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Abstract-Diffraction fields on the edge of a cylindrical parabolic reflector antenna are
exarnined. Firstly canonical problem is defined for the edge of the antenna and study is reduced
to a half plane scattering problem. Coordinate system is defined as the origin being the edge of
the reflector, so the feed became offset. Space is divided into two parts accm‘dmg to p and edge
diffracted fields are calculated for the region where © < 0,. Obtained pooﬂy divergent series
are changed into complex integrals for k—e and these integrals are solved in the same
conditions Uniform expression of edge diffracted field is calculated by using Fresnel integrals.

Keywords-Edge d1ffract1on Asymptotic Evaluation, parabolic’ reflector antenna, Fresnel
integral :

1. INTRODUCTION |

Let S be a half plane defined by Cartesian Coordinates x >0, y = 0, z€ (—eo,e0) in
a homogenous.and isotropic media. Such a plane disturbs the homogeneity of the space,
and affects the propagating wave. This affect is called as edge diffraction and the
problems, studying this affect, are named as half plane problem.
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_Figore 1. Geometry of incident, diffracted and reflected fields on en.edge

Figure 1 can be considered for a model of any edge diffraction problem [1].
Normal of the surface is discontinuous at the edge point. Solution is developed
according to the Geometrical Theory of Diffraction (GTD) (2], {31, [4]. For this reasot, .
we are interested in the dyadic diffraction coefficients. According to GTD, the incident
high frequency wave forms reflected, edge diffracted and edge stimulated wave on the
edge. @, is the diffraction point for the geometry in Figure 1. The ray, incident to the
edge, forms ed edge diffracted field and sr surface diffracted field according to the
Keller’s generalized Fermat’s principle. Surface ray causes surface diffracted ray sd,
which scatters from all Q points in the surface, for convex surfaces. ES is the boundary
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between edge diffracted rays and the surface diffracted rays and tangent to the surface
on point Q.. SB and RB are the shadow boundaries of incident and reflected field,

respectively. If all of the surfaces are illuminated, there will not be any shadow
boundary in the edge; instead there will be two reflection boundaries. There are
transient regions in the shadow and reflection boundaries and field changes very rapidly
for these regions.

For the half plane problem, there will be no ES boundary. Total electric field can
be written as : :

—

E=Eu+Eu+E, (L.1)

[t §

where E, is the incident field for empty media, E is the reflected wave when there is

only surface in the space and Ed is the edge diffracted field. u,andu_ represents unit

step functions of incident and reflected fields, respectively.

A significant point of the research activity is devoted to develop diffraction
coefficients within the framework of the Geometrical Theory of Diffraction (GTD), and
its uniform version (UTD), in order to broaden the class of practical problems that can
be treated by ray techniques. Whenever possible, uniform diffraction coefficients are
rigorously derived from the exact solution of the canonical problem that locally
approximates the actual structure. However, only few canonical solutions are known in
an appropriate analytical form; thus, in order to extend the applicability of UTD one
needs to resort to approximate solutions based on high-frequency assumptions. To this
end, different canonical problems have been recently con31dered including perfectly
electric conducting (PEC), loaded, and periodic structures.

2. CANONICAL PROBLEM CONCEPT AND ADAPTION TO PARABOLIC
REFLECTOR ANTENNAS

* Practically geometry of many bod;es is 'too complex to be expressed by easy
formulas. The calculation of the scattered field of such bodies will be too hard.
Asymptotic expression of problems which have complex geometry for finding the
definite solution can be calculated with the help of Keller’s fourth hypothesis. This
assumption states that diffraction of high frequency waves in space is a local
phenomenon. A canonical problem is defined by using this hypothesis. For a diffraction
point Q we will suppose that the physical properties of space and geometrical properties
of the scatter for a small neighborhood of the point Q don’t change and the solution will
represent the exact solution for Q. So we can model a complex body with the simple
problems that can be solved easily.

In order to find the scattered field at the edge of the cylindrical reflector, we can
“benefit from a perfect conductor infinite half plane which is located at the diffraction
point. This will be a first order canonical problem because only the tangent of the
diffraction point is taken into account. If the curvature of the surface at this pomt was
evaluated a second order canonical probiem would be defined.
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3. RADIATION FROM A LINEAR CURRENT SOURCE LOCATED AT THE
FOCUS OF REFLECTOR ANTENNA

‘An-infinitely long linear current source can be used as the feed of the cylindrical
parabolic reflector antenna. If the edge of the reflector is taken as the origin of the
- coordinate system, the feed will be offset for this system. This representation can be
seen in Figure 2. In the figure linear feed is parallel to the z axis. p, represents the

geometrical formula of the parabola in polar coordinates and is a function of ¢,. We can
write (x,y) instead of (x,,y,).
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Figure 2. Geometry of a cylindrical parabolic reflector antenna fed by a current source

