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Abstract- All rotating shafts, even in the absence of external load, deflect during

rotation. The magnitude of the deflection depends upon the stiffness of the shaft, its

supports. and also upon the load level, In this paper, a complete study of the effect of _‘
shaft elasticity or stiffness coefficient on the performance of a slip energy recovery

drive (SERD) has been presented. The elastic shaft model is derived through the use of
Lagrange formulation and it is incorporated into the slip SERD model. A computer

program is deVeloped to analyze the complete performance of the drive including the

effect of shaft elasticity. A load torque that is a quadratic function of the shaft speed is

assumed throughout the analy51s Numerous computer simulations were carried out to
illustrate the performance of the SERD with elastic transmission for different stiffness

- coefficients of the shaft material, taking into account the effects of changing the

modulus of elasticity and shaft dimensions.
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1. INTRODUCTION

The deflection of the rotating shafts is a function of speed; and they show some
maximum values at so-called critical speeds. For any shaft there are an infinite number
of critical speeds, but only the lowest (first) and occasionally the second are generally'
of interest to the designers. The others will usually be so high as to be well out of the
range of operating speeds. The shafts are classified according to the first critical speed.
A flexible shaft is the one which operates close to, or beyend its first bending critical
speed, for dynamic effects to influence the shaft deformations. On the other hand a
shaft which operates substantially below its first bending critical speed is considered to
be a rigid shaft. Those shafts that are made of materials with higher Young’s modulus,
E, are regarded as rigid ones[1].

From material stand point, if the same materials are used for either type of
design i.e. elastic or rigid; then the geometry of the shaft will have effect on the
stiffness of the shaft. The greater the stiffness of the shaft the less it will twist for a
given torque transmitted through the shaft. As consequence, it is important to
distinguish between material properties and design properties because they may be
varied independently. We may define a stiff material as one with a high value of E,
whereas a stiff design is one with a high value of second moment of area of the cross
section, J; i.e. a dimension of the shaft.

For electric motors designs, shafts are deagned as flexible such that the operating
speed is at least 10% higher than the critical speed [2]. So the shaft is only at critical
speed where it flexes for a short time when coming up from standstill to operating
speed or coasting to a stop. This is why these types of shafts are acceptable to the user
since the shaft is flexing only for a few seconds while the shaft speed passes through
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the critical frequency. This gives opportunity to use less material and hence reduce the
capital cost of the shaft and of the machine as overall. Shaft designs having long length
with small diameter are cheaper than that of large diameter and short length. That is

because the cost is directly proportional to tha& X L st » 1.€., COSt gOES up in proportion

to the square of the diameter.

Elastic shafts are popular today because as it is mentioned previously, their use will
allow the designer to design a smaller machine thus saving money. They are usually
used for induction motors of large horsepower i.e. greater than 300HP and two pole
machines [3]. _

Some recent research efforts have been devoted to considering the effect of elastic
transmission on the performance of electric drive systems {4,5]. The behavior of a
speed control system for electrical drives with elastic transmission were analyzed [4]
taking a constant stiffness coefficient to represent the elasticity of the shaft. Analysis of
a speed control system for electrical drives with elastic transmission based on Bode
method is described in [5]. However, in previous investigations the effect of elastic
shafts on the performance of the SERD did not receive any attention.

In this paper, therefore, the effect of flexible shafts on the performance of the
SERD will be studied in details. Following the mathematical model of SERD, the
behavior of elastic shafts will be modeled using Lagrangian formulation and finally it
will be incorporated into the SERD model. The total system behavior will be
demonstrated numerically using MATLAB [6].

2. MATHEMATICAL MODEL OF SERD

Figure 1 shows a schematic of a slip energy recovery drive. A slip-ring induction
motor is connected to a three-phase uncontrolled rectifier, which is cascaded to a line-
commutated inverter via a smoothing reactor. The AC side of the inverter is fed back
to the supply through a step up transformer. .
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Figure 1. Schematic representation of a slip energy recovery systefn
The drive has been simulated using the hybrid dg-abc model as follows [7,8]:
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where 1dq,1qs,1,ir,1br,1cr,vds,vqs,v v,.,V, are the stator and rotor currents and

ar?
voltages in ‘hybrid’ reference frame, respectively.
The electromagnetic torque can be obtained for the induction machine in
‘hybrid’ reference frame as given below;
AP(JE .

