Mathematical & Computational Applications, Vol. 7, No. 3, pp. 275-286, 2002 275
@Association for Scientific Research

TWO STRIPS PROBLEM RESTING ON AN ELASTIC FOUNDATION : -
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Abstract-In this paper, a layered composite made of two materials with different elastic
constants and heights resting on an elastic foundation is studied according to theory of
Elasticity. Symmetrical distributed load whose length is 2a is applied to the upper
elastic layer. Gravity forces of the layered composite are neglected. The components of
the stresses and displacements at a point located in the layered composite are obtained

by using Integral Transform technique. Singular terms are subtracted from expressions
of the stresses and their closed integral forms are added. The stresses and the
displacements in any pomt of the layered compos1te are mvestxgated and their graphlcs
are plotted

Keywords-Elastmlty, eiastlc Iayer strip, elastic foundation, Fourier transform,
smgularlty S : :

1. INTRODUCTION
Layer problems resting on an elastic half-plane or elastic foundation have
attracted attention of several researchers due to their wide application. Contintous
foundation beams, runways of airport, foundation grillages, rigid pavements, and
railway ballast resting .on the ground or elastic foundation are some examples of such
beams and plates.
Material properties, intensity of the apphed force and hmght of the plate or beam

play a very important role in the formation of the stresses and the displacements
distribution on the layered composites. Several studies are done about an elastic layer
supported by foundation[1~ 10]. However, there are few studies about layered
composite made of different elastic materials resting on elastic foundation or an elastic
semi-infinite plane’ [1 1 ] .

In the present study, a layered composite made of two bonded layers with
different elastic constants and heights resting on an elastic foundation is examined by
using theory of Elasticity (see Fig. 1). The upper elastic layer is subjected to a
symmetric distributed load and gravity forces of the strips are neglected. The length of
the distributed load is taken to be 2a and the heights of the strips are taken as h; and h.
In the solution, displacements are explained in terms of Fourier transformation of an
unknown function. After the expressions of the displacements are obtained, the
expressions of the stresses are founded by substituting the displacements into
constitutive equations. Singular terms which is formed while width of the uniformly
applied load is sufficiently small, i.e. a/h<0.10, are subtracted from expressions of the
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normal stresses and their closed integral forms are added. The stress and the
displacement distributions on the y symmeltrical cross section, contact surfaces of the
layers, and at y=—h, are calculated by giving different numerical values of spring
constant, ratio of material constants and strip heights. Finally, numerical results are
analyzed and conclusions are drawn.

2. GENERAL EXPRESSIONS FOR STRESSES AND DISPLACEMENTS

In the absence of body forces, the two dimensional Navier equations may be
written as in the following form for considered an infinite layered composite consisting
of two elastic layers and resting on elastic foundation as shown in Fig. 1.

2u, 3 du; v,
2, Ui 9V
‘ MIV Ui+Ki"”1 aX ax + ay] _0’ (1.3)
2, .
uivzvﬁ"}?‘% :y %+%Jmo, (i=12). (1b)

where u, and v, are the x and y-components of the displacement vector. 4, and x, (i

=1,2) represent shear modules and constants of the elastic layers, respectively.
K, =(3-v,)/(1+v,) for plane stress and K, =3~4v, for plane strain. v, is the Poisson's
ratio of layer. Subscript i (i = 1,2) indicates the values are related to the layer.

Observing that x=0 is a plane symmetry, it is sufficient to consider the problem
in the region 0<x<e only. Using the symmetry consideration, the following
expressions may be written,

W, (Xsy):'_ui(—'st) ’ | ‘ ‘ (23)

v (xy)=vi(-xy); ' (2.b)

u; (x,Y)m%f:‘Ia (o, y)sin(ex)do (3.2)
2 had . ) . .

