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Abstract-High temperature coefficients of viscosity and heat conductivity of nuclear
matter are calculated on the basis of Chapman-Enskong approximation in the dilute gas
limit It is observed that increasing temperatures produce significant changes in
coefficients, ,
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1. INTRODUCTION

The properties of nuclear matter can be classified as equilibrium (like equation
of state) and non-equilibrium (like transport coefficients) properties. To describe
transport properties of a fermi system such as nuclear matter , one needs a transport
equation which describes the non-equilibrium process of the system [1-4]. Such an
equation was first derived by Boltzmann and modified Uehling-Uhlenbeck to include
Pauli blocking term [5].

To evaluate transport coefficients in the high temperature region, Boltzmann
equation may be used since mean field effects and Pauli blocking are negligible so that
the system can be viewed as a dilute gas [6]. Transport properties of nuclear matter at
high temperatures have recently been studied by Malfliet [6]. In this paper we study in
Boltzmann statistics limit. We derive the expressions for viscosity and heat conductivity
coefficients by using Chapman-Enskong method and mean free path approximation
with the hard spheres model. The viscosity and heat conductivity coefficients obtained
in this models are compared.

2. CALCULATION OF THE COEFFICIENT OF HEAT CONDUCTIVITY OF
' NUCLEAR MATTER
The heat conductivity involves the energy transport in nuclear matter [4]. The heat
conductivity k is given by Fourier’s law [7],
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The heat flux can be expressed as
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where « is EE . From equation (3) ; one may write
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Calculating integral values in equation (5), for the heat conductivity coefficient ; we
obtain
1
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where Q(g) = Zﬂfsin:‘ 61(g,0)dO, C,=3k/2m and G=g(m/4kT). Using the Chapman-

Enskong method with the hard spherés model of the particles one gets also density
independent expression as
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2.1 Mean Free Path Approximation
The elementary mean free path arguments [1} yield for the heat conductivity
coefficient that,

K= % ncul . (8)

K= %g-«q, (mnkT)% (6)
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Here we have taken £ = (no) , u=(3T/m)"? and ¢=3/2 where ¢ denotes mean free path,

n nucleon number density, ¢ specific heat per nucleon, ¢ nucleon-nucleon cross section
and u average velocity. Using this mean free path arguments [1] one gets
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3. CALCULATION OF THE COEFFICENT OF VISCOSITY OF NUCLEAR
. MATTER
The viscosity involves the transport of the momentum in nuclear matter, viscosity
7} is given by Fourier and Newton laws {6].
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where Pj is momentum flux. Using Chapman-Enskong method can be written [5]
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Using equation (10) and (12) , viscosity coefficient;
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The calculation of (14b) and hence of 1) goes along similar with x°, and one finds:
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Calculating of integral in equation (15) similar to equation (6) and using the Chapman-
Enskong method with the hard spheres model [9,10] of the particles one gets also
density independent expression as
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3.1 Mean Free Path Approximation
According to mean free path approximation viscosity coefficient is given

n= ~;—nmuﬂ a7

Using the same units in equation (9) one gets
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4. CALCULATION OF TRANSPORT COEFFICIENTS OF NUCLEAR
MATTER BETWEEN 40-100 MEV

Here, taking o =40mb, m =931MeV/c? and T=40-100MeV, According to CEM and
MEPA We calculated of transport coefficients of nuclear matter.

Table 1. Heat conductivity coefficient of nuclear matter between 40-100 MeV

T(MeV) K, (c/fm?) K grpa (/T K cag - Kypgps (C/f07)
40 0.107 0.044 0.063
42 0.110 0.045 0.065
44 0.112 0.046 0.066
46 0.115 0.047 0.068
48 0.117 0.048 0.069
50 0.120 0.049 0.071
52 0.122 0.050 0.072
54 0.125 0.051 0.074
56 0.127 0.052 0.075
58 0.129 0.053 0.076
60 0.131 0.054 0.077
62 0.133 0.055 0.078
64 0.136 0.056 0.080
66 0.138 0.056 0.082
68 0.140 0.057 0.083
70 0.142 0.058 0.084
72 0.144 0.059 0.085
74 0.146 0.060 0.086
76 0.148 0.061 0.087
78 0.150 0.061 0.089
0 0.152 0.062 0.090
82 0154 0.063 0.091
84 0.155 0.064 0.091
86 0.157 0.065 - 0.092
88 0.159 0.065 0.094
90 0.161 0.066 0.095
92 0.163 0.067 0.096
94 0.164 0.067 0.097
96 0.166 0.068 0.098
98 0.168 0.069 0.099
100 0.170 0.070 0.100
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Table 2. Viscosity coefficient of nuclear matter between 40-100 MeV

TMeV) 1, MeV/AM’C)  1ymp MeVADC)  Nypn ~Neme (MeV/Em’e)
40 26.712 27.850 ' 1.138
42 27.371 28.538 1.167
44 28.017 29.211 1.194
46 28.647 29.868 1.221
48 29.263 30.510 1.247
50 29.868 31.140 1.272
52 30.459 31.757 ©1.298
54 31.038 32.360 1.322
56 31.608 32.955 1.347
58 32.165 33.536 1.371
60 32.719 34.113 1.394
62 33.259 34677 1.418
64 33.792 35.232 1.440
66 34,315 35778 1.463
68 34.831 36.315 1.484
70 35.338 36.843 ©1.505
72 35.840 37.368 1.528
74 36.334 37.883 1.549
76 36.820 38.389 ' 1.569
78 37.302 38.891 1.589
80 37.779 39.389 1.610
82 38.248 39.878 1.630
84 38.712 40.362 1.650
86 39.169 40.838 1,669
88 39.621 41.309 1.688
90 40,068 41.776 1.708
92 40.512 42.238 1.726
94 40.951 42.696 1.745
96 41.386 43.150 1.764
98 41.813 43,595 1.582
100 42.240 44.040 1.800

5. CONCLUSION

It is observed from tables 1 and 2 that heat conductivity and viscosity coefficients
increase with increasing temperatures. As can be seen from these tables CEM values
greater than MFPA values for heat conductivity coefficient, but smaller for viscosity
coefficient. In addition to this, values of (& qpy - Kyppa ) A0 (Myrrpa ~ Mo ) INCrease with

increasing temperatures. It should be noted that the present results are valid only in the
high temperature region under Boltzmann statistic limit. To make a comparison
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between the present results and existing calculations let us take T=60 MeV. Then we
obtain (see table 1 and 2) K, =0.054 c/fm® and n,,,,=34.113 MeV/fm%, the
hyrodynamical predictions by Danielewicz [8] yield K, =0.055 c/fm%, 1,.,, =34
MeV/fm’c. However, we should point out that for calculation of transport coefficients
of nuclear matter It is necessary to know temperature region and its effects on transport
coefficients. Because the kinetic equations which describe the time evolutions of the
collision process are different at various temperatures.
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