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Abstract- The problem of a ring-shaped crack in an infinitely long thick layer was
considered in this study. The problem was formulated for a transversely isotropic
material by using integral transform technique under uniform load. Due to the geometry
of the configuration, Hankel integral transform technique was chosen and the problem
was reduced to a singular integral equation. This integral equation was solved
numerically by using Gaussian Quadrature Formulae and the values were evaluated for
discrete points. Stress intensity factors were obtained by using these values. They were
tabulated for various ring—shaped crack sizes and transversely isotropic materials.
Keywords- Transversely isotropic, ring-shaped crack, stress intensity factor.

1. INTRODUCTION

Fiber reinforced composite materials and having hexagonal crystals materials such as
magnesium, barium-titanate and graphite-epoxy are called transversely isotropic. These
types of materials are considered some researches [1-4]. Chen has investigated stress
intensity factors in a finite length cylinder with a circumferential crack [5]. The griffith
crack problem was studied by Das et al [6]. The distribution of stress in a transversely
isotropic cylinder containing penny-shaped crack was studied by Parhi and Atsumi [7].
Dahan [8, 9] has investigated the stress intensity factors and stress distribution in a
transversely isotropic solid containing a penny shaped crack. Singular stresses in a
transversely isotropic circular cylinder with circumferential edge crack were examined
by Atsumi and Shindo [10]. Konishi {11, 12] studied crack problems in transversely
isotropic strip and medium. Fildig and Yahsi [13] determined stress intensity factors for
an infinitely long transversely isotropic solid cylinder containing a ring-shaped cavity.
Armn and Erdogan [14] investigated penny shaped crack in an elastic layer bonded to
dissimilar half spaces. R. Erdol and F. Erdogan considered a thick-walled cylinder with
an axisymmetric internal or edge crack problem [15]. Numerical calculation of stress
intensity factors in functionally graded materials was studied by Anlas et al [16].

In this study, the governing elasticity equation for the transversely isotropic
axisymmetric problem in cylindrical coordinates was obtained in terms of a Love type
stress function. Hankel transform was applied on the stress function because of the
geometry of the configuration and boundary conditions. The stress function was
expressed in terms of the governing equation. Once the governing integral equation was
obtained, the problem can be solved for any axisymmetric quasistatic external Joad.
This load may be mechanical, thermal, or residual in nature. Using the boundary
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conditions, the problem reduced to a singular integral equation. Using the Gaussian
Quadrature this singular integral equation was sofved. Then the stress intensity factors
at the crack tips were determined. :

The numerical results were obtained for axial loading and illustrated by graphs for
various ring-shaped crack sizes.

2. BASIC FORMULATION

Consider the axisymmelric elasticity problem for a transversely isotropic layer
shown in Figurei.
The equilibrium and the compatibility equations are expressed as
do, do,. o, -0, oo, . do. o,

; e - ! =) 1,2
> e 0 PR A (12)
o€, die, Jd'e, Iy
—&, = ’ b LB =) 3,4
b7 or &’ " at ckor G4

-~ .
MTM_.__. o
Figure 1. Geometry of the problem
For transversely isotropic bodies the strain components can be written as [17]
£, = a0, +a,0, +a,0, £y = U, O, + a0, +d,0, (5,6)
E: - a|30.r + alﬁmﬁi ¥ ﬂ33o-r. j/,-: = a44o-1‘: (7’8)
Where
£ —au" £ =4 £ =é/vm V. =£u_"—+éf 9,..,12)
o "7 T ko

Where «; {i,j=1.4} slastic constants for the materials considered in this paper are
given in Table 1. The aumerical values of the modulii ¢y (i,j=1..4) for magnestum and
barium-titanate found f+v Huntngton [18] werc used in this study.
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Table 1. Elastic constants ¢ in 1/GPa)

