Mathematical & Computational Applications, Vol. 7, No. 3, pp. 233-262, 2002 - .~ 283
©Association for Scientific Research

A TEMPLATE BASED GRAPH REDUCTION SYSTEM BASED ON
COMBINATORS e

_ Abdullah Cavusoglu . I—Iaidun Goktasl& Necla Vardai2 o
. 1Gazi Umverszty Ankara 'I‘urkey “Baskent Umversuy Ankara ’Purkey
L abduic@tef gazi.edu. tr haldun@tef. gazi. edu tr neclavardal@vahoo com..

Abstract-Graph reductzon is one of the 1mportant evaluataon strategy for Iazy fu‘ ‘ctzonal
programming. A combmator isa funcnon that contains no free vanables The idea is based
on’ the fact that all of the Vanables m a program can be removcd by transformmg it mto a
combmators (SKI), or whlch would be drawn from an unhxmted number of non pre—
defined set of dynamic super~combmators (SC). We are suggestinig a templatc based
algorithm which reduces the 'stored graph structure of the super-combinators. 'We can
define .any, produced super-combinators by using templates .and use them to perform
reducuon on the graph ‘The template based algorithm could be extended and any produced
super- -combinators. can be defined with a predefined. template list. The test results show that
our approach mcreases the efficmncy of super-combmators aigarﬂhms

Keywords-Graph Reduchon, Combmators, Abstract Prograrmmng

1 INTRODUCTION

To execute lazy funcuonal ‘programs combmator based graph reductxon is used It
1nvolves converting the program to a lambda calculus [3] expression and-then to-a graph
data structure. One method for implementing the graph data structure:is that translation of
the program to combinators [2]. In this method, all variables are abstracted from the
program that is represented as a computation graph, with instances of variables replaced by
pointers to:sub-graphs that compute values. Graphs-are evaluated by, repeatedly applying
graph--transformations until the graph is 1rredu<:1ble Then, to execute the program the
'graph data structure is rewritten. TRt

~In [1-2] a rigid combinator based reduct:on is’ cr1t1c1zed Hughes [I} suggests a
compilation algorithm that generates efficient combinators -called supercombinators- (SC)
than Turners SKI combinator [2]. Hughes method depends on identifying maximally free
expressions' (mfe). and exporting these as function arguments: thereby: converting
expressions into combinator applications. There are a number.of possible optimizations
using similar techniques. Here, we are suggesting a techmque which generally produces
better ‘results than' the techniques above. Our primary concern was gaining the
computational efficiency in terms of reduction steps rather than storage efficiency —
although our algorithm needs less storage than the others- or time efficiency for graph
reduction system based on untyped lambda calculus. Improvements referred in [1] have
been integrated to our SC implementation. The analysis program that we developed for SC
reveals that, a portion of these SC’s structure look similar. Using that, SCs can be classified
and two SCs with similar tree structures can be expressed by one template. If we assume
that, the number of templates is ‘k’, and number of SCs which has been produced is ‘n’
and at worst case ‘k =n’, and for other cases ‘k <n’.

254~ A. Cavugoglu, H. H. Goktas and'N. Vardal -

24 THEORETICAL BACKGROI}ND
2.1. The lambda Calculus

The lambda calculus is a simple means of describing the properties of computable
functions, effectwely treating them as rules. Only a few constructs and simple semantics
are required. Furthermore, it’s expressiveness is so sufficient, so one can express not only
all functional languagés-but all computable functions as well [8]. The pure lambda calculus
contains no constants neither numbers, nor mathematical functions, such as ‘+’, *-* and is
untyped. It consists only of lambda abstractions (functions), variables and applications .of
ohe function to another. All entities must therefore be represented as functions. Later on, a
type theory was also’ developed [7]. Here, our primary interest was the un-typed. Iambda
calculus with constants, since this is the SImpiest calculus powerful enough fo express
basic concepts that we will be dealing with (i.e. functmnal forms, partial appllcatlons, and
strzctness propemes) The details for the syntax of the expressmns can be found m [4 5}