Vi (X,y)m;fo ¥ (o, y)cos(ox)da | (3.b)

where ®, and ¥, (i =1,2) functions are inverse Fourier transforms of u;, and v,,

respectively. Taking necessary derivatives of equations (3.a) and (3.b), substituting
them into equations (1.a) and (1.b), and solving second order differential equations, the
following expressions may be obtained for displacements

For strip one (0<y<h, and 0<x<eo);

n,Gon==) (M)A, @)e ™ +Au 00+ A, @y)e”Jsin@oda, @
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“r oy |
noy=2[ {LAl(a>+(%+y)Az(a)]e - |
: { ok el M )
—A3(oa)+(~d——y}A¢(a) e [cos(ox)do

For strip two (-—hZISySO‘ and 0< x <oo);

uz(x,y)ﬁi—fg [(B,(0)+ B, (0)y)e ™ +(B,(0)+ B, (c)y)e™]sin(ox)das, (6)
Vz(X:Y)z"%EJ; {[Bl(a)f[%w}%(a)}eﬂy e
‘{ C(x N - . R (7)
: wBa(a)+{~(x——_y}B4(a) e cos(ox)do SRR e

where A J.(OL), B j(OL), (G=12734) are unknown coefficients which will be determined

from boundary conditions of the problem. Using Hooke's law and equations (4-7), the
expressions of the stress for each strip may be expressed as follows:

3o
500 ,y>—wf (| ala o+, (oc)y)~—2—~A @

_ 3= :
-j+l~oc(A3(oc)+.A_4(oc)y)+ 2 _4__ }6_ -_ ._-_}_cos(ax)doc, (8)

oa

1 2 I : 14k 1 ey
30 0on=], L | ola @A) A e

ro 1+x, I U

H =0 A, @)+ A, @)y)+—5 A (@) |7 Jeos(omgda, ©)
1 207 [ 1 T
Z—m—TKY’( ,y)“"*j { {OL(A,(00)+A2(Ot)y)+%“Az(a)_Je_ ’

{ o A (0)+A, ()y)- ——2——A ((x)} * dsin(ox)do, (10)

o

1 2 3-x%, ey
70 (5= = {[oc(B;(a)+B2(a>y)—mf-Bz(a)}e

f - 3-x, ay
+1_OL(B3(CX)+B4(0L)y)+ SB.(9) e Jeos(ax)dor, (11)
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1 207 [ 1+, 1
510 0=, { | olB,@)+ B+~ 2B, e
[ 1+x, 1 o
+L~a(BS_(_a)+B4(a)y)+ B.(@) o Jeos(ox)dor, (12)
1 2 - 2"‘"1 oty
2, (X,y)=;;fe { M[G‘(Bl(a)-i—Bz(a)Y)-l_K Bz(&):le
-1 ay .
+{0¢(Bs(&)+34_(a)3/)~%ﬁ34(Ot)}e bsin(onx)dar, (13)

3. BOUNDARY CONDITIONS AND SOLUTION OF PROBLEM

'The layered composite consisting of two bonded elastic layers and resting on an
elastic foundation shown in Fig.l will be analyzed. It is subjected to a symmetric

distributed load and heights of the strips are &, and &,, respectively.
y

Baf ot

— pG

+ b vk
fy < @ ‘ Moy s Ky 5V >
h+- g : - . x

Tz < & M2=K2»V2>

Figure 1. Loading condition and geometry of the problem.

In this problem, the boundary conditions may be expressed as,

o, (X.h,)=-p,. 0sx<a, (14.a)
o, (x,~h,)=k,v,(x,-h,}, 0<x<eo, (14.b)
5, (x0)=0, (x.0), 05X <o, (140
T, (X,0)=0, 0SS x <o, (14.d)
Ty, (X-h,)=0, 0Sx <o, (14.¢)
T, (x0)=1, (x,0), 0<x <o, (14.5)
u, (x,0)=u, (x,0), 0 <X <o, (14.g)
v, (x,0)=v,(x,0), 0<x <o, {14.h)

where, k, and p, are the elastic spring constant and the magnitude of the uniformly
applied load, respectively.
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Substituting equations (4-13) into the boundary conditions which are given
equations (14.a-h) and using inversion Fourier transform, eight linear equations which
are depended on A () and B («) (j =1,2,3,4) are obtained following form.