Current density can be written by using delta functions for polar coordinates.
Since the electric current source is parallel to the z axis and the current flows in this
direction, there will be only the E, component of the field according to the Maxwell-

~ Ampere Equation. This component must prove the Helmholtz Equation with source as

1 ¢ oE 1 9°E 1.
—o—| Pt [H e HRE, = — jaul, 80~ 0, )5(9 - 3.1
pap[papJ+pza¢2+ =TI (o-m)se~4,) (31

where differentiation with respect to z is zero because of symmetry. This expression is a
inhomogeneous partial differential equation. The solution of such an equation can be
made in two steps. First homogenous solution is found by making the source term zero.
Then exact solution is obtained by including the source in terms of homogenous
solution. There are different methods for the second step. In this study we will evaluate
the source as a boundary condition of a homogenous equation. We can suppose easily
that the solution of the homogenous part will be an infinite series of eigen values and
eigenvectors. Series representation can also be found by solving the homogenous
differential equation with the separation of variables method. In every aspect, the
solution will give a Green's Function. We can write the series representation as

E, =Y Cu,(p)sinve (3.2)
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where C, is a function of ¢,. When we put (3.2) in (3.1) and solve the homogenous
part for o, two separate functions of u(0) will be obtained for two different regions. For
p < p,, the solution must be a Bessel Function and for 0= g,, it must be a Hankel
Function of the second kind for a time factor of e’. There will be integration
constants, which are the functions of g,, with these solutions. So two separate solutions

of E, is found for the homogenous equation. We will define boundary conditions in

order to obtain the exact solution. This solution will give the incident, reflected and
diffracted fields in space.

Two boundary conditions can be written for o = p, . Tangential components of

the electrical field will be continuous at the boundary. So two homogenous solutions
rust be equal to each other for p = p,. The integration constants, which are function of

£y » will be obtained from this condition.
As a second step, the source at o= o, will be included as a boundary condition.
We can model this source as '

J(r)= %"5(4’#—%)5 | (3.3)

where J,, is the surface current density. Difference of the tangential components of the

magnetic field at o =g, will be equal to this current density. If the rotational of the

homogenous solutions is taken according to Maxwell-Faraday equation and the surface
current density is written as a Fourier Sinus Series, C, can be evaluated as

v

@)
C, = ';JO sinve, - (34
which is a function of @, . The exact solation of (3.1) can be written as

E - o, ZHLZJ( kp, )J( ko )sinvg, sinve C PE0, 35)

2 5T ko, JH Y (kp ) sinve, sinve , 02,
where v will be found from the boundary conditions of the half plane. The tangential
component of the electrical field will be zero at the perfectly conducting surface for
¢=0a2and ¢ =27. Wecanfind v = % by using the field expression where 0 < p,. |

4. ASYMPTOTIC EVALUATION OF THE ELECTRICAL FIELD

_ The series representation of the electrical field in (3.5) is poorly convergent. For
this reason, evaluation of the reflected and diffracted fields is highly hard. Practically,
the series can be transformed to complex integrals for ko — e. The solutions of these

integrals will give the geometrical optics terms of incident, reflected and diffracted
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fields, which forms the total field. If asymptotic expansion of the Hankel Function in
(3.5) for p < p, and ko, — o is used,

/ 2wy g, S N
E = LB AN T (ko e * sin—d¢, sin— 4.1
* g, 2 Z %( 0) 2¢’n 2¢ (4.1)

n=

term will be obtained. The series can be represented by symbol I. Infinite series of /
converges rapidly for the small terms of kp. We can easily show that all of the
functions in [ can be expressed as exponential functions. There will be a complex
integral coming from the Bessel Function. According to the sign of ¢, we can write two
separate integral representations for two different contours in the complex plane. So
there will be two complex integrals in a series expression. All of the terms in the series
can be written as exponential functions of n which is the variable of the series. In this
way, summation of the exponential terms can be calculated by using different identities
{5]. As a result, we will have the form

ko cox 2 Z+(¢m¢) : Jkpeoszt Z+(¢-§_¢)
I = je”"” cotg[mwmrwgw}dz-— Ie"" cotgi:—————?——"—*}dz (4.2)

¢ ~C ¢,~C

where C, —C shows the difference of the contour integrals of Bessel Functions in
Figure 3.
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Figure 3. Integration contours for the electric field.