2.2. The Reduction Mechamsm of Turner’s SK Algorlthm

The first step in compzlmg a functional program to & combinator graph is to
_ transform it into an expression in the lambda calculus. The consequent step is to transform
lambda calculus to SK Combinators which are a small set of simple transformation rules
for functions. Each combinator has a runtime action and a definition associated with it. The
definition is used to translate programs from the lambda calculus into combinator form and
the runtime action is used to perform reductions to evaluate expressions. S, K, and I are
sufficient to represent any computable function. The S combinator, can be called lifted
application [9], while the K combinator, called the elementary cancellator, makes a
constant function.and the. I combinator, called the eiemcntary identificator, is the identity
function * are expressed as:

SXyz-—X2Z(yz)

CKxy=x

Ix —=x -

There is one more step to complle a funcuonal program to a combinator: graph.
How does one map the combinators into a data structure for computation? The-data .
structure of our choice is using a list in order to represent the tree structure. Each node of -
the tree has-a left-hand side, and a . right-hand side. These nodes would bé either an
argument or sub-tree. The leaf of the tree may be a combinator or constant, or operator (+,
*,&) or'identifier. Using the full Turner’s set of combinators can be accomplished by first
compiling to SKI combinators, then: appiymg the optimization rules given in [8].

2 3. The Reductxon Detalls of the Hughes Super- Combmator Algorlthm

One method for creatmg large combmators is using SC compﬂatlon S, K and I
combinators can be defined by A- expressions: : :

S = AX. Ay.Az.(x Xy z)

K=Ax. Ay.x

T=AX.X _ L

The intention is that these A- expressions can be used as operators in the reductlon
machine. The first reason is, they have no free variables inside and secondly, their bodies
are in applicative forms, which mean that, they consist of variables and constants.

A Template Based Graph'Reduction'System Based 'on Combinators 255

Therefore any-A--expression with these two propetties can*become a SC [1]: Unlike the
Tarner’s fixed combinators, SCs are formed by the user's program, rather than from a fixed
set of combinators. ‘A lambda expression is normally transformed to-a special SC format by
assigning it a name; associating the bound vanables with it, and settmg it equal to the body
of the lambda expression.

Hughes mentions that in order to perform fully lazy 1mplememauon one more step
is needed. When producing SCs, if we take out only free variables then at the reduction
part fully lazy evaluation does not seemto be possible. For that reason we have to take out
sub- expressmns of A-expression which does not depend on bound variable. These sub-
expressions are called maximally free expressions. The resulting mfe is replaced by the
new parameter name that is allocated. When the whole body has been scanned, the
compiler can generate code for hew SCs and use them to construct the replacement
applicative form {1]. SCs can reduce the manipulations of the graph as well as the graph
size by providing customized combinator functions. Dramat1c xmprovcments in the
execution speed are said to be possible [6}

3. THE TEMPLATE BASED ALGORITHM

In Turner's SKI combinator reduction mechanism, a lambda expresswn abstracted
at phase II and a program result consisting of a tree whose nodes are of the type of
combinator (i.e. S, K, I), constant or primary operators. While, in Hughes SC mechanism,
the lambda expression is abstracted, mfe’s are determined and replaced with parameter
names and SCs that are produced. Each produced SC structure tree, is stored with bound
variable names, :

In our approach instead of storing each SC structure separately, we. try to use a
template ~holding a possible skeleton structure- that could be used for SC definition. In the
program, we do not need to store every SC structure each time: let’s assume that the
number of SCs which has been produced is ‘n’, using Hughes reduction technique we need
to store n tree structures, however, in our algorithm, if the number of tree structures is ‘k’,
at the worst case we get ‘k = n°, but for most of the cases we get ‘k < n’. This means, a
considerable number of structures. need not 1o be saved A coded example(l) is given
below:

{ £{3.5)
f={ex.ey.g(x,v) :
g = { 821.@z2. hi{zl,z2)
h = @g.€r. g+ r }1}}

We have a function definition consisting of 3 definition-groups. In the notation ‘{*
denotes def-group and f, g, h are function names and x, y, zl, z2, q, r are function
arguments, The six SCs produced by Hughes’” method are shown in Figure 1. They all have
to be stored, because in the evaluation part, to perform reduction on the graph tree, this
description will be used to replace input-arguments with - the combinator’s argument
variables. As seen from the Figure 1, the {fee structures of C1, C3, C5 and C2, C4, C6 are
similar. We used them as two-templates to represent 6 super—combmators as shown in the
Higure 2.