~20A, (o) - (1+%, +20h)A, (0)~20e*™ A (oc)+(1+1< ~20th,)e*™ A, (o)
e“i" sin(oa)
° o
~20A (o)~ (~—1+1<1+2(xh )A (oc)+2cxe2““=A (a)+(1 K, ~+~20ch De"MA (a)=0, (16)
—200A (o) — (1+ 3% )A, () —20A (o) + (1+1)A , (o) +20BB, (o) +(1+%, )PB, ()

+20BB, ()~ (1+1%,)BB, () =0, (17)
—EOLAI(Ot)~(m1+K§)A2(OL)+20EA3(OL)—-(—1+K;)A4(OL)+20(BB1(OL)+(—~1+K2)BBz(O()

~20fB, () +(-1+%,)BB, (1) =0, (13)
oA, (00 +K A, (o) —0A () + 1A, (o) —aB, ()~ K, B, (o) +aB, (0) - %, B, (oc) 0 (19
A {(o)+A,(0)-B,(0)-B,(0)=0, - - - (20)

~20B, (08~ (~1+%, —20th, }B, () + 20te 2" B, (et} = (~1+ K, +20th, Je ™ B, () =0, (21)
—(200+ k)B,(®) + (-1~ kK, /00— K, + 20h, +kh,)B, (oc)+(-20c+k)e”2°“‘2B (o)
+(1-kx, [0+, +20h, —kh e B, () =0, (22)

where, R
k=k,/pn, and P=u,/H.

Solving above equations, A (0t) and B j((x) Q - 1,...,4) coefficients are calculated
in terms of o. These coefficients are given by (A.1-A.8) in Appendix. Substituting the
values of the coefficients into the expression of displacements and stresses given

equations (4-13), the displacements and the stresses of 4t any point of the layered
composite resting on an elastic foundation may be calculated.

4, SINGULAR TERMS

In the case of the distributed load width being sufficiently small, i.e. a/h<0.10,
while y reaches 4, there are spoils in the kernel of normal stresses 0, and o, . These

. . . s . . —o( k=)
singular terms are existed in the expressions while there is @~

singular terms may be defined following form.

as a multiple. The

For case y->h, ;

1

o, (x ,y)-~————f ( g-iwh!wy)e'a(h’_ﬂsin(aa)cos(ocx}da, (23.2)

1 —afb-y) .
o, (XY m——fo [—"&mh]+y)e ™ sin(om) cos(ax)dot, (23.b)
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Their closed integral forms may be written as follows {12 ],

_Dbo) . fatx | o a-x
G"*“(X’y)mza{ tan (__“hf—y) tan (hl"Y]

[ |
b, —y) arr o ] . (24.2)
L(hl—y) +(a+x)? (hl——y) +(a—x)2_| ‘

Po al atx da-x
==y —tan"| —— |-t
0, (X.¥) 4a{ an (hlwy] an (hlmy}

r a+x a—Xx —[
~(h, - - - I3 24.b
( Y)Jt_(h:"')f) +(a+x)2+(h:_3’) +(3_X)ZJ A

Subtracting the singular terms from kernel of the normal stresses and adding to
their closed integral forms, the expressions of the normal stresses may be defined as

0':] (’XsY) ':Gx, (X’Y) “O‘x]s (X,Y) + C'.x,k (Xay) » (258-)
G, (x,¥)=0, (x,y)~0, (%,y)+0,, (x,¥), (25.b)
5. NUMERICAL SOLUTIONS

Some of the calculated results obtained from substituting the coefficients of
A (o) and Bi(®). (j = 1,...,4), into the expressions of the stress and the displacement
for various : :
dimensionless quantities such as a/h, h, /h, 3, and k are shown in Table 1 and Figs.
2-7. N '
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Figure 2. 0, (0,y) normal stress distribution Figure 3. 0,(0,y) stress distribution for
for various:values of k (a/h'ﬂO.S{),'ﬁ:OTS-S) various  H values - of © alh
SN ) o (h, /R=06,p=085Lk=01)" ' a