T ma “‘é‘lds'M (xcr )~ %i;;‘M'(icr+‘ibr"2iar)J T ‘ @)

From the equation of motion one can write:

Sl e

where T, is the load torque, J is'the moment of inertia and B is the coefficient of

friction. :
The three-phase uncontrolled rectifier is modeled assuming an overlap angle less
than n/3 as in-[8] with twelve conduction states based on the rotor slip-ring terminal
voltages and currents. The three-phase bridge inverter is modeled and examined based
on the theory presented in [7]. It is assumed that the ac supply and step down
transformer have negligible commutating reactance. -

3. MA’I‘HEMA’I‘ICAL MODEL OF THE ELASTIC SHAFT

The calculus of variations provides an alternative characteristic of the motion of
mass particles in the form of Hamilton’s principle. Often the variational -
characterization is actually more effective for determining the motion of a dynamic
system [9]. The derivation of the equations of motion can be obtained from variational
principles applied to energy functions. There are a number of different energy
functions (e.g. the Lagrangian, the total energy), which can be used as an energy
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function. In this paper modeling of the shaft motion is mainly based on the Lagrangian
that is a function of the generalized coordinates (non-Cartesian) and the associated
velocities [10]. 4

The motor, shaft and load system shown in Figure 2. The motor has inertia
constant J,, and it generates electromagnetic torque of T,. The load has inertia

constant of J, and a load torque T . The load is coupled to the motor through an
elastic shaft with stiffness coefficient K.
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Figure 2. Motor-load drive system with flexible shaft

The geometric configuration of the system is determined compietely by the
generalized coordinates 6, and 6, i.e., the rotational angles at the two ends of the
flexible shaft and their associated angular velocities are @, and @, . The kinetic
‘energy of the drive system is given by:

1 . I _
KE:EJ ‘wiﬁ"i%'fﬂi (6)
Next, the potential energy is given as:
L
Pe :EK(GH _91’2)2 (7)
where the stiffness coefficient K is given by [11}]: _
. . 8
K=o | | ®)
) Lshaﬂ

where G, is the shear modulus, J; is the moment of inertia and Lpn is the length of the
shaft . - ' o '

The Lagrange equations of motion for a non-conservativé mechanical system is
given by [10}:
ddL,, dL,
nluiod. St T o LN i=1,0,n o
&g, g, D : | O
where L, is the Lagrangian and are QY the generalized forces, q;’s are generalized
coordinates. In our system we have two generalized coordinates, ie.,
q, =6, andq, =0,.
Therefore, Lagrangian follows as:

_ - . 1 _ .
Ly =K, =P, =Ty +20,05 K0, o) a0

- The generalized forces are:
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Q?wz :[Te WTL] (11)
hence, Q] =T,, Q5 =-T,

In order to find the Lagrange equations of motions, at the two ends of the flexible
shaft, we need to find:

dL,, oL dL. oL :
ag Ol d ( “gj and d ( - J which are as follows:
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ot s ] om,
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aLng aLag ;
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%, do, -° (13)
dfdL, do |
el - a; = J . t)
dt( 9, ] "odt - e
oL

,fl.. e =JL.dmﬂ (17)
dt| d@, dt

Substituting of Equations (14), (15), (16) and (17) into Equation (9) leads to the
following equations of motion:
do

v . - - ]
IM dt +K (eri et@) Tc . ) (18)
dom,.
I dt2 _K'(erl "ex-z)m’“TL (19)
By arranging the above two equations; the following four equations will be found:
do, I
?_J_M_[Te —_—K‘(erl—erz)} . (20)
do, 1 21)
—*%=—|K-0,~0,)-T
dt JL [ ( rl l’Z) L]
B, (22)
dt
oy _ (23)
dt

Equations (20),(21), (22) and (23) represent the mathematical model of the
elastic shaft and these four equations will replace equation of dw,/dt that appears in the
hybrid model for each of the six rectifier conduction states that are given in [8].
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4. APPLICATION EXAMPLE