At the second phase, the inner def-group is compiled first. Durihg the compilation,
if we find a lambda definition we take lambda expressions and abstract them in the

256 A. Cavusoglu, H. H. Goktas and N. Vardal

following manner: when a tree is visited, mfe’s are identified first, (i.e. this can be a single
identifier that is free or a list of free identifiers with variables or primary operators), if the
mfe, which we found in that node exist in the previous nodes then the name of previous

Clair=[al r | .'czq={é1[+q]}

™ I

, (a) (b) .
C3alzz=fat 22] , Chalzl=[C3 [alztl]]

@1“12_ B
('.)31@__1

al z1

(¢ {d})
Csafy=laly] “Cceatx=[C5 [at X 11
T 1

at Y : c5 @___I
| |

at X

(e) o 0

- Figure 1. SCsproduced by Hughes’ algorithm for “example 17

*Used 'fémptatés T1 and T2
T = T2 =

Generates:

T1 = Template 1 used with arguments [a1]

T2 = Template 2 used with arguments [T1 + g}
T3 = Template 1 used with arguments [a1 z2]

T4 = Template 2 used with arguments [T3 al z1]
T5 = Template 1 used with arguments [a1 y}

T6 = Template 2 used with arguments [T5 al x] -~

Ti [a b ¢] means list of arguments are applied to the template |

Figure 2. .S'Cs ?roduced using template baséd mefhod for “example 1-”

A Template Based Graph Reduction System Based on Combinators 257

parameters -are-given. If this is:a newly found myfe, then. it is replaced by a relevant
-parameter name. After visiting all nodes, the expression’s abstracted structure is compared
~with-the template library with the aim to finding a similar structure. If a matching structure
is found, then a record that holds a pointer to this structure and, the list of arguments that
will be applied to this structure are created. After compiling each definition in the def-
group, the def-group’s main expression is compiled and replaced with the compiled
definitions. The final code consists.of records that show which structure is used with
which argument. :

Evaluation mechanlsms look snmlar in both approaches Hughes takes arguments

and uses SC definitions to replace them in relevant expressions while in our approach the T
operator is applied to the taken arguments within the structure for Ti with respect to arg-
list. In the arg-list there may be another T operator to be apphed to arguments within
another structure,

In our approach, we treat templates like machine instructions and we use one T

-.operator to reduce the expression. In our-study we used three types.of operators. Strict
-operators require some or all of their arguments to be evaluated before the operator can
produce an answer. For example, ‘+’and **’ are some .of the strict operators. The ‘+’
operator first takes 2 arguments (these may be variables which do not need to be reduced
or may be a sub-tree containing nodes need to be reduced) and when the sub-graph is
eventually reduced, a combinator within the evaluated sub-tree will retwrn a value. The ‘+’
combinator also rewrites the node which was the parent of the node containing the ‘+’
combinator, so that if the sub-tree is shared the evaluation need only be performed once.

Our template based Combinator Reduction System (CRS) can use totally strict

operators that perform computations and return results and can use partially stri¢t operators
primarily for conditional branching (i.e. ‘if’). The IF combinator evaluates it’s first
argument, then selects the second argument if the first argument is true, or selects the third
argument if the second argument is also false. CRS also uses non-strict operator T in order
to apply the argument list to the templates and performs reduction that was done by SC
definitions used in Hughes method. In CRS we try to generalize the SC definitions by
using the T operator and predefined templates instead of producing and using several SC
definitions. This reduces the amount of used memory. The CRS algorithm was also
improved after analyzing the test results. This time the T operator is not needed in order to
perform reduction in the Graph. In CRS 1mplementat10n the T operator takes index number
and applies argument lists to the template related with that index number. CRS directly
does the same process when it finds an index number. So, the resources are not wasted to
reduce the T operator. - R

4. TEST RESULTS

In this section, a 11umber of exper;mental tests and thelr cozrespondmg results to
reveal the difference between the SKI combinator and the Hughes SC graph reduction
algorithms; along with optimized algorithms that were mentioned in [1] are presented. The
test results guided us to modify our generator and the interpreter. The concept was to
classify the SCs with respect to their tree structure and not to store each definition
separately. We used templates to express SCs and to perform their jobs.