Fig. 2 shows that o, (0,y) normal siress distribution along the symmetry plane for
various values of k taking a/h and  0.50 and 0.85, respectively. When k increases, the
stress of o, (0,y) decreases and discontinuity occurs in ¢, (0,y) stress on the contact
surface between the layers due o different elastic constants of ‘materials. Normal stress
o, (0,y) distribution is shown in Fig. 3 for various values of a/h, where h,/h=0.60,

B=085, and k=010. As shown in the Fig. 3, when load width increases, the normal
stress 0, (0,y) increases. Fig. 4 shows that normal and shear stresses distributions on the

contact surface of the elastic layers for a/h=10, k=010 and h, /h=0.60. As seen from
Fig. 4, the maximum values of the normal stresses occur on the' plane of symmetry, x=0.
Fig. 5 shows that variation of the point where the contact stress on the bonded surface
changes sign to (+) with k for various values of a/h. The variations of maximum shear
stresses on the contact surface of two elastic layers and their d1stanees from piane of
symmetry with k for various values of a/h are given in Table 1. ~ :

Fig. 6 shows that variation of the displacements v,(x,—h ) between the layered
composite and the €lastic foundation with x/h for various values of k and Fig. 7 shows
that variation of maximum chsplacements v2(0 -h ) with k for various Values ofa/h.
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Figure 4. Normal and shear stresses Figure 5, Variations of the points where
. distribution between two bonded elastic layers 0, (x,0) contact stress on the bonded surface
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Figure 6. Variations of displacement Figure 7. Variations of maximum displacement
v,{%,~h,) between the layered composite and v,(0,~h,) with k for various values of a/h

the elastic foundation with x for various values (h, /h=070, B=085)
of k (a/h=100, h,/h=060, P=083)
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Table 1. Variations of maximum shear stresses on the contact surface of the layers and
their distances from symmetry plane- with k for various -values of a/h
(h, /h=050, B=085). :

k ~ a/h=050 a/h=100 a/h=2.00

N | Ty (50)/ Py Toy, (50)/ D Ty (0} Do

o x/h 1 x/h o x/m
005 0.639 0.5112 1.058 0.7858 1.992 - | 0.8915
0.10 0.619 0.4735 1.037 0.6876 1986 | 0.7061
0.25 0.592 0.4176 1.014 0.5522 1,986 0.5004
0.50 0.572 0.3716 0.999 0.4517 1.990 0.3821
1.00 0.553 0.3246 0.989 0.3597 1.995 0.2954
5.00 0.517 0.2297 0.985 0.2095 2.000 0.1808
25.00 0.501 | 0.1802 0.988 - 0.1502 2000 | 0.1369
oo 0.495 0.1609 0.990 | 0.1307 2.000 '} 0.1214

6. CONCLUSIONS

The following conclusmns can be drawn from the analysis of a layered system on
an elastic foundation.

1) Maximum values of the normal stresses and the displacement occur on the
symmetry plane, x=0. These values gradually decrease apart from symmetry plane and
disappear at an infinite distance away. _

2) The stresses and the dzsplacements decrease with increasing elastic spring
constant. o

3) Discontinuity occurs on the contact surface between the layers for normal stress
o,. This discontinuity highly increases when the difference of the elastic constants of
layers are getting more.

4) With increasing load width (a/h), the normal stresses increase but maximum
displacements on the symmetry plane decrease.

5) Maximum shear stress on the contact surface of the layers occurs approximately
at the equal distance to the load width. This distance decreases when the elastic spring
constant increases. In addition, the maximum shear stress increases, with increasing a/h
for small values of k, but for big values of k, with increasing a/h, the maximum shear
stress decreases.

