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Abstract — The minimization of Boolean functions allows designers to make use of
fewer components, thus reducing the cost of particular system. All procedures for
reducing either two-level or multilevel Boolean networks into prime and irredundant
form have O(2") complexity. Prime Implicants identification step can be computational
impractical as n increases. Thus it is possible to get method in order to find the minimal
set of Prime Implicants of O(n) complexity instead of O(2").
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1. INTRODUCTION

The mmphﬁcaﬂon of Boolean expresslon can 1ead to more effective computer
programs and circuits. Minimizing expressions can be important because, electrical
circuits consist of individual components that are implemented for each term or literal
for a given expression, This allows designers to make use of fewer components, thus
reducing the cost of a particular system. A wide variety of single output and multiple-.
outputs Boolean minimization techniques have been explain in [1,2]. Most of these
techniques work on a two-step principle, the first step identifies all of the prime
implicants (PT's) and the second step selects the subset of PI's that covers the
function{s) being minimized [3].

The exact quantity of the end results of the identification process of all PIs can be
calculated only in separate cases. In particular, if each prime implicant includes exactly
{ones, [ zelos and [ don’t care symbols, then the power of the complete set of P1 is equal
M=(3 l)f/(l’) [1, 4]. For example, for I=1,2,3,4 M=6,90,1680 and 34650, respectively,
Since the number of PI's can be as Idrge as 3"/n for a function of n variables [3, 4].
Consequently the P identification step can be computational impractical as n increases
[3]. It is clear that all procedures for reducing either two-level or multilevel Boolean
networks into prime and irredundant form have 0¢2") complexity. [5, 6, 7, 8L.In this
paper, it is proposed the method of local determination of PI’s that covers certain ON
minterm of certain Boolean function. Since such minterm of n variables may be
included in maximum n one-dimensional cubes, the power of temporary result cubes’
set may not be overcome n [6]. Thus it is possible to get method in order to ﬁnd the
minimal set of PI's of O(n) complexity instead of O(2").

2. NOTATION

A multiple output Boolean function of n inputs and m outputs is defined as follows
(91  Inputspace: B={0,1}; Outputspace: Y={0,1dJ}; Function f: B" - Y™
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The value d (don’t cares) at output means that the value is unspecified, and a value
of 0 or I will be accepted to implement this part of the function. Such a function can be
represented by a list of PI’s. Each Pl contains an input part and an output part. Input
part: n literals can be {0,1,x}; Output part: m literals can be {0,1,d}. The input part
identifies the portion of the input space to which a cube (element} applies. The x in the
input part matches all the points of the function that have either a 7 or a 0 for this
variable (nonessential coordinate in cube interpretation).

In this paper it is developed a new simplification method for single-output Boolean
functions, for which; ' '

Input space: B={0,1}; Output space: Y={0,1,d}; Functionf: B" — ¥,
Son 1 The set of ON minterms any of that make the function equal to 7,
Sorr : The set of OFF minterms any of that make the function equatl to 0,
Sps  : The set of don’t care minterms. '

Algorithm proposed in this paper used the set Son and the set Sorr exactly, and the
set Spsno evidently.

3. CUBE ALGEBRA OPERATIONS USED IN LATERS
3.1. The Coordinate Subtraction Operation (Sharp Product)
The coordinate subtraction operation of cubes A=a;ay...a;...q, and B=b;b,...b;...b, is

executed in two parts. In the first part, the subtraction vector SV=A&B=v;vy...vi...v, 18
formed according to the following rules:

by
o If by=x or bi=a;, thenv;=Z | a X 1 0
e If a;=x and bi#tx, thenvi=b, X Z 0 i
o If a=b,, then v;=Y 1 Z Z Y
0 Z Y Z

In the second part, according to the coordinate values of SV, the result of the
coordinate subtraction is defined as follows:’

e If F v;=y then the subtraction operation is not possible, i.e. C=A#B=A

e If no J, vi=y exists and Viwow Voo € {01} exist, then Ehe_resuit of subtraction
- operation is the set {01020 Q5. Vit Oy B1O20 Qe Vit Lo e, A1 A2 g Vi 1o O ]

o If V4, v;=Z then the result of subtraction operation is empty, i.e. C=A#B=2

3.2. The Commutative Absorption Operation (A Operation)
The commutative absorption operation of cubes A=ayy...a;...a, and B=b;b,...b:...b,

is executed in two parts also. In the first part, the vector absorption
AV=AVB=v;v;..v...y, isformed according to the following rules:
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o If a;=b;, then vi=Z by x. 1 0