258 A. Cavusoglu, H. H. Géktas and N. Vardal

As stated above, the templates act like instructions and perform reduction with the
‘help of operator T and argument list. When we find the T operator on the graph, we take
the index number of template and argument list. An argument list is applied to the template
then the result is rewritten. We obtained test results with our initial program then we have
finalized our program by refining and improving the first test results. The test section
contains two sub-groups: which are SKI v. SC and OSC v. CRS. For the tests we have
developed a minimal expression langunage. A parser for this language has been
implemented and tested. Selected test metrics are the numbers of :

Combinators that are produced and reduced

Operators that are reduced

Replaced nodes ‘
Called procedures that produces reduc:tion and rewrites
Mfe’s that are produced

a & o @& o

Table-1 Jists the description of test’ programs’ used for comparisons, and the number of
~ definition groups. Tests 3; 4, 8, 13, 14 are recuisive programs. Table 2 shows the number
of combinators that are produced for the tests listed in Table 1 for the Turner’s SKI
algorithm. Tt can be seen that the produced résults are usually greater than the Hughes SC
algorithm.

Table 1, Test programs used and their descriptions

Test Def- . Description
Program | group
Numbers
Test-1 1 !Increment given number
Test-2 2 Perform division
Test-3 1 Factorial 5
Test-4 1 1 Spin-Tree (reverse given list)
Test-5 1 Produce list whose element is the addition of the two inputs
Test-6 3 Return addition of the two numbers (inputs are given before)
Test-7 3 Return the sum of two numbers (inputs are defined in the def-group)
Test-8 4 n'" board solution to the 8 Queens problem
Test-9 1 Check first and last element of the list equality
" Test-10 2 Return the first argument of two input
" Test-11 1 Take three input refurn the first one : :
Test-12 1 Increment the first input by one and maltiply it with the second input
Test-13 1 Doubly recursive implementation of the Fibonacci sequence
Test-14 1 Return n" element of list s
Test-15 1 It returns the number of recursion taken in computing the o
Fibonacci number instead of the actual Fibonacci number
Test-16 1 A test for recursive callg

A Template Based Graph Reduction System Based on Combinators

Table 2. The comparison of Turner’s SKI and Hughes” SC algorithms

259

Program | Produced Reduced Reduced Reduced Rewrite
Combinator # | Combinator # | Operator # |Procedure # Procedure #
Turners Hughes Turners | Hughes | Turners | Hughes | Tumers | Hughes | Turners | Hughes
Test-1 5 1 1 1 I 1 20 0 2 3 3
Test-2 29 6 4 6 1 1 5 =7 8 13
Test-3° 21 1 38 5 18] -~ 18 56 . 29 95 68
Test-4 27 L 69 13 62 | 62 131 75 231 169
Test-5 7 I I 2 e 1 1 31 5 5
Test-6 21 . 6 0. -6 1 1 1 7 2 8
Test-7 28 6 1 G, 2 2 3 8 6 11
Test-8 1682 91209355 77521 30320 29580] 329675 46378| 398030 112441
Test-9 19 1]/ 7 1 6 6 13 T 25 i9
Test-16 18 4 2 4 1 i 3 3 4 6
Test-11 9 3 3 3 ¢ 0 3 3 4 4
Test-12 15 2i o240 0 - 20 2y 2 4] - 4 7 7
Test-13 .35 ! 97 9| 46 46| 143 671 .. 236 160
Test-14 48 21 35| 6| 11 11 46 18] 62 34
Test-15 1 310 1] 121 i3 e X S 851 304 210
Test-‘16' 171 L 33 475566‘ : '-842?7 7724 '7724 " 55290 19482 74817 39009