A 7.5KW, 415V, 14.2A, 50Hz, 4 pole slip-ring induction motor coupled to slip
energy recovery rectifier, inverter and transformer has been taken as application
example. The motor parameters which all are referred to stator side are as follows:

R, =0143Q L, =00371H R,=0191Q L, =00371H M =0.0288H
DC link reactor has parameters as:

R, =020 L, =0.039H
The recovery transformer has turns ratio of a =0.59and magnetizing reactance of
Kw=1798 and the thyristors that are used in the recovery inverter are having holding
current of L;=0.5A.

A simulation computer program has been prepared to simulate the system described
in sections 2 and 3. The full performance of the drive has been demonstrated. In order
to investigate clearly the effect of flexible shaft, the performance of SERD is computed,
for several values of stiffness coefficient and results are compared in the following
sections. :

The slip-ring induction motor with a flexible shaft model has been started through a

shase bank of external resistors and run up until equal speeds of 109.8 rad/sec are
reached at the both ends of the shaft, i.e., full equilibrium is reached at steady-state
operation. The load torque connected to the induction motor via the flexible shaft is
given oy
TL = ki ' wr? + k2 ’ (0‘)1‘2 )2 (24)
where values of the load torque coefficients are:

k, = 0.04 Nm/rad/sec and k, =0.0023 Nm/(rad/sec)’

After reaching the steady-state speed, the slip energy recovery system has been
connected by switching rotor terminals from resistor bank to recovery rectifier. Th-
inverter-firing angle has been adjusted to a vaiue of 101°,

To study the effect of different stiffness coefficient, K, the performance of the drive
system is calculated for three different values of K, i.e., K=450Nm/rad, K=297Nm/rad
and K=45Nm/rad and the results are compared in Figs.3 to 7.

From Fig.3.a it is clearly seen that with a stiffness coefficient K=450Nm/rad, which
is considered to be a high value at which the shaft performs almost as a rigid one, the
angle difference at the shaft endpoints starts with a small value and once it is connected
to the recovery circuitry, it oscillates until it reaches the steady-state. At steady-state
the amplitude of the oscillations attenuates to a very small value with an average of
0.077 radians (almost 4.4 degrees). It is obvious that the value of the angle from the
motor side 0;), is always having values greater than the angle from the load side 0,4,
which is expected to be so. :

Further decrease in the value of the stiffness coefficient, K=297Nm/rad, will
increase the difference between the angular displacements on both shaft ends. This is
shown in Fig.3.b. It is clear that the starting transients have been increased in
magnitude compared to Fig.3.a, and as it reaches the steady-state, the oscillations wil}
have smaller deviation from an average of 0.117 radians (about 6.7°).

It is clearly seen from Fig.3.c that with further reduction of K, which means more
flexible shaft, smooth oscillations takes place during transient period but the amplitude
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Figure 3. Difference of the mechanical Figure 4, Difference of the mechanical
angles on both endpoints of the shaft. speeds on both endpoints of the shaft.
a) K=450 b)K=297 c¢)K=45 a) K=450 Db)K=297 ¢)K=45

of the oscillations are increased significantly. The amplitude of the steady-state
oscillations is also increased to a higher value with an average value of 0.77 radians
(about 44,12°).

Fig.4 shows the effect of the corresponding difference of the angular velocities for
stiffness coefficients, K=450Nm/rad, K=297Nm/rad and K=45Nm/rad, respectively.
Close observation theses waveforms show that unlike the difference between angles,
the speed difference at the both ends of the shaft increases and decreases again as K is
reduced, which means that there is a certain X which makes the speed difference
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maximum. Also we observe that the speed from the motor side might be higher or
lower than the value of the speed from load side until the difference vanishes. At the
steady-state operation, the average value of the speed difference will be almost zero. In
case of more flexible shaft, the amplitude of the oscillations of the speed difference
drops to very small values at steady-state operation.