¢ If gi=x and b#x, thenv=G a

o If a=b,, then v;=Y X Z1l1 G | G

e If a#x and b=x, thenv=l 1 L y4 Y
| o 0 L 1Y | Z

In the second part, accordifag to the coordinate Valu_es_ of AV, the result of the
absorption will be defined as follows:

If 3, v;=y then the absorption operation is not possible, i.e. C=A 4 B={A,B}
If Vi, vi=ZthenA=B,ieC=A 4 B=A

If 5 v;=G and is not &, v;=L, then C= A 4 B=A

If #, vi=L and not i, v;=G, then C=A 4 B=B

If & v=G and & v;=L, then the absorption ope:ratmn is not pOSSIbIe, ie.
C*AAB {A,B} o _

* & & 5 o

Example:

A=x11x; B=x0x1 then AV=x1x0V xleuZYLG Ce= {xlx(), x0x1}
A=x11x; B=x11x then AV=x11x V x11x=Z7Z77; C=x11x
A=x1lxx; B=x1x1 then AV=xlxx V x1x1=£Z7ZG; C=x1xx
A=x011; B=xx1x then AV=x011 V xx1x=ZLZL; C=xx1x
A=xx0x; B=1xxx then AV=xx0x V 1xxx=GZLZ, C={xx0x, lxxx}

bl D

4. LOCAL DEFINITION OF PRIME IMPLICANTS

The complexity of determination process of PI's may be reduced by separating the
process of each of minterm from Sy set by each of minterm from So;  set [10, 11} The
existing of this possibility affirms the following theorem.

Theorem : If A=a;a;...a;..a, is any minterm from Soy set and B,‘:":b,i’)z...bj...b,‘l is‘
any minterm from Sory set then calculation of the PI’s covered minterm a by procedure
of K;—K, #By, i=1,2,...,m, Kp=xx...x, it is necessary and sufficiently preserving only all
such b, value of which is a 10g1ca} invert to value of corresponding a;. '

Proof Assume that q=>5b; for any coordinate j J- Then vi=x#b ;=a;. Consequently,
for a= b the difference cube formed on pair (a; b; ) contains the coordinate a;j which
shows that this cube does not contain the mmterm A. In this case, to prevent the
producing of cubes which does not cover minterm A, it is necessary to replace the b by
the symbol x. For a#x and b =x the difference cube on coordinate j is not fonned
Therefore the value of b is not changed. Thc version a/=x and b, ;ﬁx is not possible
since A is a minterm. If Q= b then vl—x#b b‘ma Therefore, in the case where_
a=b, the difference cube formed on coordmate ] certamly covered the minterm A. -

Usmg this theorem the minterm Bi=5b/ b _ b b, €Sorr can be transformed to cube

i

0= q,q;..9...q, by the following rules:

If b}=xthen q;=x; If a,=b;then q;=x; If bi=aj then‘qj‘:ﬂbj
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5. NEAR-MINIMAL COVER ALGORITHM

This algorithm based on operation defined in part 3.1 and 3.2 and on rules obtained
in part 4, The result of this algorithm will be one of the possible minimal form of
simplified Boolean function. It may be most simplificant or not most simplificant. But
this result may be sufficient in most practical applications where one or a few extra
product terms (AND gates) are not important. Generally, the nearlest of obtained result
to most minimal form depends on ordering of minterm in Soy set. However obtaining an
appropriate order is more difficult than obtaining an irregular PI set. The near-minimal
cover algorithm for any given Boolean function with any ordering minterms as follows:

1. PutlI=0,
2. Select the first minterm from Soy set, mark it by A and put I=/+1,
3. Transform one by one all of elements of Sopp set according to rule denoted in

section 4. Mark the result by 00,

4. Apply the absorption operation to Q0. Mark the result by 01,

W

Coordinate Subtract the set Q7 from the n dimensional full cube xx...xx. Where n the

number of variables of simplifying Boolean function. Mark the result by SI,-
6. Apply the Great or Less operation to the elements of ST set. Note that element ¢ is
greater than element Sif the set of Sy # ris powerless than the set of Soy # 5,
7. Remove all the powerless elements from SI. If the result is single element then mark
it by EI. Otherwise select one of them and mark it by £/, '

8. Put Son=Son#EI SPI=SPI U E]

Q. If Son#7then Go to 2,
10. END.

Example:
Let Sown;={0000, 000] 0100, 0101, 0110, 1000, 1010, 1110}, consequently, /1] =0000
Sorp={0010, 0011, 0111, 1001, 1011, 1100, 1101, 1111} -