The Flgures 3 and 4 show produced and rcduced number of combmators and a
.comparison between the two ‘algorithms. The SKI algorithm contains optimizations, for
that reason the number of combinators that are produced are reduced at the compilation
stage. The difference in the number of produced combinators . between the SKI and SC
techmque ‘becomes greater for the test program 8. This program contalns several deep
recursions. As a result the number of produced combinators are décreased more than the
ones that does not contain recursion. Because of this huge difference in results, test-8 and
_test-16 are not included in these. Flgures When the SC algorithm is opunnzed [1] the
: f-difference appc—:armg m F1gures 3-4 becomes even greater

Produced o
- Combinator# =~

| —a—SK| —1—SC

Test N_ﬁmber.

- Figure 3. The number of combinators that are produced (SKI v.5C) - -

260 - A. Cavugoglu, H. H. Goéktas and N. Vardal

e SVKI ~1-SC

150 -
® o
8 2 100-
3E
@2 504
© &
O
0 - P
: - o 0 ~ o =) 0
Test Number

Figure 4. Com‘parison of the number of réduced combinators (SKI v.SC)

‘ As Figure 4 shows, the number. of reduced operators is nearly equal in all test
programs. But for the test-8 they are less in numbers when SC is used instead of the SKI.
The results suggest that, recursive programs compiled with SC reduction algorithm have
lesser number of combinators than the ones compiled with SKI-algorithin. Similarly the
number of called procedures causing the reductions and rewrite operators are also greater
in the SKI algorithm. The optimizations that were suggested by Hughes have been applied
to our SC implementation and table 3 shows the test results between initial and the OSC
algorithms. These improvements are not new, they are published and applied

. Table 3. Comparison between OSC algorithm and the template based CRS
Prog. |Produced Tem | Used | Reduced | Reduced | Reduced Reduced Rewrite

Name |Combinat | plate | Temp- | Combin- | Templat | Operator # Procedures# Procedure #
or#- # late # |ator# |e# 1o e ¥

R : U - 1OSC] CRS |OSC| CRS | . OSC | CRS
Test-1 1 1 1 1 1 1 VAT 31 3|8
Test-2 S 4 5 5 3 1 6 6 11 13 13
Test-3 1 1 1 5 5 18 19 29 30 68 70
Test-4 1 1 1 13 13 62 63 75 76 169 173
Test-3 2 2 2 2 2 1 3 3 5 5 g
Test-6 6 2 6 6 6 1 7 7 13 8 20
Test-7 6 3 6 6 6 2 8 8 14 il 23
Test-8 9 9 9 7752 7752129580 | 30778 | 46378 | 47576 112441 | 114837
Test-0 1 1 1 1 1 6 7 7 8 19 21
Test-10 3 3 3 3 3 1 4 4 7 6 12
Test-11 1 1 1 1 1 0 1 1 2 3 5
Test-12 2 2 2 2 2 2 4 4 6 7 11
Test-13 1 1 I 9 9 46 47 67 68 160 162
Test-14 2 2 2 6] - & 11 15 18 22 34 42
Test-15 1 1 1 15 i5 58 39 83 86 216 212
Test-16 3 3 3 8427 8427 | 77241 77241 19482 | 10485 36009 | 39015

to systems. One optimization is ordering SCs parameters, without separating the
combinators, if they exactly have the same effect. Detecting such a redundant combinator
and eliminating it is necessary because fewer combinators mean fewer reductions to be
performed and therefore more speed. Another optimization example is that, the parameters
of the combinators can be arranged in any order. If these parameters are ordered with
respect to the immediately enclosing lambda expression, it may be possible to obtain less

A Template Based Graph Reduction System Based on Combinators 261

mfe’s. “So, to maximize the size and mihimize the number of mfe’s of the next enclosing
- lambda expressmn, all the mfe’s of the lambda expression being compiled which are also
free e expressmns of the, next enclosmg 1ambda expressmn must appear before those which
are not 7 1., o
Aceordmg to test results —glven at Table 3- " in Tests 2, 6 7 the number of
tempiates in CRS are 1esser than the number of combmators produced in OSC. But there is
an increase at the number of reduced operators, called reduce and rewrite procedures in
‘some test programs Although we have an advantage on number of produced combinators
we have a disadvantage at the number of used procedures for these tests. However
executzon speed has been mcreased for most of the test programs with CRS.