6) With i increasing a/h, the point which the contact stress pass from compression to
tension is away from the symmetry plane and it approaches towards a constant value with
increasing of rigidity of spring.
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- APPENDIX
* The coefficients A (o) and B,(a) (j = 1,...,4) are given following expressions:

A () = ~P(fdefee, -1+ 20th, ) YA (0)e ™™ +{Z1+20,.22 + e [Z3+ 20h, . Z4
+40%h2,Z5+ 6%  Z1 + 2ah, (26 + 2ah, 27 + 40?h2, Z8 + ¢ 2% Z2)]}}
+k{(x, -1+ 20h))YIK(@)e ™™ +{Z9 +20h,.Z10+ 67200 [211+4ch,.Z12
~ e 79 + 20h, (Z13+ 4oh, . Z14 - ¢ Z10)]}}}

(A.l)
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A, (0) = PO){8a{ V1A (w)e ™ +{Z15.(1 + 2ah) + e **™[Z16 - 20h,. 27 + 4a’h]. Z17
e 715+ 2oth, (Z16+402h3. 217 + 2% Z15)]}}

- . , (A2
w2k VIR (). + {(1+ 20, ). Z18 + 72" [~ Z13 + doth, . Z19 —e M Z18 - (5 )
+20h, (d0h,.Z19 - ¢ 2. ZI8)]}}}
a4 (o) = ~P(efdod(r, ~1-20h, ) Y2A (@) + 7 {z1-20h,.72 + ¢ [Z3~ 20h,.Z4
+407h2 25 2% 71+ 20h, (76 +20h,. 27 - 40°h}. 28 - ¢ ¥ Z2)| ]}
(A3)

-+ I, = 1~ 20th, ) Y2K () + e :{29 —20h,.Z10+ ™2™ [-Z1 1+ 40h,. Z12
e 704 20h, (Z13— dch, Z14+ &2 z10)]}}} |

A, (0)= P(a){ga{ YZA(CL) oo {zzs(~1 +20h ) + e""-“hz [-z16- 2och2 z7 4a h2217
e 7154 20, (Z16+40’h2. 217 + ¢ Z15) | -
+2k{-Y2K(a) +e 2 {(~1+2ah, ). Z18 + e [-Z13 - 4oh, . 219+ 2 Z18 (A.'-4)
+20h (4ah2.zz9.—f o2 219)] ) |

B (oc) -—.»»»P(a){40c(1 +,)e 2% {-R8 ~ R9 — 200, R7 + 40*hZR11+ 20h, (208, R4 - Rié)_
e %02 (R9 + 20 R10) + e“mh‘ [R8-R7—20h,.R9 + R3 (20, - 4o2h?)

3 Zah (20, R10+ 4o *h}.R3)+ o2 (R7 + 20, R4+ ke {(1 +K ) (A.5)
" {R13-40h,R5+ 20h R4 e (R16 + 20th Rm + e'm" [mh R17-RI16
+ 40, R6(1-20h,) + g oM (20h,R14 - R1 3)]}+R1 501+ e“*mz )(1 e'2°°“= )}}
B, (o) = P(a1).(1+ K, ){Sae‘z"‘hz {—R4. (1+20h,)+20h, . R1- e ..R3.(1 +20h) _
+ 672 [R2 +20h,R3(1 - 20, ) — e 22 R1} + 2ke 2 {RS+ e 22 R6.(1+ 20h;) | (A6)
+ e [R6(20h, - 1)~ e [RS]}] |

OB, (0) = ~P(endal + k,){R7 — 200h,.R4 4g7oh '[Rsﬂ _R7+20h,.R9 - 40’h?. R3
+20th, (~R3 + 2¢th,R10 —~ 4ot h”Rs)} + e”mh' {R9 ~20,R10 e [-R8~R9
+20th, . R7 + 40 h:'m 1+ 2._othl (zgthé + 312)]}} +k. {(1 +¥ ){R13 +20th, R14 (A 7
+ 72 [20h, . R17 + R16 + 4oh, . R6(1+ 20th, )] + &7 [20m, R17 = RI6 -
+e7% (-R13 - o, RS + 20k, 14|} RIS.#e2).(1- ¢*)] |

B, (0f) = P(c0).(1+ ¥ ){sd.{'Rl +e72% [R2 +20th, .R3.(1+ 20th,)]