1.1. Definition of sets Q0.7 and Q1.1

A1=0000

Sorr

Q0.1

 Cube Status

Ql.il '

0010

xxix

Prime

xx1x

0011

xx11

"Absorbed by xxlx

0111

xii1

‘Absorbed by xxIx

1001

1xx1

Prime

Ixx1

1011

1x11

Absorbed by xx1x

1100

11xx

Prime

1ixx

1101

11x1

Absorbed by 11xx

1111

1111

Absorbed by xx1x

As can be seen from thlS table :
Q1. 1={xxlx, Ixx], 1lxx}

- 1.2, Definition of cube set covered of the
“minterm 0000

SI=xex#QI=((xoxbol L
= (xx0x# Dex I J# 1 1 xx={0x0x,xx00}#

1 Ixx={0x0x,0x00,x000} ={ 0x0x,x000]

SI1={S1.1,51.2)={0x0x,x000}
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1. 3. Definition the greatest cube ' o _

PLI=Soni#S1. 1=8on#0x0x={0000,0001, 0100 0101 OI 10, 1000 ]010 I J 10}#0x0x )

={0110,1000,1010,1110}

PL.2=Son#S1.2=Son#x000={0000, 0001, 0100, 0101, 0110, 1000, 1010, 111 0}#x000
={0001, 0100, 0101, 0110, 1010, 1110}

' As seen the set P1.1 is powerless (4 element) than the set P1.2 (6 element)

Consequently cube Ox0x is greater than cube x000. Thus;

El=0x0x; SPI={0x0x} -

2.1. Definition of so far non ¢overed part of Sy set
Sonz=P1.1={0110,1000,1010,1110}. From here, A2=0110

A2=0110 | As can be seen from this table
Soer | Q0.2 | CubeStatus | QL2 | ©@1.2={x0xx xxxl, Ix0x]

0010 |x0xx !Prime- X0xx 2.2. Definition of cube sei covercd
0011 |x0Ox1 |Absorbed by x0xx of the mlnterm o1io

0111 [xxx1 |Prime Xxx1 -

1001 1001 Absorbed by x0xx SZ:xxxx#sz((xm#xoxx)#m“#

1011 [10x1 Absorbed by XOXX. o | Ixoxz(x]xx#mj')#IxOx

OO 1xOx |Prime - IXOX | =(xIx0#1x0x)={01x0,x1 10}

1101 | 1x01 - | Absorbed by xxx1- | . 5 o

1'111 Ixx1 | Absorbed by xxx1 .} §2={82.1,52.2}={01x0,x110}

2.3. Definition the greatest cube

P2 1=Son#S2.1=Son:#01x0={0110, 1000, ]O]O 1110}#01x0={1000, 1010, 1110}
P2.2=Son#S2.2=Sona#x 1 10={0110, 1000, 1010, 1110}#x110={1000,1010}

So P2.2 is poweﬂess than P2.1, i.e. cube x1.10 greater than cube 01x0. Thus; .

E2~x]]0 SPI-[OxOx x]]O}

3.1. Definition of so far non covered part of Son set
Son3=P2.2={1000,1010)}, from here, A3=1000

A3=1 000 ' '
Sorr | Q0.3 | - Cube Status QL3 | As can be seen from this table |
0010 | Ox1x |Prime Ox1x Q1.3={0xIx xxx] xlxx]
0011 | Ox11 | Absorbed by Ox1x 3.2, Definition of cube set covered of
0111 | 0111 |Absorbed by Ox()l ' the 1000 mmterm
1001 | xxx1 |Prime | oxxxl
1011 | "xx11 | Absorbed by xxx1 1 SB=xood#tQl=( (mx#OxIx)#xxxl #
1100 | x1xx |Prime T xixx | rlos({looooOxfood el
1101 | x1x1 |Absorbed by xxxl || = Axx0xx00/# xlxx={10x0,x000]
1111 | x111 | Absorbed by xxx1 SI3={10x0,x000}
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3.3. Definition the greatest cube
P3.1=8ons#10x0={1000,1010}#10x0= &
P3.2=8ons#x000={1000,1010}#:000={ 1010}
So the P3.1 is powerless than P3.2, i.e. cube 10x0 is greater than cube x000. Thus;

E3=]0x0; SPI={0xO0x, x110,10x0)}

4.1 Definition of so far non covered part of Son set
Sona=P3.1=. Consequently, the simplification process is completed.

6. THE ASYMPTOTICAL ESTIMATION OF PRESENTED ALGORITHM

As mentioned above, a certain minterm of function of n variables may be included
in maximum n one-dimensional cubes. Therefore, the power of temporary
(intermediate) result cube set which is formed by near minimal cover algorithm may not
be overcome number n. The truthful of this may be easily seen from the example
mentioned above.