If C, is the total contour, we can express C, —C as
C,-C=C, ~(SDIC, - SDIC, ) (4.3}

from Figure 3. The contour to be determined is the difference of the total contour and
steepest-descent integral contours. There will be poles of [ in ¢ and the integral part
concerning the total contour can be calculated by using the residue theorem for the
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poles. Steepest descent integral contours can be obtained by evaluating the integrals in /
asymptotically for kp —eo. SDIC, and SDIC, are the steepest descent integral
contours passing from the saddle points at -7 and =, respectively. G. can be calculated
by using the residue theorem as

[£( 20" dz = 2253 Rea( 2=z, ) 4.4)
Cy n

where z, is the pole of {(z). The poles of f(z) which are in G are evaluated. In 4.2
integrals, f(z) is the cotangent function of ¢ and z, so poles will be the zeros of the
sinus function. In the region of the contour, we can write

L =-{0x4,) (4.5)

for the poles. From 4.5 we can see that n will be equal to two in 4.4. By using the
residue theorem for /, the total contour integral can be evaluated as

, P+ .
Jefk,ocox ot g[z + ( i— ¢0 )}dz — 27gef.kpc”°'(¢w") (46)

Cr

with the poles. This equation represents the incident and reflected waves of geometrical
optics. Steepest descent integration contour method [6], can be applied to the 4.2
integrals at the saddle point. Saddle points will be found by differentiating phase
function of 4.4 and equating it to zero. The solution of the equation will give the saddle
points as

2y =, 0, =7 4.7

for the region in G. Complex variable z can be thought of being formed from real and
complex parts. Phase function g(z) is expressed as real and complex functions by
writing z in such a manner. Steepest descent integration contour can be found by
equating the real part of g(z) to the real part of g( z, ). The convergence region will be

determined from the Img(z)>0 expression. SDIC, and SDIC, are obtained as a result of
these operations. The phase and amplitude functions (g(z) and f{z)) are expressed by
Taylor Series at the saddle point. If we are contended with the first two terms of g(z)
and the first term of f{z), the remaining part of the integral can be evaluated easily. The
total diffracted field can be written as

-jko s .
E, = 2@6 sin{ @/ 2 )sin{ ¢,/ 2 ) 4.8)
\/E;; cos @+ cos g,
which gives the edge diffracted field of geometrical optics. The incident and reflected

diffraction functions of the (4.8) form are referred to as Keller’s diffraction functions
and possess singularities along the incident and reflection shadow boundaries.
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Figure 4. Non-uniform edge diffracted field for ¢, = 30°.

The field diverges for 7z + ¢, as can be seen from Figure 4. This divergence can also be
_ observed for angles near transition regions. Solution is non-uniform for these reasons.

5. UNIFORM ASYMPTOTIC EXPRESSION OF THE EDGE DIFFRACTED
FIELD

4.2 integrals must be evaluated in a different way at the saddle points in order to
obtain a continuous asymptotic expression for the transition regions. The divergence at
the transition regions arises because of the zeros of f{z) in 4.4. For this reason, the
solution must be found in a manner to compensate the poles in the concerned regions.
The aim is to express integrals in 4.2 as Fresnel functions, which are continuous at the
transition regions. We can write —z instead of z and divide the integrals by two after
adding them [7]. After expressing trigonometric functions of z by a variable, the
integrals can be written as

ko2

e J—e—-———wdu (5.1)
I
T cos¢ % —-u

where T represents C, —C after variable transform. The method is expressmg the
integrals as the known identity

o _2:_3_ _
Je 2dy=+2n (52

-oo

and reducing them to a standard Fresnel integral form. As a result / can be obtained as

= —-jQﬁejge""’“’{F[\/jcos 4 2% J + F(\/:cos ¢ 2% H (5.3)

which is a sum of two Fresnel integrals. It is observed from Figure 5 that the divergence
in the transition regions diminishes. The reason is that the integrals were evaluated in



150 Yusuf Ziya Umul, Ugur Yalgin

3 ¥ T 3 T T t * H ¥ T ¥ T
T 1 z 3 4 [ £ r

Figure 5. Uniform asymptotic expression of diffracted field.

order to compensate the divergence when they were being calculated asymptotically.
The uniform expression of the diffracted field, which changes continuously from point
to point, is obtained.

An other method for the evaluation of the uniform expression is to multiply and
divide amphtude function, f(z), by (z-z,) and calculation of the integral by the

steepest descent method at + 7z saddle points [8].
6. CONCLUSION

As can be seen from Figures 4 and 5 the diffracted field at the shadow
boundaries gives finite values. This shows the evaluation of the diffraction integral with
Fresnel functions give the uniform field terms this type of evaluation is more exact from
the Keller’s diffraction coefficients which take infinite values form shadow boundaries
and at caustics.

In this study a canonical approximation for the edge of a parabolic reflector
antenna is made. So edge diffraction coefficient for a perfectly conducting edge was
found easily. The exact solution for a half plane problem is considered. It was shown
that the geometrical optics fields and the diffracted fields can be obtained from the
asymptotic evaluation of the poor convergent series by asymptotic techniques.
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