Material ajy Qs a3 a3 (gq
Magnesium 22.1 ~7.7 4,9 i9.7 60.3
Barjum-titanate 8.15 -2.96 -1.94 6.75 C 1831
Graphite epoxy 135.9 -45.4 -0.297 11.5 241.3
In terms of stress function O(r, 2}, the stresses mdy be expressed as
J* ¢, b, ¢ d* ¢, 1 @ . d'¢
o, = — o m—-— b—=- 13,14
' [ o F 3}” ﬁzz i i ot 1 g e 52_ ( )
a* qﬁ c a¢ %9 J* gb 1 ﬁqb
o, = +d — o 15,16
) ﬁz( XIS 7’ " o" I ﬁzz ( )
J°¢ d¢ 1 d*¢
u, =~(1-b)a, wa,g)(%) W a44[ ar r o +{ayd —2a,,a) — 5 (17,18)
Where the constants a, &, ¢, and d are
a{a,, - alZ?) ’ b= @y {Gyy + gy ) = ?12“33 (19,20)
Qa4 Qyy — Ay Aoy —dy
m“m(alz"aiz)'*"fwan , d = aui_aaz: (21,22)
gy — gy )y —dy

For a crack in a thick layer, it is necessary to select a Love type potential function
®{r,z) of the form

o(r,z)= J‘?L(m,e""}“" +m,e™™ +me™ +mye’ )J()(Xr)d?& (23)
G

with

54 = \/<a+c>im s ~\/(Mmm (24,25)
g T 23 ,

2d 2d

~where Jy(Ar) is the Bessel function of first kind. We find with the help of (13-18) that

=[x

0
1—as/ymse™™ + I—asi)m,s, e

0,(r.2) = jﬂf‘ (1-aspms (1= asp)m, |y (Ardi
wi~(1——as3 )m3s36- C4(1- a54)mdsqe

[ ~ 18, : ym, e (1 ——asgz)mze"'ﬂ’lz

+ (1 ~as, )me wi»(1—asﬁ)n'z“(:"""i“"'

}Ji (Ar)dA (26)

0

N ‘ (27)
MbJ‘ {m,se + 11,8, ]l(ﬂu)c!ﬁ»

6 [ Fmas, e+ my s
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o, = o]'/'iez (Sl3d - Slc)m]c?""’!"' + (S?_:‘d - Szc')mze"‘ziz JJO i %)

3 : s
+ (33 d~- s3c)mge"-"’z'Z + (sfd - 346}1148‘“’15

((a.md - 2“1.3‘1)512 —ly )mle""’k

W= o])b.w + ((asad - 2a§3a)522 y» )mze.\-yzz
o ¥ ((a33d ”261;361)532 —a, )'?138"3"15
i ((a33d ~2a,a)s,” ~ay, )’”46‘"4"?‘
(a44 - (a33d - 2‘11351)3‘,2 )mle.vzﬂ,z

é’-w—- = m/l‘t + (a44 - (Cl33d - 2a§3a)sz2)ng-“zﬂz
o o |t (a44 - (613361’ - 2al3a)s3"" )mse"-"k
+ (044 - (asad - 2al3a)542 ),n4e-¥4/%z

J o (Ar)dA (29)

J, (Ar)dA (30)

The perfectly isotropic materials can not be analyzed by making use of the
formuldtlon given in this problem.

3. FORMULATION AND SOLUTION OF THE PROBLEM
Let the ring-shaped crack be embedded in the mid-plane of thick layer. The

material of the layer is a transversely isotropic elastic-plastic. In practice, the upper and
lower surfaces are stress free.

o(r,th)=0 GA{r,th)=0 (31,32)
On the planezzo, it is required that _ :
O (r,0)Y=0 o > r > () (33)
w(r,0)=0 a>r>0 (34)
w{r,0)=0 o >rF>b (35)
ofr,0)y=-p(r) b, > r > a, (36)

Where the pressure p(r}=p, (constant) is prescribed on the crack faces.