To estimate, the proposed algorithm let s compare it with world wide Quine-
McCluskey method that consist of followings [1, 2]:

* Elements (minterms) of Syy set grouped according to the number of I°s contained.
This is dome by grouping the minterms into n+/ subsets. The first zeros subset
contains elements with no I’s, the first subset contains those elements that have only
one I, the second subset contains elements with two I’s, the nth subset contains
elements with n I’s in, accordingly. That is to say, the ith subset contains elements
with i I’s in it. Therefore, the power of ith subset is defined as,

P =C,

* All the minterms in one subset are compared with all the minterms of the next subset.
For example, the minterms of second subset must be compared only with the
minterms of third subset. Therefore the asymptotical quantity of comparison of ith
set with (i+7)th set and the total asymptotical quantlty of all these comparisons is
defined as,

sl
W, =ClxCH and  WI= ZC‘ XC'',  respectively.
¢ A certain minterm from ith subset has (n-i ) neighbors in (i+1)th subset. Therefore,
the asymptotical number of non empty results of comparison of ith subset with

(i+1 Jth subset and the total asymptotical quantity of this results is defmed as,
11
R =(n-0xC} and RT = Z (n-i)xC,,  respectively.
=0
As can be seen from mentioned above, the asymptotical number of all comparisons
and all of non empty results of the first stage of the Quine-McCluskey method is

defined as,

n=1 1|
WT =Y CixC}" and RT =) (n—i)xC} respectively."
i=0

=0
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In accordance with this formulation, the comparison of the near-minimal algorithm
and of the Quine- McCiuskey method for 7-20 variables is shown in the foiiowmg table

Table 1. Comparatlon of Compiemty Near~M1n1ma1 Cover Algonthm
with Quine -McCluskey Method :

~ | Near-Minimal
Qume—McCluskey Method Co Cover
. C : 2 - Algorithm’
Nuomfber Total Temporary Results .. Non Emé)tezg;;mporary Number of
Variables o Temporary
Asymptotical 02"y | Asymptotical Complexit Results (O(n)
Number Complexity| Number PIEXILY | Complexity)
1 1 %20 1| 0,50%2! 1
2 4 2#0° T 4] 1,00%2? 2
3 15 323 12 | 1,50%2° 3
4 56 4#04 32 | 2,00%2° 4
5 210 5%25 80 | 2,50%2° 5
6 792 6#2° 187 | 2,92%25 6
7 3.003 727 414 | 3,237 7
8 11.440 g2 . 893 | 3,49%28 8
9 43758 | 9%2? 1.930 | 3,77%2° 9
10 167.960 | 10*2" 4246 | 4,15%21° 10
11 n 646.646 1121 19516 | 4,65%2" 11
12 |- 2.496.144 | 12%212 | 21.542 | 5.26%2" 12
13 9.657.700 | 13%2" 48.764 | 5,95%2" 13
14 37.442.160 | 14%2! 109.581 | 6,69%2' 14
15 | 145.422.675 151 243.554 | 743%20 15
16+ 565.722.720 16%2!0 534.891 | 8,16%2!° 16
17 2.203.961.430 | 17%2Y 1.161.526 | 8,86%2"7 17
/18 8.597.496.600 18#218 2497440 | 9,53%2% 18
19 33.578.000.610 19#21° 5.325.568 | 10,16*2" 19
20 131.282.408.400 2042 | 11.280.076 | 10,76%2% 20

7. CONCLUSION

The new algorithm proposed in this paper produces the most minimal amount of
temporary results which may be kept in the fastest memory levels and can cause the
greatest performance in practical applications. By using the “Great or Less” operation
this algorithm select one by one.the essential Pl. Because each of implicants that
processed includes the given minterm, no redundant implicant appears and the special
covering operation becomes not necessary. The proposed near-minimal simplification
algorithm may be used independently and as subprocedure of the exact-minimal
simplification algorithm in that only extremely or the greatest single P is selected. In
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this case, the algorithm is repeated until emptying of Sox set. Note that as' the funttion
that is processed becomes highly simplificable, simplification process becomes more
and more faster. From this point of view, the proposed algorithm may be seen as
opposite to the Quine-McCluskey method with respect to some agpect. The related
program of proposed algorithm is implemented and shows reliable, robust and
‘satisfactory results. It can be said that the proposed algorithm that depends on
transformation method and presented in this paper is shown time effective, reliable,
robust and optimal characteristics in the llght of implemented program’s output.

3
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