+ e [R3.(1-20h,) + e {R4.(1-2¢h,) + 2qh2.R1]}} e . (A8)
#2K{-RS5 + ¢ [~R6(2ath, + D] + 7 [R6.(1- 20h,) + = RSJ}}

where,
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Py sin(oa) ¢ oM

O e @

A(e)=16af Y1A(o)e ™™ +Y2A(c) + e {Z20+ e (221 - 4ah, 20th,. 27 + 40*h?. 222
+e7% 720) + 40’ h}[Z15+ ¢ (Z16 + 40*h2. Z17 + ¢ 715)] }}
+ 4k{YIK(o)e ™™ +Y2K(0) + e {223+ ¢ [4ah,. 224 + dath, . 225
~e % 703 |+ 4oﬁhf [218+ €7 (doh,.Z19 - > Z18)] }}

Z1=2K, — 2Kk, + B]—4K, +4x K, + 2B(k, - )], 22=-2xx, + 2B(x %, =, +x,8)
Z3=2 -2k, + 2K} - 2K, +4B[2K, — 2K, +B(kE -], | Z4=2B(1+ K, - KK, — )
Z5=2-2K, + 25[41& +B(E k)], Z6=-2x, - 21,12 + 4Bk, — KK, +K,B)
Z7=2B(1+K, +K, +KK,),  Z8=-2x, +2K,B(2~P)

29 =2k, (1 4+, — K, ~ ;) + 2k, B[-2 + 212 + B+, — KK, — )]

Z10= -2k %, (1 +,) + 2k Bk} - 1+B(1+K2)] . Z11=2B0K0 — 1+ %, (2K + KK, ~2-1%,)|
Zl2= 2{—1 16, (14 K,y ) — K, + 2%, B[4 ~ 45, + B(1—x, + K, —K K, )}}

Z13=-2B[14 %, (142K, +1, 2+, +K,36,)], Z14=2K, (14 K,) - 2, B2+ K, - B+ ;)]
Z15=-2K, +2P(x, - 1+B),  Z16=-2-2k; +4B(1-%, ~B), Z17=-2+2BQ2-P)
Z18=-2, - 25 + 28] ~14B(1+1,)],  Z19=2+2K, +2B[-2~ 2K, + B(1 + ;)]

220 =28k, - 1+K; — %16, + B+ k)] ~ 4, , 221=4{p{1-x, -1y (1=16,) = (1 + ) ~1-x2}
222 =4 +2p[2 - 2k - B(1+ &),

223 = —4x, — 4K + 2P~ 1+, + 12 — kK2 + B+ K, +17 4 K0k,

Z24 =4+ 4x, + 2[3[2(*‘{1 1=K, + KK, )+ B(l+ K, +% + K?}(L)]
225=2B{1+x,(1+2k,) + 2, +1C A+ k)], 226=2K, +2B(~x, ~ K, +K,B)
Z27=2+265 + 2B(K, -1+, —K K, ~2kB),  Z28=2+20(k, —1-K,B)

729 = 2K, +2P(1+ %k, +x,B), 230=2k, + 21<§ - 2{3[_1@ +K, KK, + K — B(x, + ¥k, )]
731=-2-2x, +2B[1+%, -, — KK, + Bk, +1,6)]
232 =26, + 2 + 2B[1+ K, +i, K, +K, 15 + B, 4K, K, )]

Ri=—2-2K,B, R2=-2k,+2kB, R3=2-2B, R4=2k, +2B

R5=2+2K, +2B(x; +K/K,) , R6=2+2K, =2B(1+x,), R7=2B(-1+KK,)
R8=-2+2K;, R9=20(k, ~k,), RI0O=-2K,+2k,B, RII=2+2KB

RI12=20 +21,8, RI3=2Q(-1+%,K)), ~Rl14=-2k, -2i% ~2B(1+x,)

RIS=2B(~K, +K,K; ), RI6=28(k, —x3), RI7=2kK, +2K> —2B(x, + k2)

YI1A(0) = 226 + e (227 + 40712, 228 + ¢ 2™ . 729)

Y2A(ct) = 229 + e (227 + 407 h 2. Z28 + e 2% 726)

YIK(0) = Z30+ ¢ (40h,.Z31 - e 2™ 732)

Y2K(ot) = Z32 + e 2% (4ath, . Z31— 722 Z30)