For determining the unknowns m; (i=1..4) in (23) we need four independent
equations.Boundary condition (31) is substituted into (28), similarly (32) and (33) are
substituted in (26) so, three equations are derived as

Ay + A, + Aym, + Am, =0 (38)
Ay + Ayymy + Apmy + Aym, =0 (39)
Ay + Ay, + Agmy + Aym, =0 (40)

Where
Ay = d =500 Ay = (U ~as)e™ A, =(1—as?) i=1,.4 (41-43)
It is convenient to reduce the mixed boundary conchtmn to an integral equation. The
integral equation will be singular. In order to avoid a strong singularity in the resulting

equation, it is necessary to introduce a new function as the derivative of the

displacement w(r, z), rather than the displacement. The new unknown function will be
defined as follows,
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o= (44)
or
a, b, o
. jG(r)dr+ fG(r)dm jG(r)dr _ (45)
4 a, b,

From boundary conditions (34) and (35), condition below must be satisfied
b, _
[etrdr=0 (46)

Equation (30) is reduce;! as
(100 = (@t - 2ay,a)s,? e
"}”‘ 4 (ag54 - (a33d - za”a)szz )mzexzxz
o it (a«m —(ayd - 2a,a)s," )mBexaﬂz

+ (a44 - (asad - 25113“)542 )’"46““&
If B(A) is defined as
B(A) = (a,m - (a33d - 2“13‘3’)312 )’””1(’3'?"1Z + (a44 - (a33d - Zama)szz )mzeg“'l’?’Ic

J (ArdA = G(r) 47}

‘ ‘ (48)
+ (aM - (a33d - 2a33a)s32}n3e“3& + (a‘34 - (a33d - 2a13a)s42)m4e“‘&
Equation (47) is reduced as,
[ B, (Anda = G(r) | (49)
; :

By using inverse Hankel transform technique |
1 o
B = [06(0)],(Ap)dp (50)
0

~ If boundary condition (34,35) is substituted in (30) and using (46) we obtain fourth
equation following (38), (39) and (40) as
Agm, + Agym, + Agym, + Am, = B(A) _ (51)
Where :
Ay = (a“ —(@ayd ~ 2a,3a)s,.2) i=1,...4 (52)
m; (i=1..4) coefficients can be obtain in terms of B(A) by using (38), (39), (40) and

(51). Under condition (46), m; (i=1..4) coefficients are substituted in boundary condition
(36)

b . . .
[0G(0), Apydpl (Ar)dd  (53)

a

p(r)= ?A{(Slsd = s,c)m; + (32301 — $,C)Ht, }

§ 4G5 d ~s,0)my + (s, °d —s,0)m,
If M(A) is defined as follow
MAy = (s, d - s,00m, +(5,°d = s,0)m, +(s,°d — s,0ym, + (s> d ~s,0)m, (54
(53) is reduced as

o &,
p(r) = [AM(A) [pG(p)],(Ap)dpl(Arlda (55)
0 a, . .
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For larger values of A, M(A\) converges the M.. can be defined as

C,B -CB
imM Ay = 12t = (56
lim B,A, - B, A )
Where
C,=s'd-s,c, B =l-as’, A = (5144 ~(ad w2(¢,3a)s',.1) =14 (57-59)

{535) can be written as

h. e )
pr = [Glo) [paliM = m Y+ M1 Go)t  (ar)dadp (60)
a, 4]
After some manipulation, (60) is reduced as
b, -
~apir) = j{ﬁmk(n o 6o G
JLo=r J
Where
k(r, o) =M k (r,0)~ 7k, (r, 0) (62)
k (r,p) = mir, p)y-1 N nir, o) (63)
o—rF Jok g
() = [PAM QA= M 1 (Ap)d y(Ar)dA (64)
0
E(i} r<p
Jo,
m(r, o) = (65)

o r FO Ia

K and £ are complete elliptic integrals of first and second kind respectively. Note
that (61) has to be solved under the condition (46).

4, NUMERICAL SOLUTION |

1t is obvious that the first part of the kernel ki(r, p) in (61), has a simple logarithmic
singularity when r=p in the form 01" log ’ O-r f The second part of the kernel, o(r,p) is
boundcci in the closed interval «. £ (r,p) <b.. Thé unknown function G(p) is infinite
but integrable at p=t1, therefore the solution i is of the form {19].

