 1) M(Au;, Aug),
where M(.,.) is the Hausdorff metric on CB(H). Let
w2 = (L= Aug + A fur ~ g(un) +m(zs) + 790 [ g(u) -0 Nexa,yn) ~ mizo)]l,
where 0 <A < 1 isa constant.

Since x,€Su;€ CB(H), y1€Tu;e CB(H), z,€ Au;e CB(H), there exist x,e Suy, y,&Tuy,
Z2€ Au, such that

I xi —xa < (1427 M(Su;, Suy),
ly1-y2 (1< (1427 M(Tuy, Tuy),
21—z 2] £ (1+27") M(Au, , Awy),
By induction, we can obtain sequences {u,}, {Xa}, {y.} and {z,} as
Ut = (1= Mg + A [y~ g(un) + m(zs) + 1%, [ g(u,) ~ 1 N(xo,yo) —mz)1 ], (3.3)
X Stn, || %n = Xart {| S (1+ (1 + 1)) M(Suq, Supu),

Y€ Tun, || Yo~ Yaer || £ (1+ (1 +1)™") M(Tuy, Tunu),
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2o€ Ay, || 2o = Zowt || S (1+ (140)7™) M(Au,, Augy),
n=012, ... , where 0 <A <1 and 7 > 0 are both constants.
4. MAIN RESULT

In this section, we prove the existence of solution of the problem (2.1) and the
convergence of iterative sequences generated by Algorithm 3.1.

Theorem 4.1- Let g:H — H be a strongly monotone and Lipschitz continuous mapping
with constants o > 0, f§ > 0, respectively and m:H — H a Lipschitz continuous mapping
with constant y>0.Let A, S, T:H — CB(H) be Lipschitz continuous mappings with
constants 6> 0, > 0 and p> 0, respectively. Let the bifunction N:HxH > H be
relaxed Lipschitz continuous with respect to S in first argument with constant k¥ < 0, and
relaxed monotone with respect to T in second argument with constant ¢ > 0. Let the
bifunction N(.,.) be Lipschitz continuocus in first and second argument with
constants & > 0 and ® > 0. Let §:HxH — R U {+  } be such that for each fixed ve
H, ¢(.,v) is a proper convex lower semicontinuous function on H. For each u , v, weH
and 1 >0, let

1329y (W) = 3% (w) || < pflu~v | and
if
[n = (e = )3 + wp)? | < [~ ¢) - g2 - (B + wp)T''* (B + wp) 7,

(k-¢)>@E+op) [q2-91'"2,

q=2[1-20+B 1" +2y0+n,q<1, @.1)
then there exist ue H, xe Su, y& Tu and z€ Au satisfying the problem (2.1). Moreover,

h =0, %=X, ¥n— Y, Zy—2Z asn—>oe,

where the sequences {u,}, {Xa), {y=} and {z,} are defined in Algorithm 3.1.
Proof- From Algorithm 3.1, we have
| arr = g || = | (1-AJun = (I-A)upeg + AL 0 = tneg = (8(U0) — g(Un-1)) + m(zn) — m(Zn-1)

+ I S [ g () ~ MNGRa s Yi) = (2] = I 0oLy [0 0o1) = INGR et ¥ 0e1) = (2
nwi)]] “

< (=) un =gt | A ] n — upog = (8QUn) — gu-1)) [+ A |f m(za) — m(ze-) ||
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+ A || 3%, (g (un) — MN(Xn , Vi) = M(z)] = % "0 (g ) = MNGX o1, ¥ 0t) — (2
n—l)] ”

+ 5P P T (e ) NNt > Yoot~ 1)]-T24C -0, [g(0 W )NNXK et ¥ net) =z
n—l)]”

S (3 =M ug = vy | + 24 [ 0a — Uper — (2000) ~ glun-1)) | + 24 || m(zn) — m(zp-1) ||

+ fﬁ‘« ”un ~Up—1 H +A H Uy — Upet — NINn, ¥o) = NX g, ¥ u) FNX g, Vo)~ NXy1,y
ax—i))”

<(1- 7\-) nun - unwlﬂ +2A I[un ~ Up-q —~ (g(un) — g(un-—l))“ + 2’}0\‘ "zn - Zn—-l" + Ml” Uy = Up-t

+ A, ” Up — Upp — n(N(er » YB) - N(X n-1» y n) + N(X n—1s y n) "'" N(X n-1,¥ n—i))" . (42)
By the Lipschitz continuity and strong monotonicity of g, we obtain
[t = et — (2(un) — g(un)) 7S (1=2 0+ B2 [ uy —ups |} *. 4.3)

Since A, S, T are M-Lipschitz continuous and N is Lipschitz continuous in first and
second argument, we have

NG, y) = NGt Y f €8 [0 — %ot || SSE(L+07 D Jun—upa ||,  (44)
BN et ¥o) = NE et Y- SO [¥n=Yor | SOp (L4 ) Jun—uns ||,  (4.5)

and
zo—2zost]] S 6 (140D Jfup—upy ] (4.6)

Since N is relaxed Lipschitz continuous with respect to S in first argument, relaxed
monotone with respect to T in second argument and (4.4), (4.5), we have

[l = g = NG Yo) = NK et Y) + N et ¥ ) = NE et s Yo 2 S fttn = 0 || 2
=21 (N(Xn, ¥n) = N(Xp1, ¥ )y U — Uneg ) — 2NN o1, ¥ o) = N(Xpet, ¥ pe1)s U — Upeg)
02 NGs, ¥0) = N(K -1, ¥ o) + NKper, ¥ o) = NG e, nct) |2
< o= v 1P = 205 | v — e || 24 2016 JJun = ey )2
+ M2 B+ op) (1 + 07 [Jup = ups || 2

ST1-2n(k - ) + 0 B& +wp)l’ (1 + 07 T [ un—ua-t || *
4.7
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From (4.2) - (4.7), it follows that

lunes —unfl <60 ]l un—vat ], (4.8)
where
Bi=Aqut+A[1-2nk-c) +n2 @B +@p) A +n) 112+ (1 -1
and
u=21-20+)"2+ 290l +n) + .
Letting

0=Aq+A [1-2Mmx—-c) +n? (B&+wpl 1V + (1 - M)

We know that 9,—> 0 asn — oo . It follows from (4.1) that @ < 1. Hence 6, < 1 forn
sufficiently large. Therefore (4.8) implies that {us} is a Cauchy sequence in H and we
can suppose that u,~» u€H asn— oo,

Now we prove that X, — X€8u, yo—> y€Tu and z,— z€ Au. In fact, it follows from
Algorithm 3.1, that :

%= Xea S E (L0 ) Jun = tnea |l
| ¥o = ¥a1 <A (1+ ﬂﬁl) | ug — ugt I,
I 2n—zna SO (14 nh fun—unt |

thatis {xa}, {va} and {z,} are also Cauchy sequences inH. Let X4 X, ¥a— Y, Za—> Z
as n — oo. Further, we have :

d(x, Su) =inf{ [|x - v : v &Su}
< || x— %a || + d(xa , Sw)
< [ x — %q || + M(Suy , Su)
< lx-%0+8 Hu—u]] »0asn— e
Hence x& Su. Similarly yé Tu, z € Au. From (3.3), we have

g(u) = m(z) + %9, [ gw) —n N(x,y) - m(z) 1.

Therefore, it follows from Lemma 3.1 that the set of elements (u, X, ¥, 2) is a solution of
that problem (2.1). This completes the proof.
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