© Processed number of combmators for the OSC is equal with the processed number
of templates for CRS. Because, although we use one template to express similar structure
of SCs, we have to procéss the same number of templates with different argument lists to
reduce the whole graph. There is an increase in the number of reduced operators, called

reduce procedures and called rewrzte proeedures in the CRS program The Flgures Sand 6
Show this increase: : : : 3

|=e—0sc a-cRs|

100
80 .
60
40
20
0 A, LERTT

1 3 5 7 9 ik 13 15
: - Test Number

Reduced _
Procedures #

Figure 5. The number of_cailed reduce procedures (OSC v. CRS) :

|;o—ose ——I:I--CRS]

250
200
150
100

50

Rewrite
Procedures #

Test Number

Figure 6. The number of called rewrite procedures (OSC v, CRS)

262 ‘ A. Cavugoglu, H. H. Goktas and N. Vardal

6. CONCLUSIONS AND SUGGESTIONS

In this study to express SCs shared temp}ate structure is used. We cia331fy produced
SCs with respect to their treé structure. Then, we use the templates istead of using SC as
an operator | to perform reduction on the graph. Assume that the numbers of SC that are
produced are ‘n’, and with the template based algorithm the number of used templates is
‘K. At the worst case ‘n’ is equal to ‘K’ (produced SC structure are completely dxfferent)
but for most other cases ‘k’ is less than ‘n’ in numbers. By this way, it is possible to define
any SCs that are produced with templates. Test results show that, the number of called,
reduce procedures and rewrite procedures are higher than the ones obtained from OSC
implementation for a small number of test programs. Test results show that, if the produced
combinator structure is not smnlar template based approach is not useful for these types of
combinators.

"The most obvious bottlcneck of our algomthm is to find matching SC structure in
the template list at the compilation part. Implementing the algorithm using templates
reduces the stored tree structure for SCs produced. Also, these templates act like an
instruction and as a future direction this implementation may be extended to be directly
implemented on hardware. Hardware coded templates can be used in the program and the
SCs that are produced earlier can be incorporated at compilation stage to speed up the
reduction. An unlimited number of SC types are generated dynamically by our algorithm.
That is why we do not know the number of SCs that would be produced by our program.
But we can use the template approach to describe SCs. CRS reduces the stored graph
structure of the SCs. It may be suggested that we can define any produced SCs by
templates and we can use thern to perform reduction on the graph.

REFERENCES

{11 RJM. Hughes, Super-combinators, 1982 ACM Symp. on LISP and Functional
Programming, 1-10, 1982,

[2] N. Jones and S. Mucknick, A Fixed Program Machine For Combinator Exspression
Evaluation, ACM Symp on LISP and Functional Programming, 1982.

{31 A. Church, The Calculi of Lambda Conversion, Princeton University Press, 1941.

[4] N. Vardal, Graph Reduction System Based on Combinator, Msc. Thesis Baskent
University Institute of Science, Ankara, 2001.

[5] J. B. Rosser, Highlights of the History of the Lambda calculus, ACM on LISP and
Functional Programming, 1982.

[6] J. Fairbrain and S. C. Wray, TIM, ACM thard conference on Functzonal Programming
Languages and computer Architecture, New York ,1987.

[7]1 R. Milner, A Theory of Type Polymorphism in Programming, J. Computer and System
Science, 3, 348-375, 1978.

[8] S. P. Jones, C. Clack, J. Salkild and M. Hardie, GRIP-A High Performance Architecture
for Parallel Graph Reduction, Third Conference on Functional Programming Languages
and Computer Architecture, 98-112, 1987.

[9] H. Abelson, G. Sussman, and J. Sussman, Structure and Interpretation of Computer
Programs, McGraw Hill, New York, 1985.