G(0) = P ~a, )b, — p)] " (66)

A standard numerical technique can be used to find out the unknown function G(p)
[19]. To be able to apply the numerical solution technique to the singular integral
equation, it should be normalized. Normalization is carried out by the following
quantities: . -

- b.—a, b +a, _bo~a, b +a, o
I 5 7+ 3 o 2 7+ 5 | | (67,68)
Equations {61) and (46) become,
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-j; }G(.T)d'rj—“mf(??) ;[G(T_?)dﬂ_:() - ®
where .
Ken=2"eken | ()
Since ((7) has an integrable singularity, X .
G(D) = (1-1%)" ”ZF(z') S . .. (72

may be written.
- The solutzon of (69) is determlned by usmg single-valuedness condition in (70)

[20].
Substituting (72) mto (69) we obtain _ .
1 M F(7) - - |
pug B J?)}““?_‘}‘,T{ f(’?) , - . (73)
F(7) has to bc obtamed from (73) SllbjﬁCt&d 1o the smgie~vaiuedness condltlon
i .
Fm : . : ,
et (1 2 () ‘ C _ : : (74)
{ a-n*" -

Equation (73) and (74) can be evaluated by using the Gauss-—Chebyshev mtegratwn
formula [21]. Thus from (73) and (74) we obtain

Z F(z )[ +K(rk,?7, }ﬂ——f(n,) (r=len-1) 75
S ZF(n,)=0 o Y ¢
: o r=l . .
The coilocauon points are [22] - | , , |
T, = cos(Zk_ln“J tk=1,...n) - n, =cos[~f-7~€] (r=1.,n-1) (71,78}
2n ' n

The set of n simultaneous algebraic equations of (75) and (76) is solved and one can
find n of values for F(7;) (i=1..n). In order to determine the stress intensity factors at the
inner and outer crack tips, the values of F(+1) and F(- 1) are used. The values of F(+1)
and F(—1) are the first and the last elements of the set of F(1;).

The Mode I stress intensity factors at the crack tips are defined as . - _ o

k(a,)= llmq}Z(a, - r).o,(r,0) k(b)) = hm,/Z(r )0, (r O) (79,80}

e, r—sb,

k(ac) and k(b,) can also be expressed in terms of unknown function G(r}

K@) = limM.2a, ~1.G(r) = M_&. ~a ) [2F(-) @)

=i,

k(b,) = [imM o2 = 5,).G(r) = =M J(b, — @) 2.F (+1) (82)

reb.

The normalized stress zntenmty factors are [15]
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’ - k(a) , k(b)
k L] = ¢ Kb Y y N .
“ N S T B W (=P (83.89)

The normalized stress intensity factors are calculated for different transversely
isotropic layers contained a ring-shaped crack are tabulated in Tables 2..9.

5. NUMERICAL RESULTS AND DISCUSSION

In this study stress intensity factors were obtained for a crack by using equations
(81) and {82). Normalized stress intensity factors for different materials were given in
Tables 2-7. In these tables, k.=k’ (a.) is the stress intensity factor of the inner tip of
crack and ky=k’(b.) is the outer tip of crack. For these materials k, increases with a/h
ratios for fixed b/A ratio. Also for fixed b/h ratio k, decreases with ¢/ ratios. It can be
seen that the difference of k, or ks, between the materials considered were very small.
Stress intensity factors were effected the kernels k; and k» in equation (61). k; second
part of the kernel in equation (61) was related to material constants and smaller than k,
first part of (61) was related to crack dimensions. Thus, crack dimensions effected the
stress intensity factors much more than elastic constants for studied materials. Thus, the
difference of stress intensity factors k, or k; for these materials are very small.

48 33

Table 2. The normalized stress intensity factors for Magnesium at inner tip of crack “k,

blh=1 5 03 0.4 0.5 0.6 07 | 08 0.9
a/hd .

0.1 | 113274 | 1247464 | 1333907 | 1391554 | 1.424143 | 14375 | 1.437902 | 1.431023
02 1063146 | 1115202 | 1151349 | 1.171421 | 1.17839 | 1.176018 | 1.168094
03 1.039559 | 1.060548 | 1.087462 | 1.094453 | 1.093181 | 1.086147
04 - 1028191 | 1.047651 | 1.057447 | 1.058949 | 1.054372
05 1021348 | 103530 | 1.040015 | 1.04014]
06 \ 1017232 | 1.027874 | 1.03007 1
0.7 1.014381 | 1.022703
0.8 , . T . T 1012250