The value of the stiffness coefficient K is affected by the shaft dimensions i.e.
the length (Lhan) and the diameter (Dg,,q). Thus as the value of K is decreased, then
this means that the shaft diameter (Dg,q) is decreased or the shaft length (Lpan) is
increased or the modulus of elasticity is decreased. Decreasing the shaft diameter will
result in reduction of the cost of the shaft, which is considered as an advantage,

For the same Young’s modulus of the shaft material, the stiffness coefficient K
variation is achieved through the change of the shaft dimensions. For instance, for
K=450Nm/rad, the shaft diameter is 3 cm and the shaft length is calculated as 9 ¢cm for
a shaft’s material of Young’s modulus, E=1.38GPa and Poisson’s ratio (v) of 0.32. But
for the same material and same shaft diameter, for a stiffness coefficient K=297Nm/rad
the shaft length is calculated as 14cm, and for the stiffness coefficient of K=45Nm/rad,
the shaft’s length is found to be 70cm. Therefore as the stiffness coefficient K

reases for the same material and same diameter, the shaft length (L, . } increases.

shaft
In this case, the diameters of the shaft of a constant length of 70cm will be Scm, 4.5¢m
and 3cm for K=450Nm/rad, K=297Nm/rad and K=45Nm/rad, respectively for a shaft
of the same Young’s modulus. Therefore, whenever the cost of the system is important
it is recommendable to.use relatively longer shaft with smaller diameter, as long as the
shaft will not face shaft fatigue and deflection for a given maximum load torque.

The effect of stiffness coefficient on the de link current of the drive are
depicted in Figs.5.a, 5b and 5. for stiffness coefficients of K= 450Nm/rad,
K=297Nm/rad and K=45Nm/rad, respectively.

From observation of these figures it becomes evident that as the shaft becom+
more flexible, i.e. K decreases, the transient peaks of the dc link current decreases ai
they converge to the same steady-state amplitude whereas the transient time duration is
prolonged.

The effect of the stiffness coefficient on the load torque is shown in Fig.6.
Since the load torque is a function of the angular speed from the load side, than the
shapes of load torque and Wy, with respect to time will be similar. This fact is clearly
seen from Figs.6.a, 6.b and 6.c, which are obtained for a rigid shaft, K=297Nm/rad and
K=45Nm/rad, respectively. The load torque is having larger oscillation around the
average torque. It increases up to a certain value of K and then decreases again as the
shaft becomes more flexible.

The effect of the degree of shaft stiffness coefficient on the electromagnetic
torque is shown in Figs.7.a, 7.b and 7.c for rigid shaft and K=297Nm/rad and
K=45Nm/rad, respectively. Observation of these figures shows that as the shaft
becomes more flexible the peaks of the electromagnetic torque oscillations show minor
reduction. Therefore, shaft flexibility has negligible effect on the electromagnetic
torque. Therefore, from electromagnetic torque point of view, shaft can be as flexible
as it is convenient.
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Figure 5. DC link current. Figure 6. Load torque. Figure 7. Electromagnetic torque.
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5. CONCLUSIONS

In this paper a mathematical model is developed to study the effect of shaft
flexibility on the performance of SERD and the performance of the drive is studied in
details, for various values of the shaft stiffness coefficient. This study provides useful
guidelines for designers of induction motors for SERD applications. It is proposed that
two options are available for designers: :

- Reduced cost
- Faster transient response
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If the reduced cost is taken as the design target, more flexible shafts, made of such
materials as composites or polymers, with reduced shaft diameter should be used.
These types of shafts are preferred in certain applications such as submarines. In this
case the performance of the drive will have the following characteristics:

Prolonged transient time duration, which might increase the temperature rise of
the windings during starting

Larger differences between the speeds and the angles at the two ends of the shaft
during transient state. At a certain K the speed difference passes through a
maximum and than tends to decrease again.

Larger oscillations and overshoot of the load torque

Reduced electromagnetic torque peaks during both the transient period and the
steady-state operation '
Higher amplitude and lower frequency speed oscillations during the transient
period

Reduced dc link current oscillations.

On the other hand if the faster transient response is chosen as the design target, then
rigid shafts should be preferred, which will show opposite operating characteristic to
that of the flexible shafts. :
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