Table 3. The normalized stress inténsity factors for Magnesium at outer tip of crack‘ “ky”

bjh— | 0.2 0.3 0.4 05 0.6 - 0.7 0.8 0.9
adhl

0.1 |0.943745(0.918056] 0.892966 | 1.865859 | 0.838638 | 0.813062 | 0.790334 | 0.771628

- 02 _ 0.95905 | 0.930888 | 0.903375 | 0.87577 | 0.849307 | 0.825113 | 0.803781
0.3 0.967322 | 0.939964 | 0.912605 | 0.886144 | 0.860802 | 0.837513
0.4 : ' 0.972692 | 0.947054 | 0.921198 | 0.895934 | 0.87152
0.5 0.976235 | 0.953017 | 0.928588 | 0.904378
0.6 L 0.979177 | (.957794 | 0934638
0.7 ‘ ' , 0.981446 | 0.961575

0.8 _ 0.983217
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Table 4.The normalized stress intensity factors for Barium titanate at inner tip of crack “k,”

b1 50 1 03 0.4 05 0.6 0.7 0.8 09
afhl
0.1 1011225/ 1.165069] 1,184014 | 1.19568 | 1.212702 | 1.235948 | 1.262539 | 1.292189
0.2 §.048387] 1.065205 | 1.062803 | 1.05815 | 1.061836 | 1.074419 | 1.091927
0.3 1.027999 1 1.028304 | 1.01484 | 1.004014 | 1.002536 | 1.008384
0.4 1.017318 | 1.010498 | 0.992696 | 0.976727 | 0.969027
0.5 1.011235 | 0.999216 | 0.975454 | 0.955238
0.6 £.006427 | 0.989785 1 0.963610
0.7 - 1.003585 | 0.985168
0.8 ' 1.001326
Table 5. The normalized stress intensity factors for Barium titanate at outer tip of crack “k,”
b= g2 | 03 0.4 05 0.6 0.7 0.8 09
a/id
0.1 10.92887910.877762| 0.834442 | 0.798164 | (.773324 | 0.755274 | 0.74089 0.729829
0.2 0.947997| 0.808395 | (.850984 | 0.814993 | 0.788228 | 0.767724 | 0.75228
0.3 0.957346 | 0.908712 | 0.863223 | 0.825242 | 0.795952 | 0.77535
0.4 0963189 | 0.917246 | 0.869689- 1 0.830219 | 0.802032
0.5 0.966378 | 0.920898 | 0.873672 | 0.835686
0.6 0.969047 | 0.924721 | 0.878452
0.7 0.971386 | 0927791
0.8 0.972741
Table 6. The normalized stress intensity factors for Graphite-epoxy at inner tip of crack “k,”
bl 9o 1 03 0.4 0.5 0.6 0.7 0.8 0.9
ahl
01 |1.110816] 1.15961 | 1.166127 | 1.16112 | i.161872 | 1.17272 | 1.192015 1218199
0.2 1046561 ! 1.057603 | 1.047054 | 1.033093 | 1.027482 | 1.032593 | 1.045737
0.3 1.026819 | 1.024249 | 1.005851 | 0.988034 | 0.979222 | 0.979545
0.4 1.016739 | 1.007673 | 0.985532 | 0.963812 | 0.950245
0.5 [.O10673 | 0996892 | 0.969809 | 0.944592
0.6 1.006124 | 0988093 | 0.958445
0.7 1.003194 | 0.983033
0.3 1.000912
Table 7. The normalized stress intensity factors for Graphite-epoxy at outer tip of crack “k,”
b1 00 | 03 04 | 05 06 | 07 08 | 09
a/hd
0.1 10.928224 |0.872914 | 0.824935 | 0.785985 | 0.758615 | 0.73889910.723924 | 0.712826
0.2 0.046487 | 0.894198 | 0.844479]0.805174 | 0.775485 | 0.753087 | 0.730556
0.3 0.056541 | 0.9063270.85784210.816737]0.784552 1 0.761365
0.4 0.962669 | 0.91502210.865223 | 0.8226 10.790609
0.5 0.966419 1 0.91936 |0.8695860.827626
0.6 0.968784 | 0.92305 |0.873852
0.7 0.970982 | 0.925949
0.8 0.972386
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